
COM S 330 — Lecture Notes — Week of Mar 23–27

1 Monday, March 23

1.1 Rosen 6.5: Generalized Permutations and Combinations

Reading: Rosen 6.5, Ducks 7.1–7.4, LLM 14.1, 14.4, 14.5.2, 14.6

Recall that an r-permutation from a set A of n elements is an r-tuple (a1, . . . , ar) of distinct entries from
the set A. Thus, we can “select” the first element, then the second, and so on. At every step, we are pulling
the element out of the “bag” that is the set A, as we will not want to repeat an element.

What if we want to allow a repetition?

Thm: The number of r-tuples from a set A of size n is nr.

Proof. By the strict product rule, |Ar| = |A|r = nr.

OR: We select a tuple (a1, . . . , ar) by selecting each ai from A in order; we allow repetition, so there are n
choices for each ai.

This is not terribly interesting! Let’s do something else!

Recall that an r-combination from a set A of n elements is a subset S ⊆ A where |S| = r. Essentially, we
selected r things from the set A, and we did not allow repeats, so we had “removed” the elements from the
bag. What if we allow repetition?

In order to allow repetition, we need the idea of a multiset. A multiset is a collection of objects and each
object is associated with a multiplicity (a nonnegative integer). Thus, the multiset containing 1 once, 2
twice, and 5 three times can be denoted {1, 2, 2, 5, 5, 5}. This differs from the permutations (with repetition)
in that order does not matter. That is, {1, 2, 2, 5, 5, 5} = {5, 2, 1, 5, 2, 5}. The size of a multiset is the sum
of the multiplicities.

If we follow our usual counting process, then what happens? We have n possibilities for each element of our
multiset, but we have a problem! Sets with r distinct elements are counted r! times. Sets with r− 1 distinct
elements are counted r!

2 times. Sets with r − 2 distinct elements are counted r!
3! times (if one item appears

three times) or r!
2·2 (if two items each appear twice). This is complicated!

We need to count in a different way.

Instead: let’s count by making a different set of decisions. For a multiset of size r, we must make r selections
from our set A of size n. Instead of filling r spots with some objects from the set A, then worrying about
order, we will instead take r “tokens” and place them on some of the elements of A.

If A = {a1, . . . , an}, then we can create a “box” for ai. To create a multiset M , take r tokens, and put each
into one box. Boxes can hold multiple tokens. After this process is complete, we can let M be the multiset
where ai appears with multiplicity given by the number of tokens in the ith box.

Again, if we followed the process step-by-step, we would run into issues with the order that the tokens were
placed into each box! We will instead count the number of end results directly instead of following the
step-by-step process.

Think about our n boxes in a slightly different way: There is one long box with n− 1 dividers (splitting the
box into n spaces) and then the tokens are placed in the big box, between some dividers. At the end, let’s
look from one side of the box to the other, looking for “token” or “divider.” We will see a list of r tokens
and n− 1 dividers, giving n + r − 1 total objects, but r of them are tokens.

Stars and Bars Theorem: There are
(
n+r−1

r

)
=
(
n+r−1
n−1

)
ways to:

• Select a multiset of size r from a set of size n.
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• Place r indistinct objects into n distinct boxes.

• Binary strings with exactly r 0’s and exactly n− 1 1’s.

Proof. Note that we can build a multiset of size r by placing r indistinct tokens into n distinct boxes
(corresponding to the elements of the set). Thus, let us count the number of ways to place r indistinct
objects into n distinct boxes. This is the same as the number of binary strings with exactly r 0’s and exactly
n − 1 1’s, as when we have r objects in n boxes we can use n − 1 dividers between the boxes, then look
through the boxes; when we see an object, we place a 0 in the string (a star); when we see a divider, we
place a 1 in the string (a bar). This results in r 0’s and n− 1 1’s. Note that we can reproduce the placement
of objects in boxes from such a binary string, so the counts are the same.

Let us first notice that given a binary string with exactly r 0’s and exactly n− 1 1’s, we have n+ r− 1 total
positions in the string. Exactly r of these positions represent 0’s, and the other n − 1 represent 1’s. Thus,
there are

(
n+r−1

r

)
ways to select the positions that will be 0. Equivalently, there are

(
n+r−1
n−1

)
ways to select

the positions that will be 1.

1.1.1 Objects and Boxes

Distinguishable Objects and Distinguishable Boxes

Thm: The number of ways to distribute n distinguishable objects into k distinguishable boxes so that ni

objects are placed into box i is
n!

n1!n2! · · ·nk!
.

Proof. Permute the objects, then take the first n1 for box 1, the next n2 for box 2, and so on. There are
ni! ways that each box can be filled. Thus, we divide by n1!n2! · · ·nk! as this is how many times each
arrangement of objects into boxes appears.

Cor: The number of different permutations of n objects, where there are n1 indistinguishable objects of
type 1, n2 indistinguishable objects of type 2, . . . , and nk indistinguishable objects of type k, is

n!

n1!n2! · · ·nk!
.

Indistinguishable Objects and Distinguishable Boxes

This is where we use Stars + Bars!

Distinguishable Objects and Indistinguishable Boxes

Ex: How many ways can we place four different cookies onto three indistinguishable plates, where each plate
can contain any number of cookies?

A: 14

Stirling numbers of the second kind: S(n, k) is the number of ways of partitioning n objects into k
indistinguishable boxes.

Indistinguishable Objects and Indistinguishable Boxes

Ex: How many ways can we represent a number n as the sum of k natural numbers? (Here, order does not
matter in the sum!)

The number 5 can be represented as a sum of 3 natural numbers in four ways:

5 = 5 + 0 + 0 = 4 + 1 + 0 = 3 + 1 + 1 = 2 + 2 + 1
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The number 6 can be represented as a sum of 3 natural numbers in 7 ways:

6 = 6 + 0 + 0 = 5 + 1 + 0 = 4 + 2 + 0 = 4 + 1 + 1 = 3 + 3 + 0 = 3 + 2 + 1 = 2 + 2 + 2.

Such an arrangement is called a partition of the number. Here, we are placing n objects (the 1’s that are
summed to make n) into k indistinguishable boxes (the numbers we sum). The boxes are indistinguishable
since we reorder the numbers to be in nonincreasing order.

Recommended Homework. Rosen 6.5: 9–16, 17–19, 21–26, 28, 30–35, 39–40, 44, 45, 50, 51, 61, 63–64
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2 Wednesday, March 25

2.1 Rosen 10.1: Graphs and Graph Models

Reading: Rosen 10.1, Ducks 3.1, 3.5, LLM

Examples of Graphs in the Real World:

Facebook: People are dots, draw a line between dots if they are friends. Do not draw a line if they are not
friends. [See “acquaintanceship and friendship graphs” in the book.]

Questions: How large a group of people are all friends with each other? Given two people, how many
“handshakes” are they away from each other? People are friends with people they know from family, high
school, college, and work; can you tell which people are in a group together?

Twitter: People are dots, draw an arrow from dot a to dot b if b follows a (so tweets from b are “sent” to
a). [See “influence graph” in the book.]

Questions: Which person has the most followers? I use Twitter for personal use, entertainment, and to follow
researchers in math and computer science; Can you guess which are which by looking at the relationships
between the people I follow? Suppose a political tweet has a 1% chance of being retweeted; what is the
likelyhood of the tween being retweeted over 1,000 times?

6 degrees of Kevin Bacon: Let actors on IMDB be dots. Draw a line between dots if they acted in a
movie together. How many movies do we need to use to get from any actor to Kevin Bacon? Is it at most
6?

Erdős Numbers: Let mathematicians be dots. Draw a line between dots if they co-authored a paper. How
many papers do we need to use to get from a Mathematician to Paul Erdős? (Erdős has number 0; over 250
people have number 1; my number is 2) [See “Collaboration Graph” in the book.]

Scheduling: Let faculty in the Computer Science department be dots. This is a contentious department,
and some people cannot stand each other. Place a line between dots if those two faculty cannot be in the
same room at the same time.

Questions: If the Department Chair wants to meet with groups of faculty in the fewest number of timeslots,
how can we schedule the faculty to meeting times such that the meetings will stay cordial? Observe: if there
are k people who all hate each other, then we will need at least k meeting times! Is this always the best bound?

Road Maps: Let cities be dots. Draw a line between dots if there is a road between these cities. Label the
line with the time it takes to drive that distance.

Questions: How long does it take to drive between two cities, using the shortest possible route? How long
does it take to leave your hometown, visit all of the cities exactly once, and return home?

Computer Networks: Let computers and routers be dots. Put a line between dots if those machines are
connected by a network connection (wired or wireless). Label each line with the bandwidth.

Questions: Suppose I want to send a message from computer s to computer t; if I can split the message into
multiple tiny pieces, how can I route the pieces through the network in order to send the full message to t
as quickly as possible? Keep in mind that there is some lag time for the message pieces to be processed at
each node.
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Internet Search: Let web pages be dots; label the dots with their textual content. Put an arrow from one
dot to another if there is a link on that page to the other.

Question: If I want the most-important web page about “Mathematicians near Ames, IA” I want to find a
page that doesn’t just have the most instances of ”mathematician” and “ames” but I want a page that other
web pages link to, since they find it important. How can I detect which pages are the most important? [See
“The Web Graph” in the book; see “PageRank algorithm” on Wikipedia.]

2.1.1 Formal Definition of a Graph

Def: A graph G = (V,E) is a pair of sets V and E where V is a set of vertices and E is a subset of the
unordered pairs of V (define

(
V
2

)
= {{u, v} : u, v ∈ V, u 6= v} and let E ⊆

(
V
2

)
.). A pair {u, v} is an edge if

{u, v} ∈ E; we will shorten our notation to use uv to represent {u, v} = {v, u}.
(The definition above is sometimes called a simple graph as there are more complicated definitions that allow
multiple edges (E is a multiset), or loops (E can contain {v, v} as an edge). We will avoid these at all costs!]

Def: A directed graph G = (V,E) is a pair of sets V and E where V is a set of vertices and E is a subset of
the ordered pairs of V (let E ⊆ {(u, v) : u, v ∈ V, u 6= v}.). A pair (u, v) is a (directed) edge if (u, v) ∈ E; we

will shorten our notation to use
→
uv or u→ v to represent (u, v).

Examples of Common Graphs:

• The Complete Graph Kn is the graph with vertex set V = {1, . . . , n} and E =
(
V
2

)
.

• The Empty Graph Kn is the graph with vertex set V = {1, . . . , n} and E = ∅. (Note: empty edge
set, not empty vertex set.)

• The Cycle Graph Cn is the graph with vertex set V = {1, . . . , n} and E = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}.
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3 Friday, March 27

3.1 Rosen 10.2: Graph Terminology and Types of Graphs

Reading: Rosen 10.2, Ducks 3.5, LLM

Let G be a graph with vertex set V (G) and edge set E(G).

Examples of Common Graphs:

• The Complete Graph Kn is the graph with vertex set V = {1, . . . , n} and E =
(
V
2

)
.

• The Empty Graph Kn is the graph with vertex set V = {1, . . . , n} and E = ∅. (Note: empty edge
set, not empty vertex set.)

• The Cycle Graph Cn is the graph with vertex set V = {1, . . . , n} and E = {{1, 2}, {2, 3}, . . . , {n −
1, n}, {n, 1}}.

• The Wheel Graph Wn is the graph given by taking the cycle Cn and adding a vertex 0 that is adjacent
to all vertices i with 1 ≤ i ≤ n.

• The k-dimensional hypercube Qk is the graph with vertex set V given by binary strings of length k
and two binary strings are adjacent if they differ in exactly one coordinate.

• The Complete Bipartite Graph Kn,m is the graph with vertex set V = X ∪Y where X = {x1, . . . , xn},
Y = {y1, . . . , ym}, X ∩ Y = ∅ and the edge set E is the set {xiyj : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Def: Two vertices u and v are adjacent if the pair uv is an edge in E(G).

Def: For an edge e = uv ∈ E(G), the vertices u and v are endpoints of e.

Def: A vertex v and an edge e are incident if v is an endpoint of e.

Def: The neighborhood of a vertex v is the set of adjacent vertices, denoted N(v) = {u : uv ∈ E(G)}.
Def: The degree of a vertex v is the size of N(v); equivalently, it is the number of vertices adjacent to v.

Def: A vertex is isolated if it has degree zero; a vertex is a pendant if it has degree one.

Degree-Sum Formula: (also called the Handshaking Theorem) Let G be a graph with vertex set V (G)
and edge set E(G). Then,

2|E(G)| =
∑

v∈V (G)

d(v).

Proof. Let us count edges by looking at vertices. Each vertex is incident to d(v) edges. Every edge is incident
to two vertices. Thus,

∑
v∈V (G) d(v) counts each edge exactly twice, so the sum is 2|E(G)|.

Thm: A graph has an even number of vertices of odd degree.

Def: A graph G is bipartite if V (G) can be partitioned into two disjoint sets V (G) = X ∪ Y where each
edge in E(G) has one endpoint in X and the other endpoint in Y . The union X ∪ Y is called a bipartition.

Thm: The cycle Cn is bipartite if and only if n is even.

Proof. If n is even, then let X be the set of odd numbers and Y the set of even numbers. The edges
{1, 2}, {2, 3}, . . . , {n − 1, n} have one endpoint in each of X and Y . Also, since 1 is odd and n is even, the
edge {n, 1} has one endpoint in X and one endpoint Y . Thus, X ∪ Y is a bipartition for Cn when n is even.

Let n be an odd number and suppose (for the sake of contradiction) that Cn has a bipartition V (Cn) = X∪Y .
The number 1 is in one of X or Y ; without loss of generality we can assume 1 ∈ X. Note that if i is in X for
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some i < n, then since {i, i + 1} is an edge, i + 1 must be in Y . Note that if i is in Y for some i < n, then
since {i, i + 1} is an edge, i + 1 must be in X. Thus X is the set of odd numbers and Y is the set of even
numbers. However, this means that both 1 and n are in X, but then the edge {n, 1} has both endpoints in X
and hence X ∪Y is not a bipartition, a contradiction! Thus, Cn is not bipartite as no bipartition exists.

Thm: The k-dimensional hypercube Qk is bipartite.

Proof. Let X be the set of binary strings with an even number of 1’s. Let Y be the set of binary strings
with an odd number of 1’s. All edges connect strings with one different coordinate, so the number of 1’s
changes by exactly one. Hence strings in X are adjacent only to strings in Y , and vice-versa. Thus X ∪ Y
is a bipartition.
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