
COM S 330 — Lecture Notes — Week of Mar 30–April 3

1 Monday, March 30

1.1 Rosen 10.2: Graph Terminology and Types of Graphs

Reading: Rosen 10.2, Ducks 3.5, LLM

Def: Let G and H be graphs. We say H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Ex: Kn ⊆ Cn ⊆ Kn.

Ex: Using the set definitions, V (Wn) = {0, 1, . . . , n}, so Wn 6⊆ Kn+1. However, a graph that looks like Wn

does exist inside Kn+1 (let n+ 1 take the place of 0). We will later talk about isomorphism that deals with
this.

One way to think about subgraphs is that we can delete some number of vertices and edges from G in order
to find the graph H.

Def: Let G be a graph and S ⊆ V (G). The subgraph of G induced by S, denoted G[S], is the graph H
with V (H) = S and E(H) = {uv : uv ∈ E(G), u, v ∈ S}. That is, G[S] has vertices in S and all edges that
are in G with both endpoints in S. A graph H is an induced subgraph of G (sometimes denoted H ≤ G) if
H = G[S] for some S ⊆ V (G).

Ex: Let 1 ≤ n ≤ m. Then Kn = Km[{1, . . . , n}] and hence Kn ≤ Km.

Ex: Cn is not an induced subgraph of Kn.

Ex: Cn = Wn[{1, . . . , n}], so Cn is an induced subgraph of Wn.

One way to think about induced subgraphs is that we can delete some number of vertices (and only the
edges incident to those vertices) to find H.

Thm: If G is a bipartite graph and H is a subgraph of G, then H is bipartite.

Proof. Since G is bipartite, there is a bipartition V (G) = X ∪ Y such that X ∩ Y = ∅ and for every edge
e ∈ E(G), exactly one endpoint of e is in each X and Y . Since H is a subgraph of G, V (H) ⊆ V (G) = X∪Y .
Let A = X ∩ V (H) and B = Y ∩ V (H). Then V (H) = A ∪ B. Let e be an edge in E(H). Then since
E(H) ⊆ E(G), exactly one endpoint of e is in X ∩ V (H) = A; exactly one endpoint is in Y ∩ V (H) = B.
Thus, A ∪B is a bipartition of H and H is bipartite.

Def: Let G1 and G2 be graphs. The union of G1 and G2, denoted G1 ∪ G2, is the graph G′ where
V (G′) = V (G1) ∪ V (G2) and E(G′) = E(G1) ∪ E(G2).

Def: Let G1 and G2 be graphs. The disjoint union of G1 and G2, denoted G1 +G2, is the graph G′ where
V (G′) = {(i, v) : i ∈ {1, 2}, v ∈ V (Gi)} and E(G′) = {{(i, u), (i, v)} : i ∈ {1, 2}, uv ∈ E(Gi)}.
Ex: Consider a class of students. Every pair of students could work together on a homework assignment. In
the first homework, pairs a1b1, a2b2, . . . , akbk work together (and c1, . . . , c` work by themselves). A restriction
on the later homeworks is that no pair can work together a second time. Thus, the graph of possible pairings
is given by all possible edges, minus the pairs that have been completed. What possible pairings are possible?

Def: Let G be a graph. A matching is a set M ⊆ E(G) such that for any two edges e1, e2 ∈M with e1 6= e2,
the edges e1 and e2 do not share a common endpoint.

Def: Let G be a graph with a matching M . A vertex v is matched if there is an edge e that is both in M
and is incident to v (and v is matched to the other endpoint of e); otherwise v is unmatched. A maximum
matching is a matching of maximum size (among all matchings in G).
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2 Wednesday, April 1

Def: Let G be a bipartite graph with bipartition V (G) = X ∪ Y . Note that a matching M ⊆ E(G) consists
of edges with one endpoint in X and another endpoint in Y . The matching M is called a complete matching
from X to Y if every vertex in X is matched.

Ex: Kn,n has a complete matching. K4,5 has a complete matching from left to right, but not right to left.

Ex: C2n has a complete matching.

(Note: A matching is NOT a subgraph, as it is only a set of edges. However, there is an associated subgraph
where we include the matched vertices. Sometimes it is helpful to think about that.)

Def: Recall N(v) is the neighborhood of a vertex. Thus, if S ⊆ V (G), then N(S) = ∪v∈SN(v) (recall that
we may use the notation NG(S) = ∪v∈SNG(v) when two graphs are in the discussion.)

Hall’s Theorem: Let G be a bipartite graph with bipartition V (G) = X ∪ Y . G has a complete matching
from X to Y if and only if for all S ⊆ X we have |S| ≤ |N(S)|.
Proof. We shall prove both directions of the “if and only if”.

We first prove that if G has a complete matching from X to Y , then |S| ≤ |N(S)| for all S ⊆ X. We prove by
contradiction: Suppose there exists a complete matching M from X to Y and there also exists a set S ⊆ X
where |S| > |N(S)|. Let S = {s1, . . . , sk}. Since M is a complete matching, every element si ∈ S is matched
to an element yi ∈ Y . However, since M ⊆ E(G), yi ∈ N(si). Hence, {y1, . . . , yk} ⊆ N(S). However,
|N(S)| < |S| = k so not all of the elements yi are distinct and hence M is not a matching, a contradiction!

We now prove the other direction: If |S| ≤ |N(S)| for all S ⊆ X then G has a complete matching from X to
Y . We will prove this using induction on |X| ≥ 0.

Base Case 1: If |X| = 0, then let M = ∅.

Base Case 2: If |X| = 1, then there exists a single vertex x ∈ X. Since N(x) = N({x}), we have |N(x)| ≥ 1
and thus there is an edge xy ∈ E(G) and we let M = {xy}.
(Strong Induction Hypothesis) Let n ≥ 1 and suppose that if G is a bipartite graph with bipartition V (G) =
X ∪ Y and |X| ≤ n, the statement holds.

Case n+ 1: Suppose G is a bipartite graph with bipartition V (G) = X ∪ Y where |X| = n+ 1 ≥ 2. We will
use two sub-cases.

Subcase 1: Suppose that for all sets S ⊆ X with 1 ≤ |S| ≤ n we have |N(S)| ≥ |S| + 1. In this case, let
x ∈ X and let y ∈ N(x) (which exists, since |N(x)| ≥ |{x}| + 1). Let G′ = G − x − y (the graph given by
removing the vertices x and y from G). Then G′ is bipartite with bipartition V (G′) = (X \ {x})∪ (Y \ {y}).
Also, for all S ⊆ X \ {x}, |NG′(S)| ≥ |NG(S)| − 1 ≥ |S|. Thus, by the induction hypothesis, G′ has a
complete matching M ′ from X \ {x} to Y \ {y}. Let M = M ′ ∪ {xy} and observe that M is a complete
matching of G from X to Y .

Subcase 2: Now suppose that there exists a set S ⊆ X with 1 ≤ |S| ≤ n and |S| = |N(S)|. Let H be the
subgraph of G induced by S ∪N(S). H has bipartition V (H) = S ∪N(S) and H has the property that for
all T ⊆ S that |NH(T )| ≥ |T | (since T ⊆ S ⊆ V (G) and NH(T ) = NG(T )). Thus, by the strong induction
hypothesis, H has a complete matching M from S to N(S).

Let X ′ = X \ S and Y ′ = Y \ N(S). Let G′ be the subgraph of G induced by X ′ ∪ Y ′ and observe that
G′ has bipartition X ′ ∪ Y ′. We need to verify that for all T ⊆ X ′ we have |NG′(T )| ≥ |T |. For the sake
of contradiction, suppose that there exists a set T ⊆ X ′ where |NG′(T )| < |T |. Now consider S ∪ T ⊆ X.
We have NG(S ∪ T ) = NG(S) ∪ (NG(T ) \NG(S)) = NG(S) ∪NG′(T ). Since NG(S) ∩NG′(T ) = ∅, we have
|NG(S ∪ T )| = |NG(S)|+ |NG′(T )| < |S|+ |T | = |S ∪ T |, contradicting the condition on G!

Thus, no such set T exists, and by the strong induction hypothesis there exists a complete matching M ′

from X ′ to Y ′ in G′. Therefore, M ∪M ′ is a complete matching of G from X to Y .
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2.1 Rosen 10.3: Representing Graphs and Graph Isomorphism

Reading: Rosen 10.3, Ducks , LLM

Def: Let G be a graph with vertex set V (G) = {v1, . . . , vn}. The adjacency matrix of G is the n×n matrix
A = A(G) where the i, j-entry is 1 if vivj is an edge of G, and 0 otherwise.

Ex: Create the adjacency matrices for C4, C5, C6,K3,K4,K5,K2,2,K2,3,K4,4, Q3, Q4.

Note: A(G) is symmetric, as vivj is an edge of G if and only if vjvi is an edge of G.

Def: Given an n×n symmetric matrix A with entries in {0, 1} and all diagonal entries 0, the graph G = G(A)
is the graph with vertex set {1, . . . , n} where the edge ij is in E(G) if and only if the i, j-entry of A is 1.

Ex: Draw the graphs G(Ai) associated with the adjacency matrices Ai below:

A1 =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 A2 =


0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

 A3 =


0 0 0 1 1

0 0 0 1 1

0 0 0 1 1

1 1 1 0 0

1 1 1 0 0


Note: When encoding A as a doubly-indexed array in C, Java, or almost any programming language
that is 0-indexed, we treat A as having i, j-entries with 0 ≤ i < n and 0 ≤ j < n. Thus we order
V (G) = {v0, . . . , vn−1} and then we can use the following type of code:

int** A = (int**)malloc( n * sizeof(int*) );

for ( int i = 0; i < n; i++ )

{

A[i] = (int*)malloc( n * sizeof(int) );

for ( int j = 0; j < n; j++ )

{

A[i][j] = 0;

}

}

// We now have an adjacency matrix for the empty graph on n vertices

We can add edges to the graph as follows:

void addEdge(int** A, int i, int j)

{

A[i][j] = 1;

A[j][i] = 1; // Stay symmetric!

}

Note: Since A is symmetric and has 0’s on the diagonal, we only need to know the i, j-entries when
1 ≤ i < j ≤ n (i.e. the upper triangle, minus the diagonal). There are

(
n
2

)
= 1

2n
2− 1

2n such entries, so if you
have 1

2n
2 bits, you can “pack” the information of an adjacency matrix into that small of a container! This

is hard to do, so you should only do it when your memory footprint needs to be REALLY small!

Def: Let G be a graph with vertex set V (G) = {v0, . . . , vn−1}. An adjacency list representation of G is a
data structure that stores N(vi) for every vertex vi ∈ V (G).

Here is an example in C:
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int** adjacency_list = (int**)malloc( n * sizeof(int*) );

for ( int i = 0; i < n; i++ )

{

int degree = 0;

for ( int j = 0; j < n; j++ )

{

degree += A[i][j];

}

adjacency_list[i] = (int*)malloc( (degree+1) * sizeof(int*) );

int cur_pos = 1;

for ( int j = 0; j < n; j++ )

{

if ( A[i][j] == 1 )

{

adjacency_list[i][cur_pos] = j;

cur_pos++;

}

}

adjacency_list[i][cur_pos] = -1; // "null" terminated.

}

There are many ways to store an adjacency list or an adjacency matrix. Bit-packing can decrease the size
of an adjacency list to be essentially Cn+Dm log n for some constants C,D > 1 where n is the number of
vertices and m is the number of edges. You could also use linked lists, (self-balancing) binary trees, or hash
tables to store the lists of adjacent vertices. You may also want to store a few things in addition, such as
number of vertices, number of edges, the degree sequence, labels on the vertices, etc.

Pros Cons

Adjacency
Matrix

Random-Access Lookups 1
2n

2 − 1
2n bits required for n ver-

tices.

Matrix algebra encodes more in-
formation

Adjacency
List

≈ m log n bits required for n ver-
tices and m edges (good if m �
n2).

Linear-Time Lookups
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3 Friday, April 3

3.0.1 Isomorphism

Consider the following adjacency matrices:

A1 =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 A2 =


0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

 .
You may notice that A1 = A(C4) and A2 = A(K2,2) (if you did the earlier exercises!)

v1

v2v3

v4 y1

y2x2

x1

However, if we ”redraw” K2,2 we will get a different picture:

v1

v2v3

v4 x1

y2x2

y1

By these pictures, these graphs look the same! In fact, if we erased the vertex labels, we could not tell them
apart!

When I say we “redraw” the graphs, what we are really doing is pairing the vertices of C4 with the vertices
of K2,2 with the following map:

v1 7→ x1

v2 7→ y2

v3 7→ x2

v4 7→ y1

v1v2 7→ x1y2

v2v3 7→ y2x2

v3v4 7→ x2y1

edges v4v1 7→ y1x1

nonedges v1v3 7→ x1x2

v2v4 7→ y2y1

In the above two lists, we define a bijection from V (C4) to V (K2,2) on the left. On the right, we see how
that bijection sends pairs of vertices from V (C4) to pairs of vertices in V (K2,2). Observe that the edges of
C4 are sent to edges of K2,2 and the nonedges of C4 are sent to nonedges of K2,2.

There is something fundamental happening here, given by the following definition.

Def: Let G and H be graphs. An isomorphism from G to H is a function f : V (G)→ V (H) such that (a) f
is a bijection and (b) for every pair u, v ∈ V (G), the edge uv is in E(G) if and only if f(u)f(v) is in E(H).
(That is, the function f sends edges in G to edges in H and nonedges in G to nonedges in H; informally, the
bijection f : V (G)→ V (H) induces a bijection from E(G) to E(H).) If there exists an isomorphism from G
to H, then G and H are isomorphic, denoted G ∼= H.
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Note: The bijection f : V (G) → V (H) can be though as a way to relabel the vertices of G to match the
vertices of H and end up with the same edge set as H!

To demonstrate G ∼= H: Define a bijection π : V (G) → V (H) then demonstrate why uv ∈ E(G) if and
only if π(u)π(v) ∈ E(H). For small graphs (such as those below), we only need to check each pair on a
case-by-case basis.

Ex: C4
∼= K2,2.

Ex: W3
∼= K4.

Ex:

Thus, when I draw a graph on the board or on a piece of paper, I’m not just talking about one graph, but
talking about all of the graphs isomorphic to that graph! This is why we do not need to list the labels of
our vertices (unless it is helpful).

Def: Let G be a graph. The class of graphs isomorphic to G is the set of all graphs H such that H ∼= G (this
is infinite, as we could select V (H) to be ANY set of n elements, but typically we think of V (H) = V (G) =
{1, . . . , n}.) In general, an isomorphism class is a family of graphs that are isomorphic to each other.

The most wonderful thing about isomorphism is that most graph properties that we care about are invariant
under isomorphism. That is, if G ∼= H, then G has a property P if and only if H has a property P . Here
are some examples (proofs are omitted so you can try to prove them!):

Prop: Let G and H be graphs. If G ∼= H, then |V (G)| = |V (H)| and |E(G)| = |E(H)|.
Thm: Let G and H be graphs. If G ∼= H, then the degree sequence of G equals the degree sequence of H.

Thm: Let G and H be graphs. If G ∼= H, then G is bipartite if and only if H is bipartite.

Thm: Let G and H be graphs with |V (G)| = |V (H)| = n. Let m be an integer with 1 ≤ m ≤ bn2 c. If
G ∼= H, then G contains a matching of size m if and only if H contains a matching of size m.

Thm: Let G, H, and C be graphs. If G ∼= H and C ⊆ G, then there is a subgraph C ′ ⊆ H such that
C ′ ∼= C.

With the above theorem, we want to relax our definition of subgraph a little bit.

Def: Let G and H be graphs. We say G contains a copy of H if there is a subgraph H ′ ⊆ G such that
H ′ ∼= H. Frequently, we will simply say that H is a subgraph of G, even if the set-inclusion is not true, but
we mean that G contains a copy of H.

Thm: Let G, H, and C be graphs. If G ∼= H, then G contains a copy of C if and only if H contains a copy
of C.

To demonstrate G 6∼= H: To show nonisomorphism, we are saying that no isomorphism exists! Non-
existence is always a harder statement (in general) but can frequently be made easier by using results such
as the above! If P is a property that is invariant under isomorphism and P (G) 6= P (H), then G 6∼= H!

Ex: C4 6∼= C5 since |V (C4)| = 4 6= 5 = |V (C5)|.
Ex: W4 6∼= K5 since |E(W4)| = 8 6= 10 = |E(K5)|.
Ex: Prove that the two graphs below are not isomorphic:

G H
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Before we prove G 6∼= H, let’s first note some things: |V (G)| = 6 = |V (H)|, |E(G)| = 9 = |E(H)|, and every
vertex has degree 3 in each graph!

Proof. Note that G contains K3 as a subgraph. Thus, G is not bipartite (as K3 is not bipartite).

However, H is bipartite as we can take every other vertex around the outer cycle to form a bipartition.

Since G is not bipartite and H is bipartite, G 6∼= H.

There is no tried and true method to easily determine if two graphs are isomorphic or not. This is mostly
due to the fact that there is no “easy proof” that two graphs are not isomorphic. (Contrast this with the
fact that we have a short proof of a bipartite graph not having a complete matching, by Hall’s Thm.) This is
part of why the “GraphIsomorphism” problem (take two graphs, decide if they are isomorphic) is thought to
be a so-called intermediate problem: No known polynomial-time algorithm exists, but also no proof of being
NP-complete exists! GraphIsomorphism is one of the few intermediate problems that occur “naturally” (that
is, it was not first defined for the sake of being intermediate).

HOWEVER: a good strategy for showing G 6∼= H is to go through your list of graph properties: do they
have the same number of vertices? do they have the same number of edges? Do they have the same degree
sequence? Are they both bipartite or both not bipartite? Does one contain a subgraph the other does not?

As we discover more graph properties, you will have more questions to add to your arsenal!
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