Math-484 Homework #3

I will finish this homework before 11 am Sep 14 and bring it to class. If I have troubles with my work I may come to the study session on Sep 12, 5-7 pm, 145 Altgeld Hall. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am D14 (4 hours student).

Exercise 1: (Do I understand the definition of a convex set?)

Are the following sets D in \mathbb{R}^2 convex? (a) $\mathbf{x} = (100, 14) \in \mathbb{R}^2, \mathbf{y} = (15, 24) \in \mathbb{R}^2.$ $D = \{\mathbf{w} \in \mathbb{R}^2 : \mathbf{w} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}, \text{ where } 0.3 < \lambda \leq 0.7\}$ (b) $D = B((1, 0), 1) \cup (0, 0)$ recall $B(\mathbf{x}, r) = \{\mathbf{w} : ||\mathbf{x} - \mathbf{w}|| < r\}$ (c) $D = B((1, 1), 1) \cup (0, 0)$

Exercise 2: (Do I understand more than just a picture of the definition?)

Prove Theorem 16 (2.1.4): Let $D \subseteq \mathbb{R}^n$. Then co(D) coincides with the set C of all convex combinations of vectors from D.

Hint:

1) Show that C is a convex set containing D.

- 2) Show that if B is a convex set containing D then it also contains C.
- 3) Conclude that co(D) = C.

Exercise 3: (I recall the definition of a convex function.)

Determine whether the functions are convex, concave, strictly convex or strictly concave on the specified sets:

(a) $f(x) = \ln x$ for $x \in (0, +\infty)$ (b) f(x) = |x| for $x \in \mathbb{R}$ (c) $f(x_1, x_2) = 5x_1^2 + 2x_1x_2 + x_2^2 - x_1 + 2x_2 + 3$ for $(x_1, x_2) \in \mathbb{R}^2$ (d) $f(x_1, x_2) = (x_1 + 2x_2 + 1)^8 - \ln(x_1x_2)^2$ for $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 > x_2 > 1\}$ (e) $f(x_1, x_2) = c_1x_2 + c_2/x_1 + c_3x_2 + c_4/x_2$ for $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 > 0\}$, where c_1, c_2, c_3 , and c_4 are positive constants

Exercise 4: (I can solve a trickier convex function problem?) Let $f(\mathbf{x})$ be defined on set $D = {\mathbf{x} \in \mathbb{R}^3 : x_1 > 0, x_2 > 0, x_3 > 0}$ as

$$f(x_1, x_2, x_3) = (x_1)^{r_1} + (x_2)^{r_2} + (x_3)^{r_3}$$

Show that $f(\mathbf{x})$ is

(a) strictly convex on D if $r_i > 1$ for i = 1, 2, 3.

(b) strictly concave on D if $0 < r_i < 1$ for i = 1, 2, 3.

Exercise 5: (More theoretical convex functions. D14 only)

Prove Theorem 17 (2.3.1): Let f be a convex function defined on an open interval $(a, b) \subset \mathbb{R}$. Then f is continuous on (a, b).

Hint:

See page 78, exercise 4. for an outline of the proof.