
Math-484 List of definitions and theorems

This is a list of definitions that a student of 484 is required to know.
Definitions (Midterm 1):

- cosine of two vectors page 6
- distance of two vectors x,y ∈ Rn

- ball B(x, r) (what is x and r?) page 6
- interior D0 of set D ⊆ Rn page 6, page 164
- open set D ⊆ Rn page 6
- closed set D ⊆ Rn page 7
- compact set D ⊆ Rn page 6
- (global,local)(strict)minimizer and maximizer of a function f : Rn → R page 8
- critical point of a function f : Rn → R page 8
- gradient ∇f(x) where f : Rn → R page 10
- Hessian Hf(x) where f : Rn → R page 10
- quadratic form associated with a symmetric matrix A page 12
- (positive,negative)(semi)definite matrix page 13
- indefinite matrix page 13
- saddle point of a function f : Rn → R
- ∆k, the kth principal minor of a matrix A page 16
- f : Rn → R being coercive page 25
- eigenvalues and eigenvectors of a matrix A page 29
- C ⊆ Rn being convex page 38
- closed and open half-spaces in Rn page 40
- convex combination of k vectors from Rn page 41
- convex hull of D ⊆ Rn page 42
- (strictly) convex and concave function f : C → R, where C ⊆ Rn page 49
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Theorems and statements (for Midterm 1):
(Try to do not ignore assumptions - like that sometimes the function must be continuous
etc.)
(Proofs are only for students with 4-credits)
- State State Cauchy-Swartz inequality (page 6)
- What can you tell about minimizers and maximizers of continuous f : I → R where I ⊂ R
is a closed interval? (Theorem 1.1.4)
- Which minimizers or maximizers of f : D → R must be critical points? (Theorem 1.2.3?)
- State the cornerstone theorem for using gradient and Hessian for finding minimizers. (The-
orem 1.2.4)
- How can Hf help identify global minimizers and maximizers? (Theorem 1.2.5 or 1.2.9)
- How principal minors of matrix A correspond to positive(negative) (semi)definity or in-
definity of A? (Theorem 1.3.3)
- How can Hf help identify local minimizers and maximizers? (Theorem 1.3.6, with proof)
- Do coercive functions have some special properties related to minimizers? (Theorem 1.4.4,
with proof)
- How eigenvalues of a symmetric matrix A correspond to positive/negative (semi)definity
of A? (Theorem 1.5.1)
- Is there any connection between the convex hull of D, co(D), and set of all convex combi-
nations of vectors from D? (D ⊆ Rn) (Theorem 2.1.4)
- Is there a convex function R→ R that is not continuous? (Theorem 2.3.1)
- Do (local) minimizers of a convex function have some nice properties? (Theorem 2.3.4
with proof)
- Do (local) maximizers of a concave function have some nice properties? (Theorem 2.3.4)
- Can be a convex function recognized by its gradient? (Theorem 2.3.5)
- Do critical points of convex functions have some nice properties? (Theorem 2.3.5 + Corol-
lary)
- What is the correspondence between Hessian and convexity of a function? (in Rn) (Theo-
rem 2.3.7)
- Is it possible to decide if a function is convex by decomposing it to simpler ones? How?
(Theorem 2.3.10)
- State A-G inequality and when it is equality (Theorem 2.4.1 with proof)
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Definitions (Midterm 2):
- posinomial page 67
- unconstrained geometric program
- primal and dual geometric program page 67,68
- feasible solution of a program (P )
- hyperplane H in Rn page 158
- boundary point of C ⊂ Rn page 158
- closure A of A ⊂ Rn page 163
- subgradient of f : Rn → R page 168
- subdifferential of f : Rn → R page 168
- general form of a convex program (P) page 169
- feasible vector (or feasible solution) of a program (P ) page 169
- feasible region of a program (P ) page 169
- consistent program (P ) page 169
- superconsistent program (P ) page 169
- MP for program (P ) - also define (P ) page 171
- MP (z) for program (P (z)) - also define (P (z)) page 171
- sensitivity vector of a program (P ) page 177
- Lagrangian L(x, λ) of a program (P )page 182
- complementary slackness conditions for a program (P ) page 184
- general form of constrained geometric program (GP ) and its dual (DGP ) page 193
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Theorems and statements (Midterm 2):
- Describe transition form unconstrained geometric program to its dual using A-G inequality
(pages 67, 68).
- What is the way of computing of the closest vector of a convex set to a given vector?
Theorem 5.1.1
- What is a sufficient condition for existence of a closest vector from a set C to a given vector
x? Theorem 5.1.3
- What is a sufficient condition for existence of a unique closest vector from a set C to a
given vector x? Corollary 5.1.4
- State basic separation theorem. Theorem 5.1.5, with proof
- State Support theorem. Theorem 5.1.9
- What can you say about MP (z) if (P) is super consistent? Theorem 5.2.6
- Are there sufficient conditions for convex program (P ) to have a sensitivity vector?Theorem
5.2.8, with proof
- Can MP be computed from the sensitivity vector? (Theorem 5.2.11), with proof
- State Karush-Kuhn-Tucker Theorem (Saddle point version) Theorem 5.2.13
- State Karush-Kuhn-Tucker Theorem (Gradient form) Theorem 5.2.14
- State Extended Arithmetic-Geometric Mean Inequality Include also when it is equality!
Theorem 5.3.1, with proof
- What are sufficient condition for a constrained geometric program (GP ) to have no duality
gap? Theorem 5.3.5

4



Definitions (Midterm 3):
- dual of a convex program page 200
- duality gap page 209
- absolute value penalty function page 217
- Courant-Beltrami penalty function page 219
- generalized penalty function page 223
- Jacobian Matrix of a function g : Rn → Rn page 85
- describe Newton’s method for function minimization page 88, 3.1.3
- describe Steepest descent method page 98, 3.2.1
- Descent method page 103
- secant condition page 114
- outer product or tensor product page 115
- describe Broyden’s method page 117, 3.4.1
- distance between two matrices page 118, 3.4.3
- describe BFGS method page 125, 3.5.3
- describe DFP method page 127, 3.5.4
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Theorems and statements (Midterm 3):
- State the strong duality theorem for linear programming. page 203
- State duality theorem for convex programming. Theorem 5.4.6
- State the theorem that gives properties of Courant-Beltrami penalty function. Theorem
6.2.3
- What is the effect of the coercive objective function on the duality? Theorem 6.3.1 (With
proof)
- For a convex program (P ), what can you tell about (P ε) and MP ε? Theorem 6.3.2
- When Newton’s method converges in one step? Theorem 3.1.4
- When is Newton’s method guaranteed to do decreasing steps? Theorem 3.1.5
- What is the special property of the steps in Steepest descent method? Theorem 3.2.3
- When is the Steepest descent method really a descent method? Theorem 3.2.5
- What is a sufficient condition for the Steepest method to converge? Theorem 3.2.6
- State the conditions that a good descent method should satisfy. Write them formally as
well as simple explanation in English. (page 106,107), 4 credits also why they do that they
do
- State Wolfe’s Theorem about existence about descent methods. Theorem 3.3.1
- Describe modification of Newton’s Method such that it can be used with Wolfe’s Theorem.
page 111
- What distance property is satisfied by Dk+1 in the Boroyden’s Method? Theorem 3.4.5
- If two vectors a,b have aTb > 0, can you tell something about mapping a to b using a
matrix? Theorem 3.5.1

6



Definition (SDP) and Interior Point Method
- Trace of a matrix A
- dot product for two matrices A and B
- A general form of (SDP )
- Dual semidefinite program (DSDP )
- Strictly feasible (SDP ) and (DSDP )
- Write a convex program (P ) and a barrier function corresponding to it.

Definition (SDP) and Interior Point Method
- State duality theorem for Semidefinite programming
- State theorem about efficiently solving (SDP )
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Other questions about stuff
- Is it true that a strictly convex function has a global minimizer? Why?
- Let x be a critical point of f and Hf(x) be positive semidefinite. Is x local minimizer?
Why?
- Let f(x) = f1(x) · f2(x) where both f1 and f2 are convex. Is f convex? Why?
- Let f be a (not strictly) concave function. Is it true that if x is a critical point and Hf(x)
is negative definite, then x is a local maximizer? Why?
- Is it true that every two convex sets C,D ⊂ Rn can be strictly separated? That is, there
exists a ∈ R for every c ∈ C and d ∈ D

aTc < aTd

- What is the relation of sensitivity vector of (P ) and λ from KKT conditions?
- Is MP (z) convex, differentiable or continuous?
- What can you tell about a program (P ) if you know its sensitivity vector λ?
- How to derive dual of a geometric program using extended AG inequality?
- Derive a dual convex program from convex program. page 200
- Is it true that for every convex program its optimum value is equal to the optimum value
of the dual?
- Describe penalty function method
- What are differences in behavior of the Absolute value penalty function and Courant-
Beltrami penalty function?
- How to modify any convex function to a coercive one? (why it is coercive?)
- What are relations between MP,MP ε,MD,MDε?
- By what is Newton’s method approximating the function for minimization?
- Give derivation of the update matrix for Dk in Broyden’s method. page 115,116
- Give derivation of the update matrix for Dk in BFGS method. page 124
- Is it true the every semidefinite program is efficiently solvable? (in polynomial time)

Extra
- express given linear program as a semidefinite program
- express given program with quadratic constraints as a semidefinite program
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