MATH413 HW 7

due **April 9** before class, answer without justification will receive 0 points. Staple all your papers.

1: (*P. 259, #14*) Let *S* be the multiset $\{\infty \cdot e_1, \infty \cdot e_2, \infty \cdot e_3, \infty \cdot e_4\}$. Determine the generating function for the sequence $h_0, h_1, h_2, \ldots, h_n, \ldots$, where h_n is the number of *n*-combinations of *S* with the following added restrictions:

- (a) Each e_i occurs an odd number of times.
- (b) Each e_i occurs a multiple-of-3 number of times.
- (c) The element e_1 does not occur, and e_2 occurs at most once.

2: (*P. 259, #17*) Determine the generating function for the number h_n of bags of fruit of apples, oranges, bananas, and pears in which there are an even number of apples, at most two oranges, a multiple of three number of bananas, and at most one pear. Then find a formula for h_n from the generating function.

3: (*P. 260, #19*) Let $h_0, h_1, h_2, \ldots, h_n, \ldots$ be the sequence defined by $h_n = \binom{n}{2}, (n \ge 0)$. Determine the generating function for the sequence.

4: (P.260, #24) Let S denote the multiset $\{\infty \cdot e_1, \infty \cdot e_2, \ldots, \infty \cdot e_k\}$. Determine the exponential generating function for the sequence $h_0, h_1, h_2, \ldots, h_n, \ldots$, where $h_0 = 1$ and for $n \ge 1$,

(a) h_n equals the number of *n*-permutations of *S* in which each object occurs an odd number of times.

(d) h_n equals the number of *n*-permutations of *S* in which e_1 occurs at most once, e_2 occurs at most twice, ..., e_k occurs at most *k* times.

5: (P.260, #27) Determine the number of *n*-digit numbers with all digits odd, such that 1 and 3 each occur a nonzero, even number of times.

6: How many sequences of length n can be formed by letteres A, B and C, where the number of A's and B's is odd?