Relations

1: How to describe " \leq " on set $A = \{1, 2, 3\}$ to somebody who has no idea what is " \leq "?

Definition of **relation** R on set A as $R \subseteq A \times A$. Notation: $(x, y) \in R$ is xRy. Note relation is set of ordered pairs - creates an oriented graph for $\{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$:

Examples of relations: $\langle , \geq , \equiv , \in , \subset .$

Bonus: *n*-ary relation instead of just binary. Also relations between sets, i.e. $R \subseteq A \times B$. Do not confuse relation and elements being in relation and try the following question:

2: What is the number of all possible relations on $A = \{1, 2, 3\}$? Let $R \subseteq A \times A$ be a relation. We call R

• reflexive if $(a, a) \in R$ for all $a \in A$

$$a_{\text{implies}} a$$

• symmetric if $(a, b) \in R$ implies $(b, a) \in R$ for all $a, b \in A$

• transitive if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$

$$a \xrightarrow{b} c$$
 implies $a \xrightarrow{b} c$

3: Decide if the following relations on \mathbb{Z} are reflexive, symmetric, transitive:

Relations on \mathbb{Z} :	<	\leq	=	\neq	X	≡	$\mod 5$
reflexive							
symmetric							
transitive							

Hint: try it on small subset, say $A = \{1, 2, 3, 4\}$ *and draw the oriented graph.*

- 4: Construct relations, that are:
 - 1. reflexive and symmetric but not transitive
 - 2. symmetric and transitive but not reflexive

If relation is reflexive, symmetric and transitive, then we call it *equivalence*.

5: Decide if the following relations are equivalences:

- 1. $R \subseteq \mathbb{Z} \times \mathbb{Z}$, where xRy if "the parity of x and y are the same"
- 2. $R \subseteq \mathbb{R} \times \mathbb{R}$, where xRy if "|x| and [y] are equal"
- 3. $R \subseteq \mathbb{R} \times \mathbb{R}$, where xRy if "|x| = |y|"
- 4. $R \subseteq \mathbb{R} \times \mathbb{R}$, where xRy if " $x \lfloor x \rfloor$ is equal to $y \lfloor y \rfloor$ "
- 5. $R \subseteq \mathbb{Z} \times \mathbb{Z}$, where xRy if "x mod 7 is equal to y mod 7" or $x \equiv y \mod 7$.
- 6. R is a relation on all points in the plane, where xRy means "the distance of points x and y is at most 1"
- 7. R is a relation on all lines in the plane, where xRy means "lines x and y intersect"
- 8. R is a relation on all lines in the plane, where xRy means "lines x and y do not intersect"

Let R be an equivalence relation on A. For $x \in A$ the equivalence class of x is all y where $(x, y) \in R$. That is $[x] = \{y : (x, y) \in R\}$.

6: Describe equivalence classes in the previous question where answer was yes.

Notice: If $R \subseteq A \times A$ is an equivalence relation, then every $a \in A$ is in exactly one equivalence class [a]. For every $a, b \in A$, if aRb, then [a] = [b] (proof as exercise).

Let A be a set. A set C of subsets of A is a partition of A if $\bigcup_{C \in C} = A$ and sets in C are pairwise disjoint. Theorem: If R is an equivalence relation on A, then the set $\{[a] : a \in A\}$ of equivalence classes is a partition of A.

- 7: Work with equivalence relation mod 5.
 - 1. Describe partition \mathbb{Z}_5 of \mathbb{Z} using equivalence relation mod 5.
 - 2. Let $x \in [2]$ and $y \in [4]$. What is the equivalence class of x + y and $x \cdot y$? Does the choice of x and y matter?

Note: we can define operations + and \cdot on \mathbb{Z}_5 .

8: Fill the addition and multiplication tables for \mathbb{Z}_5 (and \mathbb{Z}_4 if you have time)

+	[0]	[1]	[2]	[3]	[4]	•	[0]	[1]	[2]	[3]	[4]
[0]						[0]					
[1]						[1]					
[2]						[2]					
[3]						[3]					
[4]						[4]					

Definition: Let $n \in \mathbb{N}$. Integers modulo n is the set $\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}$ equipped with [a]+[b] = [a+b] and $[a] \cdot [b] = [a \cdot b]$. If n is a prime number, then \mathbb{Z}_n is finite field of order n (inverse exists).

9: Show that + and \cdot for integers modulo n satisfy distributivity: $[a] \cdot ([b] + [c]) = [a] \cdot [b] + [a] \cdot [c]$.