Spring 2015, QUIZ 4, MATH-201, NAME:

Score.....

You have to show your work and write down your proof.

1: Negate the following formula and write it in prenex normal form

$$[\neg(\forall z, A(z))] \text{ xor } (\exists x, B(x))$$

2: Show that every grid $3 \times n$, where *n* is even natural number can be tiled with pieces 2×1 and 1×2 . Use induction on *n*. Example of grid $3 \times n$ for n = 6.

3: Let there be *n* lines on the plain, no two parallel, where $n \ge 2$. Then they all intersect in one point.

Proof. We use proof by induction.

Basic step: n = 2. Two lines are clearly intersection in one point.

Induction step: Let there be n lines l_1, \ldots, l_n . By induction hypothesis, l_1, \ldots, l_{n-1} and l_2, \ldots, l_n intersect in points p_1 and p_2 respectively. Since a point is determined by just two lines, $p_1 = p_2$ and we have that all n lines intersect in the one point p_1 .

Find what is wrong with the proof.