MATH304 HW 12

due Dec 1 before class, answer without justification will receive 0 points. The typing the HW in $L^{AT}EX$ is optional.

1: Solve the recurrence relation

$$h_n = 3h_{n-2} - 2h_{n-3}$$

with initial values $h_0 = 1$, $h_1 = 0$, and $h_2 = 0$ using characteristic equation. Verify your answer for h_3 .

2: Solve the recurrence relation

$$h_n = 3h_{n-2} - 2h_{n-3}$$

with initial values $h_0 = 1$, $h_1 = 0$, and $h_2 = 0$ using generating functions.

3: Solve the recurrence relation

$$h_n = 3h_{n-1} + n^2 - 3$$

with initial value $h_0 = 1$ using characteristic equation. Verify your answer for h_1 .

4: Solve the recurrence relation

$$h_n = 3h_{n-1} + n^2 - 3$$

with initial value $h_0 = 1$ using generating functions.

5: Solve the recurrence relation

$$h_n = 2h_{n-1} + 2^n$$

with initial value $h_0 = 1$ using generating functions. Verify your answer for h_1 .

6: Let

$$g(x) = \frac{x^2 - 3x + 1}{4x^3 - x^2 - 2x + 1}$$

be a generating function for a sequence $h_0, h_1, h_2, \ldots, h_n, \ldots$ Find a linear homogeneous recurrence relation for the sequence and include also the initial values.