
Fall 2015, MATH-304
Chapter 2.3 - Combinations (Subsets) of Sets - Binomial coefficient

Let S be a set of n element. An r-combination is a subset of S of size r.
How many r-subsets are there? How many ways to pick r elements out of n? ( = C(n, r))

C(n, r) =
P (n, r)

r!
=

n!

r!(n− r)!
=

(
n

r

)
Binomial coefficient is

(
n
r

)
.

Note: Binomial identities can often be proved by rewriting using factorials and manipulation (tedious,
but often works) or by explaining what is being counted (needs idea, shorter, more elegant).

1: Show that
(
n
r

)
=
(

n
n−r

)
.

Solution: Just write
(
n
r

)
= n!

r!(n−r)! =
(

n
n−r

)
.

Or say that picking r elements set is the same as picking their complements.

2: If a 5-card hand is chosen at random (out of 52 cards), what is the probability of obtaining a flush
(all cards are the same suit?) How about a full house? (Three cards of the same kind, and two of another
kind, e.g., three queens and two “4”s)
(Recall that probability of an event is # of desired outcomes

#all outcomes ).

Solution: The number of flushes possible is C(13, 5)× 4 (since there are 4 suits, and we select 5 of the
13 cards in each suit). Hence the probability is 4× C(13, 5)/C(52, 5) = 0.2% (approximately).

Note added: the answer C(52, 1) × C(12, 4) over counts the number of flushes by a factor of 5. To help
convince yourself of this, run the same argument for a deck of two red cards R1 and R2 and two blue
cards B1 and B2. If we call a ”flush” two cards of the same color, there are clearly only two. However,
if we pick one of the four cards and then the other card of the same color, we overcount by a factor of 2
since, e.g., we can pick R1 then R2 or R2 then R1, but both are the same flush.

The number of full houses is: 2× C(13, 2)× C(4, 3)× C(4, 2) (choose which two kinds, then three of the
first kind, then two of the second). Now divide by C(52, 5) as before to obtain the probability of about
0.144%.

3: Pascal’s formula C(n, k) = C(n− 1, k) + C(n− 1, k − 1) That it(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)

Solution: Let T be the set with elements x1, . . . , xn. If we choose a subset S of size k, either:
(1) x1 ∈ S, or
(2) it is not.
If (1) holds, choose k − 1 elements of x2, . . . , xn which gives C(n− 1, k − 1).
If (2) holds, choose k elements of x2, . . . , xn which is C(n− 1, k).
Now apply the addition principle
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4: Committee approach Prove that (
n

k

)(
k

m

)
=

(
n

m

)(
n−m

k −m

)
.

Think of finding a subset of a subset.

Solution: The LHS computes the number of ways to select a committee of size k and then a special
subcommittee of size m. This count is the same as the number of ways to select the special subcommittee
of m first, and then fill out the rest of the members of the committee of n (the RHS).

5: Lattice paths Count the number of ways drive a corn harvester from the garage (located at 0, 0) to a
corn field, located at (5, 4).

garage

corn field

Allowed movements are only right or up (you want to go the shortest path). (Try also counting in general
to location (a, b), where a, b ∈ Z)

Solution: We need to go 5 times right and 4 times up. In total, we need to do 9 steps. And 5 of them
are right. This gives

(
9
5

)
. In general, the solution is

(
a+b
a

)
.

6: Prove that ∑
0≤j≤b

(
a + j − 1

a− 1

)
=

(
a + b

a

)
Hint: Use lattice paths.

Solution: This kind of problem is hopeless by trying to manipulate using the definition of the binomial
coefficient. Instead recognize the RHS as the number of lattice paths from (0, 0) to (a, b). Now think
about how to ”decompose” all such lattice paths according to at what height they last cross the vertical
line x = a−1. This decomposes all lattice paths into b+1 disjoint subsets, associated to j = 0, 1, 2, . . . , b,
each counted by

(
(a−1)+j

a−1

)
. Now apply the addition principle.

7: Prove that ∑
0≤j≤n

(
n

j

)2

=

(
2n

n

)

Solution: The RHS is clearly counting the number of walks from (0, 0) to (n, n). Now consider the unique
point (j, n− j) where a path P crosses the line y = n− x. This decomposes P into P1 : (0, 0)→ (j, n− j)

and P2 : (j, n− j) → (n, n). The number of such paths is
(
n
j

)
and

(
n

n−j

)
=
(
n
j

)
. So we obtain

(
n
j

)2
paths

crossing through (j, n− j). Now sum over all j.
Alternative solution is to think of a group of 2n people and picking n. Say we have n men and n women
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and we want to pick n people. It can be counted as
(
2n
n

)
. On the other hand, if we want to pick exactly

j men, we have
(
n
j

)(
n

n−j

)
=
(
n
j

)2
. So the left hand side is partitioning the possible choices by the number

of men and women.

8: Prove that
(
a+b
a

)
equals the number of partitions (a sequence of integers P1 ≥ P2 ≥ . . . ≥ Pb)

satisfying a ≥ P1 ≥ P2 ≥ . . . ≥ Pb ≥ 0.

Solution: Notice that a lattice path from (0, 0) to (a, b) outlines a left justified stack of boxes (called a
Ferrers’ shape), which are in obvious bijection with the stated partitions.

9: Binary string Prove that ∑
0≤k≤n

(
n

k

)
= 2n

Solution: Left hand side is counting all subsets. The right had side does the same - for each of the n
elements, we have two choices - either include it in the set or not. This gives 2n. This can be also viewed
as a string of length n of 0’s and 1’s, where 1 means that the corresponding element is included in the
set. This is called the characteristic vector.

10: Prove that ∑
0≤k≤n

(
k

r

)
=

(
n + 1

r + 1

)

Solution: Consider the thing as binary strings of length n with r + 1 entries 1 and other entries 0.
Right hand side clearly counts this. The left hand side partitions the string according the to position of
last entry 1. The last entry 1 is on position k + 1. Notice, that there are at least two entries 1.

11: Prove ∑
0≤k≤r

(
m

k

)(
n

r − k

)
=

(
m + n

r

)

Solution: The RHS says to pick r people from a group consisting of m men and n women. The LHS
says to pick k of the m men and r − k of the n women, for each k.
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