Fall 2015, MATH-566

## Chapter 3 - Affine spaces, Radon, Helly

Exercise: Solve the following linear program:

$$(LP) \begin{cases} \text{minimize} & x+y\\ \text{s.t.} & x+2y \le 14\\ & 3x-y \ge 0\\ & x-y \le 2, \end{cases}$$

|  |  |  |  |  | - |
|--|--|--|--|--|---|
|  |  |  |  |  |   |
|  |  |  |  |  |   |
|  |  |  |  |  |   |

**Basic definitions:** Suppose we live in  $\mathbb{R}^d$  for some  $d \in \mathbb{N}$ .

- hyperplane is d-1 dimensional subspace  $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a} \cdot \mathbf{x} = c\}$ , where  $a \in \mathbb{R}^d$  and  $c \in \mathbb{R}$ .
- closed halfspace is  $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a} \cdot \mathbf{x} \leq c\}$ , where  $a \in \mathbb{R}^d$  and  $c \in \mathbb{R}$ .
- $C \subseteq \mathbb{R}^d$  is convex if  $\forall \mathbf{x}, \mathbf{y} \in C, \forall t \in [0, 1], t\mathbf{x} + (1 t)\mathbf{y} \in C$ . (line between x and y is in C)

Note: Intersection of family of convex sets is a convex set (obvious from the definition) Convex hull of a set X = conv(X) is the intersection of all convex sets containing X. Examples: bunch of points, point + line

**Claim:**  $\mathbf{x} \in conv(X)$  iff  $\mathbf{x}$  is a convex combination of points from X. That is:

$$\exists n, \exists \mathbf{x}_1, \dots, \mathbf{x}_n \in X, \exists t_1, \dots, t_n \in [0, \infty), \sum t_i = 1, x = \sum t_i \mathbf{x}_i$$

**Proof:** (as exercise) Hints: consider

$$Y = \left\{ \sum t_i \mathbf{x}_i : n \in \mathbb{N}, \mathbf{x}_1, \dots, \mathbf{x}_n \in X, t_1, \dots, t_n \in [0, \infty), \sum t_i = 1 \right\}$$

and show that  $Y \subseteq conv(X)$ , that  $X \subseteq Y$  and Y is convex.

**Theorem** Carathédory: If  $\mathbf{x} \in conv(X)$ , then  $\mathbf{x}$  is a convex combination of at most d + 1 points of X. Proof: HW

## Affine subspaces:

*Linear subspace:*  $X \subseteq \mathbb{R}^d$  such that  $\mathbf{0} \in X$  and X is closed under addition and multiplication by scalar. (i.e.  $\forall \mathbf{u} \in X, \forall \mathbf{v} \in X, \mathbf{u} + \mathbf{v} \in X$  and  $\forall \mathbf{u} \in X, \forall a \in \mathbb{R}, a\mathbf{u} \in X$  are both true)

Linear combination:  $\mathbf{y}$  is a linear combination of  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  if  $\exists t_1, \ldots, t_n \in \mathbb{R}$  such that  $\mathbf{Y} = \sum_i t_i \mathbf{x}_i$ . Linear dependence:  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  are linearly dependent if  $x_i$  that is a linear combination of the rest. Question: How to check linear dependence?

Affine version - everything is shifter

Affine subspace: "shifted linear space". I.e.  $A \subseteq \mathbb{R}^d$  is an affine space if  $A = X + \mathbf{v}$ , where X is a linear subspace of  $\mathbb{R}^d$  and  $v \in \mathbb{R}^d$ .

Affine combination:  $\mathbf{y}$  is an affine combination of  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  if  $\exists t_1, \ldots, t_n \in \mathbb{R}$  such that  $\mathbf{y} = \sum_i t_i \mathbf{x}_i$  and  $\sum_i t_i = 1$ .

Affine dependence:  $\mathbf{x}_1, \ldots, \mathbf{x}_n$  are affine dependent if exists  $x_i$  that is an affine combination of the others. Question: How to check affine dependence? Affine hull: Let  $X \subseteq \mathbb{R}^d$ . Affine hull of X, denote by aff(X), is

Question: What is the maximum number of affine independent points in  $\mathbb{R}^d$ ?

Question: What is the dimension of the affine hull of k affine independent points?

**Radon's theorem**: Let A be a set of d + 2 points in  $\mathbb{R}^d$ . Then exist  $A_1, A_2 \subset A$ , such that  $A_1 \cap A_2 = \emptyset$  and  $conv(A_1) \cap conv(A_2) \neq \emptyset$ .

Example for d = 2: (find  $A_1$  and  $A_2$ )



**Helly's theorem**: Let  $C_1, \ldots, C_n$  be convex sets in  $\mathbb{R}^d$ , where  $n \ge d+1$ . If intersection of every d+1 sets is not empty, then  $\bigcap_{i=1}^n C_i \neq \emptyset$ .

Question: Show that it is not enough to demand intersection of d of the sets.

Question: How to prove Helly's theorem? (Hint induction on n):

**Restatement of Helly's theorem:** If  $C_1, \ldots, C_n$  are convex and  $\bigcap_{i=1}^n C_i = \emptyset$ , then exists at most d+1 sets of  $C_1, \ldots, C_n$  witnessing that  $\bigcap_{i=1}^n C_i = \emptyset$ . Question: Is infinite version of Helly's theorem true? (that is - intersection of infinitely many convex sets)