
Fall 2015, MATH-566
Chapter 3 - Affine spaces, Radon, Helly

Exercise: Solve the following linear program:

(LP )


minimize x + y

s.t. x + 2y ≤ 14

3x− y ≥ 0

x− y ≤ 2,

Solution: equations:

y ≤ −1

2
x + 7 y ≤ 3x y ≥ x− 2

Optimum (x, y) = (−1,−3), value of objective function is -4.

Basic definitions: Suppose we live in Rd for some d ∈ N.

• hyperplane is d− 1 dimensional subspace {x ∈ Rd : a · x = c}, where a ∈ Rd and c ∈ R.

• closed halfspace is {x ∈ Rd : a · x ≤ c}, where a ∈ Rd and c ∈ R.

• C ⊆ Rd is convex if ∀x,y ∈ C,∀t ∈ [0, 1], tx + (1− t)y ∈ C. (line between x and y is in C)
Draw figures in class

Note: Intersection of family of convex sets is a convex set (obvious from the definition)

Convex hull of a set X = conv(X) is the intersection of all convex sets containing X.

Examples: bunch of points, point + line

Claim: x ∈ conv(X) iff x is a convex combination of points from X.
That is:

∃n, ∃x1, . . . ,xn ∈ X,∃t1, . . . , tn ∈ [0,∞),
∑

ti = 1, x =
∑

tixi

Proof: (as exercise) Hints: consider

Y =
{∑

tixi : n ∈ N,x1, . . . ,xn ∈ X, t1, . . . , tn ∈ [0,∞),
∑

ti = 1
}

and show that Y ⊆ conv(X), that X ⊆ Y and Y is convex.



Solution: Y ⊆ conv(X): clear for n = 1, 2, use projection and induction on n:

y =
n∑

i=1

tixi

= t1x1 + (1− t1)
n∑

i=2

ti
1− t1

xi

Now use that second part of the sum
∑n

i=2
ti

1−t1 xi ∈ conv(X) by induction.

X ⊆ Y is clear from definition

Y is convex: verify definition of convexity

x =
∑

tixi x′ =
∑

t′ixi

Let t ∈ [0, 1]:

tx + (1− t)x′ =
∑

(tti + (1− t)t′i)xi

Check that
∑

(tti + (1− t)t′) = t
∑

t + (1− t)
∑

t′i = 1.

Theorem Carathédory: If x ∈ conv(X), then x is a convex combination of at most d + 1 points of X.
Proof: HW

Affine subspaces:

Linear subspace: X ⊆ Rd such that 0 ∈ X and X is closed under addition and multiplication by scalar.
(i.e. ∀u ∈ X,∀v ∈ X,u + v ∈ X and ∀u ∈ X,∀a ∈ R, au ∈ X are both true)
Draw 2D figure and line as a subspace.

Linear combination: y is a linear combination of x1, . . . ,xn if ∃t1, . . . , tn ∈ R such that Y =
∑

i tixi.

Linear dependence: x1, . . . ,xn are linearly dependent if xi that is a linear combination of the rest.
Question: How to check linear dependence?

Solution: There exists ∃t1, . . . , tn ∈ R, where ti = −1 such that

xi =
∑
j 6=i

tjxj

0 =
∑
j

tjxj

So the condition is: ∃t1, . . . , tn ∈ R such that
∑

i tixi = 0 and at least one ti is not zero.

Affine version - everything is shifter

Affine subspace: “shifted linear space”. I.e. A ⊆ Rd is an affine space if A = X + v, where X is a linear
subspace of Rd and v ∈ Rd.

Affine combination: y is an affine combination of x1, . . . ,xn if ∃t1, . . . , tn ∈ R such that y =
∑

i tixi and∑
i ti = 1.

Think how you make a line going trough two points a and b: {ta + (1− t)b : t ∈ [0, 1]}.
Affine dependence: x1, . . . ,xn are affine dependent if exists xi that is an affine combination of the others.
Question: How to check affine dependence?



Solution: There exists ∃t1, . . . , tn ∈ R, where ti = −1 and
∑

j 6=i tj = 1 such that

xi =
∑
j 6=i

tjxj

0 = −xi +
∑
j 6=i

tjxj

0 = −
∑
j 6=i

tjxi +
∑
j 6=i

tjxj

0 =
∑
j 6=i

tj(xj − xi)

So the condition is that for all i, vectors (xj − xi) are linearly independent.
Also option is ∃t1, . . . , tn not all zero, such that

0 =
∑
j

tjxj 0 =
∑
j

tj

Notice: like linear dependence but extra constraint 0 =
∑

j tj .

Affine hull: Let X ⊆ Rd. Affine hull of X, denote by aff(X), is the intersection of all affine spaces
containing X .

Question: What is the maximum number of affine independent points in Rd?

Solution: d + 1.

Question: What is the dimension of the affine hull of k affine independent points?

Solution: k − 1. One point is always lost in the shift to the origin.

Radon’s theorem: Let A be a set of d + 2 points in Rd. Then exist A1, A2 ⊂ A, such that A1 ∩A2 = ∅
and conv(A1) ∩ conv(A2) 6= ∅.
Example for d = 2: (find A1 and A2)

Solution: A = {x1, . . . ,xd+2}. So A is affine dependent. Hence ∃t1, . . . , td+2 ∈ R, not all zero, such
that

∑
i ti = 0 and

∑
i tixi = 0.

A1 = {xi : ti > 0} and A2 = {xi : ti < 0}
Then ∑

xi∈A1

tixi = −
∑

xi∈A2

tixi

For convex combination, we need that
∑

ti = 1. Denote s =
∑

xi∈A1
ti. Now we get∑

xi∈A1

ti
s

xi =
∑

xi∈A2

−ti
s

xi = y ∈ conv(A1) ∩ conv(A2).



Helly’s theorem: Let C1, . . . , Cn be convex sets in Rd, where n ≥ d + 1. If intersection of every d + 1
sets is not empty, then ∩ni=1Ci 6= ∅.
Question: Show that it is not enough to demand intersection of d of the sets.

Solution: In 2D we have every two lines intersect

Question: How to prove Helly’s theorem? (Hint induction on n):

Solution: Induction on n.
n = d + 1 is clear
n ≥ d + 2. By induction for every i we have ∩j 6=iCj 6= ∅.
For all i pick ai ∈ ∩j 6=iCj . (ai is in all but maybe Ci)
Apply Radon’s theorem on a1, . . . , ad+2. It gives disjoint I1, I2 ⊂ {1, . . . , d + 2}
This gives y ∈ conv({ai : i ∈ I1}) ∩ conv({ai : i ∈ I2}). We want y in all Ci’s.
1) i ∈ {1, 2, . . . , n} − I1: ∀j ∈ I1, aj ∈ Ci. Hence y ∈ Ci as y ∈ conv({ai : i ∈ I1})
2) i ∈ {1, 2, . . . , n} − I2: ∀j ∈ I2, aj ∈ Ci. Hence y ∈ Ci as y ∈ conv({ai : i ∈ I2})
Restatement of Helly’s theorem: If C1, . . . , Cn are convex and ∩ni=1Ci = ∅, then exists at most d+ 1
sets of C1, . . . , Cn witnessing that ∩ni=1Ci = ∅.
Question: Is infinite version of Helly’s theorem true? (that is - intersection of infinitely many convex sets)

Solution: 1) Sets have to be closed: (0, 1
n) for all n ∈ N have empty intersection.

2) Sets have to be bounded: [n,∞) for all n ∈ N have empty intersection.
3) If sets closed and bounded (compact), then infinite Helly is true:
If C is a family of at least d+1 compact sets in Rd, where every d+1 of them have nonempty intersection,
then all sets in C have nonempty intersection. (needs compactness)


