Fall 2015, MATH-566

Linear Programming Algorithms

This should be a paper ONLY about simplex method and add simplex method Source: Chapter 5 of Linear and Nonlinear Programming, Luenberger and Ye

Simplex method is not polynomial time - Klee-Minty Cube

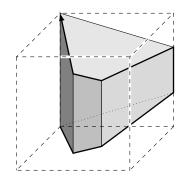
Idea of simplex method - start at vertex and find a path on edges to the optimal vertex. Consider greedy way - always go in the direction that maximizes the slope in the objective function

$$(P) \begin{cases} \text{maximize} \quad 100x_1 + 10x_2 + x_3 \\ x_1 & \leq 1 & (A) \\ 20x_1 + x_2 & \leq 100 & (B) \\ \text{subject to} & 200x_1 + 20x_2 + x_3 & \leq 10000 & (C) \\ x_1 & \geq 0 & (D) \\ x_2 & \geq 0 & (E) \\ x_3 & \geq 0 & (F) \end{cases}$$

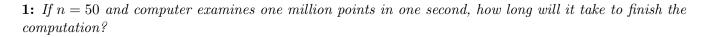
Notice that a vertex is given by setting three of the halfspaces. Steps in simplex method:

step	x_1	x_2	x_3	value of objective	equalities
0	0	0	0	0	(D), (E), (F)
1	1	0	0	100	(A), (E), (F)
2	1	80	0	900	(A), (B), (F)
3	0	100	0	1000	(D), (B), (F)
4	0	100	8000	9000	(D), (B), (C)
5	1				
6					
7					

Corresponds to a travel in cube



How many vertices will be in n dimensional cube?



Klee-Minty cubes are known for different rules too. But algorithm works great in practice.

The Ellipsoid Method

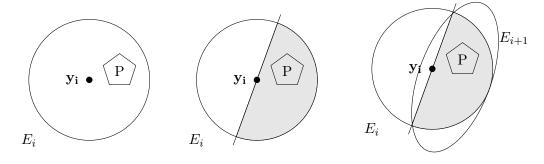
Problem: Let $P = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}}$. Find a point in P. (given a polytope, find one point in it) Extra assumptions:

- $\exists R \in \mathbb{R}, P \subseteq B(\mathbf{0}, R)$
- $\exists r \in \mathbb{R}, \exists \mathbf{c} \in \mathbb{R}^n, B(\mathbf{c}, r) \subseteq P$

In other words, P is in a big ball with radius R and contains a small ball of radius r. The R and r are part of the running time.

Algorithm:

- 1. $E_1 := B(0, R), i := 1$
- 2. if center \mathbf{y}_i of E_i in P, point found
- 3. if $\mathbf{y}_i \notin P$, there is a separating hyperplane cutting out half of E_i
- 4. Pick E_{i+1} to be the smallest ellipsoid containing the half of E_i that contains P
- 5. i := i + 1 and go o 2.



Claim: If $E_i \in \mathbb{R}^n$ and E_{i+1} is the smallest ellipsoid contain $\frac{1}{2}$ of E_i , then

$$\frac{volume(E_{i+1})}{volume(E_i)} < e^{\frac{-1}{2(n+1)}} < 1.$$

2: Compute an upper bound on

$$\frac{volume(E_{i+2n+1})}{volume(E_i)}$$

3: How many iterations of the algorithm are needed? (Use that $B(\mathbf{c}, r) \subset P$.)

One iteration takes $O(n^2)$ operations and volume of balls is at most exponential (in size of input numbers). Not a practical algorithm in speed.