
Fall 2015, MATH-566
Linear Programming Algorithms - Interior point methods

Source: Chapter 11 of Convex Optimization, Stephen Boyd and Lieven Vandenberghe

Let

(P )

{
minimize f(x)

subject to gi(x) ≤ 0 for i = 1, . . . ,m

where f, g are convex, twice continuously differentiable and optimal solution x? exists. Moreover, let (P )
be superconsisten, ∃x, ∀i, gi(x) < 0.

(the setup covers linear, quadratic, geometric, semidefinite, . . . programming).

Idea: Change the (P ) to a problem without constraints.

Let

(P ′) = minimize f(x) +

m∑
i=1

I(gi(x)),

where I is an indicator function

I(u) =

{
0 if u ≤ 0

+∞ if u > 0.

1: What is the optimal solution to (P ′)?

Solution: x? The function I works like infinite penalty for violating constraints.

2: Can you solve (P ′) by methods from calculus?

Solution: No, beacuase I has no derivative.

Use approximation of I(u) ≈ −c log(−u), where c > 0.

3: Sketch I(u) and its approximations. Is the approximation better when c is large or small?

Solution:

Approximation improves as c→ 0.

For t > 0, we consider a smooth unconstrained approximation of (P ′)

minimize f(x)− 1

t

m∑
i=1

log(−gi(x)).
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Define logarithmic barrier function

Φ(x) = −
m∑
i=1

log(−gi(x)),

for all x where gi(x) < 0 (interior of feasible solutions)

Analytic center of the set S = {x : gi(x) ≤ 0} ⊆ Rn is x? minimizing Φ(x) over all x ∈ S.

4: Find the analytic center of a square in R2 defined by equations

x1 ≥ 0, x2 ≥ 0, x1 ≤ 1, x2 ≤ 1

Solution: First rewrite in the form gi(x) ≤ 0.

−x1 ≤ 0,−x2 ≤ 0, x1 − 1 ≤ 0, x2 − 1 ≤ 0.

Now we write Φ(x).

Φ(x1, x2) = − (log(−x1) + log(−x2) + log(x1 − 1) + log(x2 − 1))

We investigate partial derivatives and let them = 0.

0 =
∂Φ(x1, x2)

∂xi
= − 1

xi
− 1

xi − 1

xi − 1 = −xi

xi =
1

2
.

The second derivatives at (12 ,
1
2) are

∂2Φ(x1, x2)

∂xi∂xj
= 0

∂2Φ(x1, x2)

∂2xi
=

1

xi
− 1

xi − 1
= 0

The analytic center is (0, 0).

5: Find the analytic center of a square in R2 defined by equations

x1 ≥ 0, x2 ≥ 0, (1− x1)
3 ≥ 0, (1− x2)

3 ≥ 0.

Notice it is possible to define center even if functions are not convex everywhere and the center depends
on the functions.

Solution:
Φ(x1, x2) = −

(
log(−x1) + log(−x2) + log((1− x1)

3) + log((1− x2)
3)
)

0 =
∂Φ(x1, x2)

∂xi
= − 1

xi
− 3

xi − 1

xi =
1

4

The analytic center is (14 ,
1
4).
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For t > 0 define x?(t) as the optimal solution of

(Pt) = minimize tf(x) + Φ(x).

(assume that the optimal solution is unique)

Central path is {x?(t) : t ≥ 0}.
Interior point method idea: Start in the analytical center and follow the central path.

In iterations increase t and recompute the new optimum by Newton’s method.

There exists a notion of dual program (D) for (P ), (based on Karush-Kuhn-Tucker theorem). It gives
solutions to the dual y?(t) such that

f(x?(t))− h(y?(t)) ≤ m

t
.

Hence the central path converges to x? for (P ).
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6: Let (LP ) = mininize cTx s.t. Ax ≤ b, where A ∈ Rm×n. Write Φ(x). Use tools from calculate
conditions for the corresponding central path. What can you say about the Hessain?

Solution:

Φ(x) = −
m∑
i=1

log(bi − aix),

where ai is ith row of A.

The central path is minimizing

zt(x) = tf(x) + Φ(x) = tcTx−
m∑
i=1

log(bi − aTi x)

In the minimum, we have ∇zt(x) = 0. This gives

0 = ∇zt(x) = tc +
m∑
i=1

1

bi − aTi x
ai

Now the Hessian is

∇2zt(x) =
m∑
i=1

1

(bi − aTi x)2
aiai

T

Notice that the Hessian is a positive semidefinite matrix. Hence everytime the determinant is zero, get a
minimum. In the end we obtained

tc = −∇Φ(x?(t)).

Since ∇Φ(x) is perpendicular to the level curve {x : Φ(x) = Φ(x?(t)}, plane cTx = cTx?(t) is a tangent
of the level curve for Φ.
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