
Fall 2015, MATH-566
Shortest path

Source: Chapter 7 of Combinatorial Optimization

Shortest path
Input: Graph G = (V,E), costs c : E → R, and s, t ∈ V .
Output: s-t-path P , where

∑
e∈P c(e) is minimized.

1: Find shortest (lowest cost) s-t-paths in the following graphs

s

t

1 2

6 3

9 7

13

8

22

10

14

18

s

t

1 2

6 3

-9 7

13

-8

22

10

14

18

Cost c is called conservative if there is no circuit of negative total weight.

Bellman’s principle: Let s, . . . , v, w be the least cost s-w-path of length k. The s, . . . , v is the least
cost s-v-path of length k − 1.

2: Prove Bellman’s principle.

Solution: By contradiction. If there is a lesser cost path to v, we could find a lesser cost path to w.

Notice: This gives a recursion for computing the shortest path.

Dijkstra’s algorithm
c : E → R+, computes shortest s-t-path from s to ALL other vertices t ∈ V .

1. l(s) := 0; ∀v 6= s l(v) = +∞

2. R = ∅

3. while R 6= V

4. find v ∈ V −R with minimum l(v)

5. R := R ∪ {v}

6. ∀vw ∈ E, l(w) = min{l(w), l(v) + c(v, w)}

R . . . vertices with final number; l . . . upper bound on the cost;
Running time O(n2) easily, O(m + n log n) with Fibonacci heaps.

MATH 566 - 14, page 1/3

3: Run Dijkstra’s algorithm on the following graph

s

t

1 2

7 3

13 22 13

4: How to get shortest s-v-path?

Solution: Remember previous vertex. In step 6. of the algorithm, remember why the value was changed.
So called predecessor.

5: Why is the algorithm correct? (show that if v ∈ R, then l(v) = cost for s-t-path.)

Solution:

6: Why Dijkstra’s algorithm does not work for negative costs?

Solution: For simplicity consider directed graph problem.

Moore-Bellman-Ford Algorithm
c : E → R, computes shortest s-t-path from s to ALL other vertices t ∈ V OR finds a cycle of negative
cost. Assume |V (G)| = n.

1. l(s) := 0; ∀v 6= s l(v) = +∞

2. repeat n− 1 times: // computes the costs

3. ∀vw ∈ E,

4. if l(w) > l(v) + c(v, w)

5. l(w) := l(v) + c(v, w); p(w) = v

6. ∀vw ∈ E, // check for a negative cycle

7. if l(w) > l(v) + c(v, w) then found negative cycle

Note: l gives the least cost, while p gives the previous vertex / predecesor on the shortest path from s.

7: What is the time complexity of the algorithm if G has m edges and n vertices?

Solution: O(nm).

8: Why the algorithm detects a negative cycle and why the algorithm works?

MATH 566 - 14, page 2/3

Solution:

MATH 566 - 14, page 3/3

