
Fall 2015, MATH-566
Network flows - Fast(er) Algorithm

Edmonds-Karp Algorithm
Input: Network (G, u, s, t).
Output: and s-t-flow f of maximum value

1. f(e) = 4 for all e ∈ E(G)

2. while f -augmenting path exists:

3. find shortest f -augmenting path P

4. compute γ := mine∈E(P) uf (e)

5. augment f along P by γ (as much as possible)

Note that shortest path can be implemented by
BFS (Breath First Search) algorithm:
Input: Graph G, s ∈ V (G).
Output: spanning tree T of shortest paths to s

1. R = {s}, Q = (s), T = (V, ∅).

2. while Q is not empty:

3. remove the first entry in Q, denote it by u.

4. ∀uv ∈ E(G), if v 6∈ R

5. add v at the end of Q; add v to R; add uv to T

1: What is running time of BFS?

Solution: O(m). Every edge is touched at most twice.

Lemma 8.13 Let f1; f2; . . . be a sequence of flows such that fi+1 results from fi by augmenting along Pi,
where Pi is a shortest fi-augmenting path. Then
(a) |E(Pk)| ≤ |E(Pk+1)| for all k.
(b) |E(Pk)|+ 2 ≤ |E(Pl)| for all k < l such that Pk ∪ Pl contains a pair of reverse edges.

2: Prove (a). Consider edges X of Pk and Pk+1 (with multiplicity) together (and erase reverse edges).
Show that |Pk| is at most half of the number of edges in X.

Solution: Notice X contains two edge disjoint paths since the outdegree of s is 2, indegree of t is 2 and
all other vertices are balanced. Notice that any path in X was a candidate for Pk. Then

2|Pk| ≤ |X| ≤ |Pk|+ |Pk+1|

3: Prove (b). Fix k and consider the smallest l > k such that Pl uses a reverse edge of Pk. Use that
there was a reverse edge.

Solution: Same as previous there was a reverse edge, so we can substract 2.

2|Pk| ≤ |X| ≤ |Pk|+ |Pk+1| − 2

MATH 566 - 18, page 1/3

4: How many augmentations are needed in Edmonds-Karp Algorithm? What is the resulting running
time?

Solution: the length of the shortest path if at most n. In every augmenting path, at least one edge is
being saturated. Every edge (or its reverse) is the saturated one in at most n

2 distances. Together mn
2

iterations.

Every iteration takes one BFS, which takes O(m). Hence the running time is O(m
2n
2).

Network flows as linear programs

5: Formulate the maximum flow problem for network (G, u, s, t) as a linear program (P). (Hint: Similar
to shortest path.) Assume G = (V,E).

Solution:

(P)

maximize

∑
ut fut −

∑
tw ftw

subject to
∑

uv fuv −
∑

vw fvw = 0 for all v ∈ V \ {s, t}
fe ≤ u(e) for all e ∈ E
0 ≤ fe for all e ∈ E

6: Write the dual (D) to (P). Use dual variables yv, where v ∈ V \ {s, t} for
∑

uv fuv−
∑

vw fvw = 0,
and ze such that e ∈ E for fe ≤ u(e).

Solution:

(D)

minimize
∑

e∈E u(e)ze

subject to −yv + yw + zvw ≥ 0 for all vw ∈ E, v, w ∈ V \{s, t}
yw + zsw ≥ 0 for all sw ∈ E
−yv + zvs ≥ 0 for all vs ∈ E
−yv + zvt ≥ 1 for all vt ∈ E
yw + ztw ≥ −1 for all tw ∈ E
ze ≥ 0 for all e ∈ E.

7: Add two artificial variables ys = 0 and yt = −1. Then the constraints all unify to the form
−yv + yw + zvw ≥ 0 for all vw ∈ E. Write the new program (D′).

Solution:

(D′)

minimize

∑
e∈E u(e)ze

subject to −yv + yw + zvw ≥ 0 for all vw ∈ E
ys = 0; yt = −1

ze ≥ 0 for all e ∈ E.

Interpretation: every edge gives a bound how much of a decrease can occur. Use the following figure to
try to find a feasible solution (assign ze = 0 and see why it is not a feasible solution.)

8: Recall that every s-t-flow can be decomposed into weighted s-t-paths. Try to interpret (D′) using
s-t paths.

MATH 566 - 18, page 2/3

Solution:

(D′)

minimize

∑
e∈E u(e)ze

subject to
∑

e∈P ze ≥ 1 for every s-t− path P

ze ≥ 0 for all e ∈ E.

If ze is 0,1, it gives that every path must have some edge on it, where ze = 1 is an edge in a cut.

MATH 566 - 18, page 3/3

