
Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus connects
the ideas of differentiation with our new idea of in-
tegration. There are two parts to the Fundamental
Theorem of Calculus.

(Part I) If f is continuous on [a,b] then∫b
a

f(u)du = F(b) − F(a),

where F(x) is any anti-derivative of f(x).

In particular if we want to evaluate a definite in-
tegral we can now do it in two steps. First, find an
anti-derivative of the function. Second, evaluate this
new function at the endpoints and take the differ-
ence. This reduces the problem of integration to that
of finding an anti-derivative.

Of course finding anti-derivatives in general are
not easy! Our main technique is to work on rewriting
the function using algebraic manipulation, trigono-
metric identities, or substitution (see below) so that
we can reduce the anti-derivative to something that
we easily recognize.

The other part of the Fundamental Theorem of Cal-
culus says that integration leads to anti-derivatices.

(Part II) If f is continuous on [a,b] and

F(x) =

∫x
a

f(u)du then F ′(x) = f(x).

By combining this part of the Fundamental The-
orem of Calculus, the chain rule and properties of
integrals we have the following rule:

d

dx

( ∫g(x)
h(x)

f(u)du

)
= f
(
g(x)

)
g ′(x) − f

(
h(x)

)
h ′(x).

We see from part II of the Fundamental theorem
of calculus that the function F(x) is an anti-derivative
of f(x). So we will let

∫
f(x)dx (called the indefinite

integral) denote the anti-derivative of f(x). In general
we have that ∫

f(x)dx = C+

∫x
a

f(x)dx,

where C is a constant (this constant will play an im-
portant role later, it is important not to forget it).

Substitution rule

Rules for derivatives become rules for integration.
One of the most important rules for derivatives is the
chain rule which states

d

dx

(
f
(
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(
g(x)

)
g ′(x).

By taking the anti-derivative of each side we can con-
clude∫

f ′
(
g(x︸︷︷︸
=u

)
)
g ′(x)dx︸ ︷︷ ︸

=du

=

∫
f ′(u)du = f(u) + C

= f
(
g(x)

)
+ C.

This is used in many problems involving integra-
tion because it can help rewrite the integral in a sim-
pler form. So after the substitution we might see how
to proceed and then we can solve the integral and at
the end resubstitute back to get our answer in terms of
x. The indication that we should use use substitution
is to look for a function inside of a function.

With every method we have in working with solv-
ing integrals the goal is always to make it simpler. In
some sense the art of integration is the art of cumu-
lative simplification. It is possible that several substi-
tutions might be needed. This is fine as long as you
keep track of everything.

Remember that when we are substituting that we
need to substitute for every occurrence of “x”, i.e.,
we also need to make sure we substitute for the dx
term. On some integrals, in order for us to do this
we might need to solve for x in terms of u. For ex-
ample when making the substitution u =

√
x then

du = 1
2
x−1/2 dx or dx = 2

√
xdu = 2udu so that the

appropriate substitution in this case is to replace the
dx term by 2udu. (Note it is easy to add and divide
by constants to get what we need.)

If we are dealing with a definite integral we can do
one of two things. First, we do the indefinite integral,
solve it to the end to get an antiderivative and then
use the fundamental theorem of calculus to evaluate
and get our answer. Alternatively, we can change
the bounds as we make our substitution (the princi-
ple is again that we are replacing every occurrence of
x, and the original bounds were in terms of x, i.e.,∫b
a (stuff)dx indicates we go from x = a to x = b). So

we have∫b
a

f
(
g(x)

)
g ′(x)dx =

∫g(b)
g(a)

f(u)du, where u = g(x).

Applications of integration

Cumulative change: There is a connection be-
tween integration and derivatives and we can use this
to answer questions about given how fast something
is changing, what is the total. (These types of ques-
tions are easy to identify since they will involve only
one rate (where related rates involves more than one)
and will ask for a total.) By the fundamental theorem
of calculus we have∫b
a

f ′(t)dt = f(b) − f(a) or f(b) = f(a) +

∫b
a

f ′(t)dt.



The intuition is that f ′(t)dt measures the (instanta-
neous) amount of change at time t and then the “

∫
”

adds them all up to find the total amount of change.
If v(t) = s ′(t) is velocity then∫b

a

v(t)dt = s(b) − s(a) = displacement,

and ∫b
a

|v(t)|dt = total distance,

Area: We can use integration to find the area be-
tween curves. If g(x) 6 f(x) on the interval [a,b] then
the area between these curves in the interval is

Area =

∫b
a

(
f(x) − g(x)

)
dx.

If the curves cross then find the intersection point(s)
by setting f(x) = g(x) and solving for x (also done
when no bounds are given, or when there are sev-
eral curves that define the region). Once we have the
intersection point(s) we split this into several pieces
and work on each piece separately (this is to avoid
the problem of “signed” areas and to simplify the in-
tegrals to manageable functions).

We can also integrate with respect to y, the basic
idea being to take horizontal slices. In this case if we
have x = f(y) and x = g(y) with g(y) 6 f(y) on the
interval [a,b]. Then we have

Area =

∫b
a

(
f(y) − g(y)

)
dy.

Average value: We already saw that the way to
compute the average value of f in the interval [a,b]
is by

average =
1

b− a

∫b
a

f(x)dx.

This value is such that the rectangle with height favg
and width (b− a) has the same area as

∫b
a f(x)dx.

The Mean Value Theorem for Integrals states that if f
is continuous on [a,b] then there is some c ∈ [a,b] so
that

f(c) =
1

b− a

∫b
a

f(x)dx.

(This is actually the same as the Mean Value Theorem
for derivatives, just worded differently.)

Quiz 12 problem bank

1. Given F(x) =

∫x3

2x2

√
2+ 3

√
t dt, find the tangent

line to F(x) at x = 2.

2. For x > 0, find F(x) =

∫x
0

6|t2 − t|dt. (Hint: find

F(x) as a piecewise function according to how
we can break up the function inside the
integral.)

3. Find
∫

sin(
√
x) sin(2

√
x)√

x
dx.

4. Find
∫2
0

√
t4 + 9 dt+

∫5
3

4
√

t2 − 9 dt.

5. Find
∫√

1+
√
xdx.

6. Let h(x) =
∫2x2+x

3x2−2

1

2+ sin t
dt. Determine h ′(x).

7. Reduce the following to a single integral of the

form A

∫C
B

f(x)dx for some constants A,B,C.

∫5
0

f(x)dx−

∫3
3

f(x2)dx+

∫1
0

3f(3x)dx

−

∫4
0

f
(1
2
x
)
dx+

∫3
5

f(x)dx.

8. Find
∫

3x√
x2 + 1+ x

dx.

9. Given that
∫x
3

g(t)dt =
3
√
x2 − 1+ Cx, find C

and g(x).

10. Find
∫1
0

2x
√
1− x4 dx.


