
L’Hospital’s formula

At the beginning of the class we developed limits
to help find derivatives which involved expressions
which went to 0

0
. Now we can come full circle and

use derivatives to help us find limits that are of the
form 0

0
. We have the following.

(L’Hospital’s Formula) If f(x) and g(x) are
differentiable around x = a and if as x → a
we have f(x)

g(x) → 0
0

or → ∞∞ , then

lim
x→a f(x)g(x)

= lim
x→a f

′(x)

g ′(x)
.

This follows by noting that we can manipulate the
limit to a derivative. As an example we have the
following:

lim
θ→0

sin(5θ)
e2θ − 1

= lim
θ→0

5 cos(5θ)
2e2θ

=
5

2
.

If needed we might need to apply this several
times, we keep going until we can make a decision
about the limit. We can use this to establish some
basic facts. For example we have the following, sup-
pose that the function f(x) has a second derivative,
then

lim
h→0

f(x+ h) − 2f(x) + f(x− h)

h2

= lim
h→0

f ′(x+ h) − f ′(x− h)

2h

= lim
h→0

f ′′(x+ h) + f ′′(x− h)

2
= f ′′(x).

(Note in this example the variable we took the deriva-
tive with respect to was h as that is what is in the
limit.)

The expressions 0
0

and ∞∞ are not the only times
we cannot decide what is happening, other indeter-
minate forms include ∞∞ , 0·∞, 1∞, ∞ − ∞, and so
on. The typical approach is to find a way to rewrite
these expressions so that it approaches either 0

0
or∞∞ . One particular interesting variation is when our

limit involves an expression where both the base and
exponent are changing. In this case it is helpful to
observe the following two ideas. First the logarithm
function is continuous. Second if f(x) is continuous
then

lim
x→a f

(
g(x)

)
= f

(
lim
x→ag(x)

)
.

So for example suppose we want to find

lim
x→∞

(
1+

t

x

)x

which is approaching 1∞ we let y be our answer and
then note

ln(y) = ln
(

lim
x→∞

(
1+

t

x

)x)
= lim
x→∞ ln

(
1+

t

x

)x
= lim
x→∞ x ln

(
1+

t

x

)
= lim
x→∞

ln
(
1+ t

x

)
1
x

Now we can apply L’Hospital and this becomes

ln(y) = lim
x→∞

−t/x2

1+t/x

−1/x2
= lim
x→∞ t

1+ t/x
= t.

Now we remember that we wanted y, so to finish we
have that ln(y) = t becomes y = et.

Separable differential equations
An important part of mathematics is differential

equations which relates how a function is changing
(i.e., its derivative) with the current value of the func-
tion and/or the input of the function. (We have pre-
viously done a very special case of this when the
derivative is only in terms of the input and then re-
covering the original function.)

The problem of solving differential equations is
very hard and is still being worked on. There are
a few special cases where we can make progress and
we will do one here (don’t worry we will get to spend
a whole semester on these later). In particular we
consider separable differential equations which are of
the form

y ′ =
f(x)

g(y)
.

The key observation is that we can rewrite this as

g(y)y ′ = f(x).

We now think of both sides as functions of x (wait for
it) and since both sides are equal there antiderivatives
are also equal. The antiderivative of f(x) is a typical
antiderivative problem. For g(y)y ′ we note∫

g(y)y ′ dx =

∫
g(u)du

by making the substitution u = y and du = y ′ dx,
so this is also an antiderivative problem (there it is!).
So taking antiderivatives of both sides they agree up
to a constant and then we use additional information
(i.e., some initial value) to determine the constant.
Note, we can sometimes solve for y, but it is usually
best to solve for the constant straight away (i.e., once
we have taken antiderivatives).

This process is best seen with an example. So sup-
pose we have that y ′ = − 1

10
y and y(0) = 20 where y

is a function of t (this is typical of things such as ra-
dioactive decay where things decrease in proportion
to the amount of material). We separate by putting



all of the variables of one type on one side and all the
other variables on the other

y ′

y
= −

1

10
integrating gives ln(y) = −

1

10
t+ C.

(Note we only need a “+C” on one side, i.e., we
can combine several constants to form a single uber-
constant.) Solving for y then we get

y = e−t/10+C = e−t/10eC = Det/10.

Finally to get the constant we use the initial condition
that at time 0 we have y = 20 so this gives D = 20,

y = 20e−t/10.

Of course there are many other possibilities. Sup-
pose that y ′ = x

2y+4 and y(
√
7) = 0. First we sepa-

rate:
(2y+ 4)y ′ = x

Then we integrate:

y2 + 4y =
1

2
x2 + C

Then we solve for C and then y; or we solve for y
and then C. In this case, let’s solve for C first. We
have

0 =
1

2

√
7
2
+ C giving C = −

7

2
.

Updating we now have

y2 + 4y =
1

2
x2 −

7

2
.

Now to solve for y we note it would be helpful to
complete the square on the left by adding 4 giving

y2+ 4y+ 4 =
1

2
x2−

7

2
+ 4 or (y+ 2)2 =

1

2
(x2+ 1).

Finally we solve by taking the square root and sub-
tracting 2 giving

y = −2+

√
1

2
(x2 + 1).

(Note there were actually two possibilities when we
took the square root, i.e., ±; both should be checked,
if we had gone with the “−” then we could not still

satisfy the initial conditions, i.e., y = −2−
√
1
2
(x2 + 1)

has y(
√
7) = −4 6= 0.)

Quiz 13 problem bank

1. Find lim
θ→0

3 sin(θ) − sin(3θ)
θ3

.

2. Find lim
x→0

cos(3x) − 1− x2

ex + e−x − 2
.

3. Find lim
t→∞ t

137

et
.

4. Find lim
x→∞

(
1− e−x

)x.

5. Find lim
x→0

(
cos x

)1/x2 .

6. Now, the Star-Belly Sneetches had bellies with
stars. The Plain-Belly Sneetches had none upon
thars. Then one day Sylvester McMonkey
McBean came to town with his wondrously
wonderful machine, “Just one pass through,
hop on board, and you will have a star for
sure.” The Sneetches listened and the Sneetches
thought and those who wanted a star-belly
stepped up and bought. Sylvester kept track of
the proportion of Sneetches with stars (P) and
noticed with time (t) in months that
P ′ = 1

3
t(1− P)2. His business was quick, he did

not want to delay, and so he recalled on his very
first day that Q = 1/4, to make a quick buck
and then leave this place he decided to leave
when Q = 3/4. How many months then will it
take until Sylvester McMonkey McBean leaves
this place?

7. It has recently been revealed that the reason
that twinkies have such an incredible shelf life
is due to a rare molecule known as Twinkonium
(T). Each twinkie contains five grams of
Twinkonium when first produced,
unfortunately the Twinkonium then starts to
decay and turn into ordinary sugar, through
extensive research it has been determined that
the rate of decay satisfies T ′ = − 1

10
T2, where t

is time measured in months. If a twinkie is still
good when it has at least one gram of
Twinkonium, how many months from when it
was first produced will the twinkie go bad?

8. Find y given y ′ = 2x(y2 + 1) and y(2) = 0

9. Find y given y ′ =
x

e2y + ey
and y(

√
3) = 0.

10. [Mystery problem]


