
Rate of change
We are interested in finding the rate of change of a

function. In particular, given a function y = f(x) we
are interested in finding how fast y is changing with
respect to x at some fixed time x = a. The main way
we will do this is to combine two observations.

1. Given a line y = mx + b the slope is m and is
found by

m =
rise
run

=
∆y

∆x
=
y2 − y1
x2 − x1

.

In other words, for a line the rate of change of y
with respect to x is the slope.

2. For a typical function we will encounter, when
we look at the function “near” x = a it will look
like a line, namely the tangent line. (The tangent
line is the line which “touches without crossing”
the curve.)

So to find the rate of change we will find the slope of
the tangent line. But, to calculate the slope we need
two points and the tangent line only gives one. So
first we work with the simpler case of the secant line
(a secant line crosses the curve at two values of x).

The secant line which intersects the curve y = f(x)
at

(
a, f(a)

)
and

(
b, f(b)

)
has slope

f(b) − f(a)

b− a
,

or if we let b = a+ h this can be written as

f(a+ h) − f(a)

h
.

This slope gives the average rate of change of y = f(x)
from x = a to x = b, i.e., the constant rate that
f would have to change at to go from

(
a, f(a)

)
to(

b, f(b)
)
.

The slope of the secant line will approximate the
slope of the tangent line and the approximation will
get better and better as b gets closer to a (or equiv-
alently as h goes to 0). The problem is that if a = b
or if h = 0 then these slopes are 0/0 which are unde-
fined, so we need some way to handle this.

Limits
The way we handle this is to use limits. Intuitively

limits tell us what should happen based on what is
happening nearby. So for example

lim
x→c

g(x) = L,

which we read “the limit as x goes to c of g(x) is L”,
means that as x gets close to c the function g(x) is
getting close to L (and staying close!). It is possible
that the limit does not exist. For example,

lim
x→0

sin(
1

x
) = Does not exist.

To see this we note that the function sin(1/x) will
do “infinitely” many oscillations between 1 and −1
around x = 0 and so it does not approach a single
fixed L.

One way to guess a limit is to plug in values of
x closer and closer to c and see if it is approaching
some certain value; we can also try plotting a picture
of g(x) near x = c and seeing how the function is
behaving. Both of these methods have short comings,
in particular they are hard to do without a calculator
and can sometimes be deceiving. So we want to have
some methods to deal with these limits. One method
is to build up a collection of rules that we can use.
For example we have the following two rules

lim
x→c

k = k and lim
x→c

x = c.

(The first follows by noting that k is always close to
k, and the second says “as x gets close to c then x
gets close to c.) On the other hand we have that if

lim
x→c

f(x) = L and lim
x→c

g(x) =M

and L,M are finite then we have the following rules,
which essentially say that limits do what we think
they should do.

1. lim
x→c

(
f(x) + g(x)

)
=

(
lim
x→c

f(x)
)
+
(

lim
x→c

g(x)
)
.

2. lim
x→c

(
kf(x)

)
= k

(
lim
x→c

f(x)
)

3. lim
x→c

(
f(x)g(x)

)
=

(
lim
x→c

f(x)
)(

lim
x→c

g(x)
)
.

4. lim
x→c

(
f(x)

g(x)

)
=

(
limx→c f(x)

)(
limx→c g(x)

) (when M 6= 0).

5. lim
x→c

(
f(x)

)q
= Lq (where q > 0 is rational).

From these rules we have that the limits of polyno-
mials are found be evaluating the polynomial at the
limit point. Similarly for ratio of polynomials if the
denominator is not 0.

Squeeze Theorem
One way to find a limit of a function that we do not

understand is to put it between two functions that we
do understand that come together. In particular if we
have

`(x) 6 f(x) 6 u(x)

for x near c and

lim
x→c

`(x) = lim
x→c

u(x) = K then lim
x→c

f(x) = K.

Related to this is the observation that if f(x) 6 g(x)
for x near c and the limits for both f and g exist near
c, then lim

x→c
f(x) 6 lim

x→c
g(x).



Algebraic manipulation of limits
When our limit is going to 0/0 (or possibly ∞/∞,∞−∞, 0·∞, etc.) then we have an ambiguous num-

ber since 0/0 is undefined. Most of the time when
we encounter this we will try to manipulate what we
are taking the limit of, the goal being to “cancel the
0s” (i.e., rewrite it in such a way that we can cancel
a common term from top and bottom so that what
remains does not go to 0/0). There are three main
techniques we can use.

1. Rewriting. This is usually done when we have a
polynomial and we can either expand the poly-
nomials out or factor (or sometimes both).

2. Multiplying by the conjugate. The conjugate of
an expression a − b is a + b. So if we multiply
both top and bottom by the conjugate of a − b
and then multiply out we get a2 − b2 (this can
be helpful for instance in getting rid of square
roots). The reason we have to multiply both top
and bottom is so that we do not change the limit,
i.e., multiplying by 1 does not change the value
of the limit.

3. Using identities. This is most commonly done
with limits involving trigonometry in which case
there are often many identities which we can use
to rewrite (and hopefully cancel!) the terms.

Rigorous approach to limits
Intuitively, lim

x→c
f(x) = L is saying that as x gets

close to c then f(x) gets close to L. We can make
this rigorous (and thus ensure that what we are do-
ing will actually produce meaningful answers). The
key is to understand “close”. In particular, by close
we are talking distance so we want to say that the
distances are small. The distance between numbers
is found by absolute values, so we have “x gets close
to c” becomes |x − c| < δ (where δ is some number
to measure how close), and “f(x) gets close to L” be-
comes |f(x) − L| < ε (where ε is again some number
to measure how close).

The key observation to make is that we want to
ensure that no matter how close we want f(x) to be
to L we can guarantee this by ensuring that x is close
to c. Hence we have the following formal definition.

We have lim
x→c

f(x) = L if and only if for all

ε > 0 there is a δ > 0 so that if |x − c| < δ
then |f(x) − L| < ε.

This leads to the classic game of you give me an ε
and I will find a δ. From this we can rigrously justify
all of the intuitive rules we mentioned earlier. Note
one useful method in doing so is the “add 0” method.

Quiz 2 problem bank

1. Find the average rate of change of the function
f(x) = x3 − 4x2 + 5x− 3 over the interval [0, 2].

2. Given that the average rate of change for
y = f(x) over the interval [0, 3] is −1, the
average rate of change over the interval [2, 3] is
5, and the average rate of change over the
interval [2, 6] is 3, determine the average rate of
change over the interval [0, 6].

3. Find the average rate of change of y = x2 from
x = a to x = b. If possible, use algebra to
simplify the expression.

4. Determine the unique c < 0 so that for
f(x) = x3 − 2x the average rate of change
between c and 1 equals the average rate of
change between 1 and 2.

5. Find lim
x→2

√
x+ 2− x

x− 2
.

6. Find lim
x→1

x2 + x− 2

(x+ 2)2 − 9
.

7. Find lim
x→1

3x4 − 5x2 − 7x3 + 11

5x5 − 3x3 + 1
.

8. Find lim
x→π

4

cos(2x)
cos x− sin x

.

9. Find lim
t→0

sin t sin 1
t

.

10. Find lim
y→0

y2

2+ sin(y137)
.


