
One-sided limits
In the definition of limits we look at what hap-

pens as x → c, but there are two ways that x can
approach c. Namely we can approach it from below
(i.e., x < c) or we can approach it from above (i.e.,
x > c). Sometimes it is convenient to limit ourselves
to one direction when evaluating the limit, and other
times it might be possible to only approach from one
direction, which leads to one-sided limits.

lim
x→c−g(x) ↔ limit as we approach c from below

lim
x→c+g(x) ↔ limit as we approach c from above

These are also known respectively as the left limit
and the right limit. (Beyonce implicitly mentions
one-sided limits in her song “Irreplaceable” when
she sings “to the left, to the left. . . ”.)

As an example we have

lim
x→0−

|x|

x
= lim
x→0−

−x

x
= lim
x→0−(−1) = −1; and

lim
x→0+

|x|

x
= lim
x→0+

x

x
= lim
x→0+ 1 = 1.

Note that by limiting ourselves to one side we can
simplify expressions, e.g., dropping the absolute
value signs. When the left and right limits do not
agree then the limit does not exist, conversely if both
one-sided limits exist and agree then the limit ex-
ists. In general, when dealing with piece-wise func-
tions (such as |x|) it is convenient to use one-sided
limits to determine what happens at the glue point.
Note some limits are easier handled when treated as
a combination of one-sided limits.

The limit of (sin θ)/θ as θ→ 0

A limit which plays an important role is

lim
θ→0

sin θ
θ

= 1,

where θ is measured in radians. This is done by not-
ing that for 0 < θ < 1

2
π that

cos θ <
sin θ
θ

< 1

then using the squeezing theorem. This handles
the limit from above, then by symmetry (function is
even) the limit exists and equals 1.

Note that the limit is nice and clean for radians;
if θ is in degrees then the limit goes to π/180. This
is the reason Calculus people work in radians (1 is
much easier to work with)!

Continuous functions
Closely related to the idea of limits is the idea of

a continuous function. A function is continuous if it
has “no breaks”. Another way to say it is the function

is continuous at x = c if what we expect to happen at
x = c is what actually does happen, i.e.,

lim
x→c f(x) = f(c).

In particular, three things need to happen to be con-
tinuous: (1) f(c) must be defined; (2) the limit must
exist; (3) the preceding two have to agree. There are
several types of discontinuities.

• Removable discontinuity The limit exists but ei-
ther the function is not defined or the value of
the function does not match the limit. The name
removable comes from the idea that we can re-
define the function at the point and we would
no longer have a discontinuity.

• Jump discontinuity The left and right hand limits
exist but are not equal.

• Infinite discontinuity The left, right, or both lim-
its are ±∞.

• Miscellaneous Another possibility, not named, is
that the limit does not exist (for example sin(1/x)
at x = 0).

Examples of continuous functions include polyno-
mials, xa (in its domain), sin x, cos x, tan x (away
from the vertical asymptotes), ln x and ex. These
form the building blocks of continuous functions and
then we might ask for how can we combine continu-
ous functions together. In particular we have that if
f(x) and g(x) are continuous then so are f(x) + g(x),
kf(x), f(x)g(x), f(x)/g(x) (when g(x) 6= 0) and f(g(x))
(the composite function also denoted as (f ◦ g)(x)).

All of the functions that we will encounter are built
up using the basic building blocks and rules for com-
bining. The only other thing that might happen is
that we might have a function which is defined piece-
wise. When this is the case the interesting question
usually occurs at when two pieces meet.

The nice thing about a limit involving a continuous
function is that we can plug in the point we are tak-
ing the limit to into the function. If we get a number
out then we are done. If we get 0/0 or other incon-
clusive forms (i.e., ∞ −∞, etc.), then that means we
need to work on the limit some more using our vari-
ous techniques.

Intermediate value theorem
The intermediate value theorem states that for a

function f(x) continuous on the interval [a,b] that as
the input ranges from x = a to x = b that the output
will include every possible value between f(a) and
f(b) (possibly more). In particular there is no possi-
ble jump in the output of a continuous function.

This can be used in finding roots, i.e., values where
f(x) = 0. If we know f(a) > 0 and f(b) < 0 and f is
continuous in an interval containing a and b then



there must be at least one (possibly several) point be-
tween a and b which is a root. Successively cutting
intervals that contain a 0 in half we can quickly find
approximations to roots. We will see other methods
to find roots of functions later in the course.

Infinite limits
Occasionally our limiting behavior involves infin-

ity (∞). Infinity is not itself a number but rather an
indication of what happens when we grow in an un-
bounded way. Limits involve infinity in two ways,
namely we can look at what happens when the input
gets arbitrarily large (i.e., x → ±∞), or what hap-
pens when the function grows arbitrarily large (i.e.,
f(x)→ ±∞).

A function has a horizontal asymptote as x → ∞
if lim
x→∞ f(x) = L where L is finite (similarly for

x → −∞). A functions has a vertical asymptote if
lim
x→a f(x) = ∞ (or −∞); in the latter case we often

deal with one sided limits as the two different sides
can have quite different behaviors.

To evaluate limits going to infinity it helps to di-
vide out by the part which is growing fastest an see
what happens.

Manipulating names
An important technique in limits (and in mathe-

matics in general) is the ability to modify our limits
by changing how we represent the limit. In essence
we are substituting in another name for our limit,
with the goal of being to result in an easier integral.

As an example, consider lim
x→∞x sin

(
1
x

)
. We can

start by letting u = 1
x

, or equivalently by letting
x = 1

u
. We have to now replace every occurrence

of x and these are in two places, the function we
are taking the limit of, and the limiting point. The
new function becomes sin(u)

u
(nice!); the new limit-

ing point becomes 0 approached from above (i.e., as
x→∞ then u = 1

x
→ 0+). We can conclude

lim
x→∞ x sin

(
1

x

)
= lim
u→0+

sin(u)
u

= 1.

Quiz 3 problem bank

1. Find lim
θ→0

sin(4θ) + sin(5θ)
sin(θ) + sin(2θ)

.

2. Find lim
x→0
√
x+ 1− 1

sin x
.

3. Find lim
t→0

(
1

3t
−

1

t(t+ 3)

)
.

4. Let f(x) be piece-wise defined by

f(x) =

{
5x+ 3 if x 6 1,

3x− 5 if 1 < x.

Determine lim
x→0 f(1+ x2).

5. Let g(x) be piece-wise defined by

g(x) =


1− x2 if x < 0,

2+ 1
2
x if 0 6 x 6 2

3
16
x3 if 2 < x.

Determine lim
x→0g(x)g(x+ 2).

6. Determine a and b so that the following
piece-wise function is continuous everywhere.

h(x) =


6+ x if x < −1

ax2 + bx if − 1 6 x 6 1

5− 6x if 1 < x

7. Find lim
x→9

3−
√
x

27−
√
x3

.

8. Find lim
x→∞

(√
x2 + 5x−

√
x2 − 3x

)
.

9. Find lim
x→−∞ 6x+ 4√

4x2 − x− 5
.

10. Given that lim
x→1g(x) exists and

lim
x→1

(
1

g(x) − 5
−

1

g(x) + 3

)
=
1

6
,

determine the possible value(s) of lim
x→1g(x).


