
Local extremum and the first derivative test
When we are looking for local extremum then we

look at the critical points (and endpoints if we have
them, but we won’t always). So we know where to
look so now the important thing is how to identify
whether a critical point is a local maximum, a local
minimum or neither. One way to help distinguish
between the possibilities is to use information about
how the function is behaving near the critical point
by using the first derivative.

f ′ > 0 ←→ function is increasing
f ′ < 0 ←→ function is decreasing

We are now ready to discuss “the first derivative
test”. We start by finding all the critical points, unde-
fined points, and boundary points. We represent all
of these points on the real number line. Between any
pair of points the first derivative will always have the
same sign (either positive or negative); to determine
the sign just pick any point in the interval and eval-
uate. There are four possibilities for how the sign
of the derivative behaves around a critical point and
these are shown below.

af ′ > 0 f ′ < 0

maximum

af ′ < 0 f ′ > 0

minimum

af ′ > 0 f ′ > 0

neither

af ′ < 0 f ′ < 0

neither

In addition to helping to classify critical points this
also helps us to answer on what intervals the func-
tion is increasing and on what intervals the function
is decreasing.

Concavity and the second derivative test
Concavity tells us how the function is “bending”,

so that concave up is that the function is trying to
bend up while concave down is that the function is
trying to bend down.

Put more concretely the graph is concave up when
the derivatives are increasing (i.e., f ′ is increasing)
which corresponds to when f ′′ > 0 (i.e., a function
is increasing when the derivative is > 0). Similarly
the graph is concave down then the derivatives are de-
creasing (i.e., f ′ is decreasing) which corresponds to
when f ′′ < 0 (i.e., a function is decreasing when the
derivative is < 0).

A point where concavity changes is called an in-
flection point. To find inflection points we take the
second derivative; see where it is 0 or undefined and
then mark off intervals and test each interval for the
concavity. Any point where the concavity changes is

an inflection point. (This process is similar to what
we did to use the first derivative test to find and test
local extremum, but this is not surprising since an in-
flection point also corresponds to the maximums and
minimums of the first derivative.)

Since concavity tells us how the curve is “shaped”
we can also use it to tell us whether a critical point is
a maximum or a minimum. However there are some
limitations. First, we can only use the second deriva-
tive test on a point where the first and second deriva-
tives exist, and second the test might be inconclusive
(unlike the first derivative test which works for both
kinds of critical points and is conclusive). We have
the following rule: If f ′(c) = 0 and f ′′(c) exists then

f ′′(c) > 0 −→ (
c, f(c)

)
is a local minimum;

f ′′(c) < 0 −→ (
c, f(c)

)
is a local maximum;

f ′′(c) = 0 −→ the test is inconclusive.

A convenient way to remember this is with the fol-
lowing adorable picture.

Sketching a curve
The idea about sketching a curve is to find the in-

teresting points (i.e., critical points, inflection points,
intercepts and asymptotes). Mark the points and
then connect them with appropriately shaped curves
based on the signs of the first and second derivatives
(a souped-up version of connect the dots).

Optimization
In optimization problems we are trying to mini-

mize or maximize some value. (It is easy to spot opti-
mization problems because they will be the ones that
ask you to find the “largest” or “smallest” or really
any kind of “-est” word.)

How to solve optimization problems:

1. Find appropriate labels. In particular there are
essentially two things that need labels: (a) the
value that we are trying to optimize; (b) the
value(s) that we can vary in our optimization
problem. It is often useful to draw a picture,
if possible.

2. Find a function for what we are trying to op-
timize in terms of what we can vary (this is al-
ways the hardest part!). We need to get the equa-
tion down to a single variable, this is done using
constraints (i.e., relationships that the variables
must satisfy).

3. Use techniques for finding local max/min to
find optimal values.



These problems are no different than other prob-
lems where we are looking for the maximum and
minimum. The only difficulty is that we are usually
not given a function and we need to set it up (and
sometimes it is buried deep inside of a word prob-
lem).

For instance we might need to find the maximum
area that we can enclose with 400 feet of fencing if
the area is a rectangle and one side does not need
fencing, since it is on a river. Then what we are trying
to optimize is the area so we label it A. The area is
the length times the width of the rectangle let us label
these as x and y (where x will be the top and bottom
and y will be a single side, the other side being the
river). Now we know that A = xy, but we need to
get down to a single variable. To do this we look
back and notice that we haven’t used the information
about the 400 feet of fencing, which is a constraint.
This tells us that 2x+y = 400 so we can rearrange this
to y = 400− 2x so that A = x(400− 2x) = 400x− 2x2.
We now look for critical points and to do this we
use the first derivative A ′ = 400 − 4x, setting it to 0
and solving we get x = 100. We can then conclude
that y = 200 so that the maximum area is 100·200 =
40, 000 square feet.

When doing optimization problems it is good to
stop and see if your answer is reasonable. For in-
stance if our answer to the previous problem was
x = −200 then we would look for a mistake. Also
make sure that you answer the question that is asked.
In this last example we are asked to find the maxi-
mum area, so our answer should be an area. If we
had been asked for the dimensions then our answer
should be 100×200, i.e., the dimensions, and so on.

Quiz 9 problem bank

1. On what intervals is h(x) = x2 − 2 arctan(x2)
increasing and on what intervals is it
decreasing?

2. Find the two critical points of y = x2/3e−2x/3

and use the first derivative test to determine if
they are local min’s or max’s.

3. Find the two inflection points for
y = θ2 + sin(2θ) for 0 6 θ 6 π, also identify the
intervals where the function is concave up and
where the function is concave down.

4. Verify the function f(x) = cos(x3 − 2x) has a
critical point at x = 0. Use the second derivative
test to determine if it is a maximum or a
minimum.

5. Find and classify the location of the critical
points of f(x) = 2x5 − 5x4 − 10x3 + 13.

6. Find all inflection points for y = xe−6x2

, and
determine the intervals where the function is
concave up and where the function is concave
down.

7. For y =
1

1+ x2
, find the value a > 0, where the

y-intercept of the tangent line at x = a is
maximal.

8. What is the area of the largest rectangle that
you can make where the bottom edge is on the
x-axis and the top two corners lie on the
parabola y = 12− x2?

9. For a > 0 find the point on the curve y =
√
x

closest to the point (a, 0).

10. Past analysis of previous parties has led to the
development of a chip index where the higher
the chip index the better the party. In particular,
the chip index is N2P where N is the number of
nacho chip bags that you have and P is the
number of potato chip bags that you have.
Given that you have $18 for your chip fund and
a bag of nacho chips cost $3 and a bag of potato
chips cost $1, how many bags of each chip
should you buy to maximize the chip index and
thus have a most awesome party.


