Spring 2016, MATH-314 http://orion.math.iastate.edu/lidicky/314 Chapters 1.1 and 1.2 - Introduction

A simple graph G is an ordered pair (V, E) of vertices V and edges E, where $E \subseteq \{\{u, v\} : u, v \in V, u \neq v\}$.

|V| is **order** of G

|E| is ${\bf size}$ of G

Vertices of G are denoted by V(G) and edges of G by E(G).

If $\{u, v\} \in E$, then u and v are **adjacent** and called **neighbors**.

If $u \in V$ and $e \in E$ satisfy $v \in e$, then v and e are **incident**.

 $\{u, v\}$ can be simplified to uv.

Edges are **adjacent** if they share vertices.

Drawing of G assigns point to V and curves to E, where endpoints of uv are u and v.

If $V(G) = \emptyset$ then G is a *null* graph.

Graph H is subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, notation $H \subseteq G$.

H is a **proper subgraph** if $H \subseteq G$, $H \neq G$ (and *H* is not a null graph).

H is a **spanning subgraph** if $H \subseteq G$ and V(H) = V(G)

H is a **induced subgraph** if $H \subseteq G$ and $\forall u, v \in V(H), uv \in E(G) \Rightarrow uv \in E(H)$.

If $X \in V(G)$, then G[X] denotes induced subgraph H of G where V(H) = X.

We use + and - to denote adding edges or vertices to graph.

Walk in a graph G is a sequence $v_1, e_1, v_2, e_2, v_3, \ldots, v_n$, where $v_i \in V(G)$ and $e_i \in E(G)$, where consecutive entries are incident.

Trail is a walk without repeated edges.

Path is a walk without repeated vertices.

If walk, trail, path starts with u and ends with v, it is called u - v walk, trail, path.

Length of a walk, trail, path is the number of edges.

Theorem 1.6 If a graph G contains u - v walk, it also contains u - v path.

Distance of u and v is the length of a shortest u - v path, denoted d(u, v).

Diameter of G, denoted by diam(G) is maximum of d(u, v) over all $u, v \in V$.

A u - v path of length d(u, v) is called **geodesic**.

Walk/Trail is closed if it is u - u walk/trail. Otherwise it is open.

Circuit is a closed trail.

Closed trail with no repetition of vertices (except first and last) is cycle.

Graph is **conneted** if for all $u, v \in V$ exists u - v walk.

If graph in not connected, it is **disconneted**.

Connected **component** of G is a connected subgraph of G that is not a proper subgraph of any other connected subgraph of G.

Graph G is a **union** of graph G_1, \ldots, G_k if G can be partitioned into G_1, \ldots, G_k . Notation $G = G_1 \cup G_2 \cup \cdots \cup G_k$.

1: 1.3 Let $S = \{2, 3, 4, 7, 11, 13\}$. Draw the graph G whose vertex set is S and such that $ij \in E(G)$ for all $i, j \in S$ if $i + j \in S$ or $|i - j| \in S$. What is |E(G)| and |V(G)|? What is diameter of G?

2: For the depicted graph G, give an example of each of the following or explain why no such example exists.

- (a) An x y walk of length 6.
- (b) A v w trail that is not a v w path.
- (c) An r-z path of length 2.
- (d) An x z path of length 3.
- (e) An x t path of length d(x, t).
- (f) A circuit of length 10.
- (g) A cycle of length 8.
- (h) A geodesic whose length is diam(G).

3: Theorem 1.7 Let R be the relation defined on the vertex set of a graph G by $u \ R \ v$, where $u, v \in V(G)$, if u is connected to v, that is, if G contains a u - v path. Show that R is an equivalence relation. What are equivalence classes of R?

4: Theorem 1.8 Let G be a graph of order 3 or more. If G contains two distinct vertices u and v such that G - u and G - v are connected, then G itself is connected.

5: *1.15* Draw all connected graphs of order 5 in which the distance between every two distinct vertices is odd. Explain why you know that you have drawn all such graphs.

6: 1.17 (a) Prove that if P and Q are two longest paths in a connected graph, then P and Q have at least one vertex in common.

(b) Prove or disprove: Let G be connected graph of diameter k. If P and Q are two geodesics of length k in G, then P and Q have at least one vertex in common.