
Fall 2016, MATH-566
Traveling Salesman Problem

Let G = (V,E) be a complete graph on n vertices. Let c : E → R+. Find a closed cycle/circuit C through
all vertices of minimum cost.

min

{∑
e∈C

c(e) : C is a circuit of all vertices on G

}

The problem is NP-complete. We will try for vertices on the plane (triangle inequality satisfied and
distance is positive)

Heuristics

• Nearest neighbor: Build a path, always include the nearest neighbor. On test data gives 1.26 of
optimum.

1: Show that the nearest neighbor algorithm can do arbitrarily bad it no triangle-inequality

Solution: Four vertices are enough. One could lead the shortest path to a trap.

Worst case if triangle-inequality is satisfied 1
3(log2(n + 1) + 4

9) times optimum.

• Cheapest insertion: Start with an edge and keep adding vertices one by one that are cheapest to
insert. At most 2 times optimum.

• Furthest insertion: Start with longest edge and keep adding vertices one by one that are furthest
away. At most log2 n + 1 times optimum. Better in experiments than previous.

note: No instance is known, where insertion method would do worse than 4 times the optimum.

• Christofides Heuristics: Start with Minimum Spanning Tree. Add Minimum Matching to vertices
of odd degree. Vertices of degree at least 4 can split off. Does at most 3

2 of optimum.

2: Show that the upper bound of the algorithm is at most 3
2 of optimum.

Solution: Tree has cost ≤ cost of minimum spanning tree. Matching can also have cost less than
half of the TSP if we walk along the TSP. Splitoff does not increase the cost.

Tour improvements

• 2-optimal switch: Replace 2 edges by different 2 edges. (more generally, k-switch)

• Lin-Kernighan: Better way of doing 2-switches.

Lower Bounds

• Held-Karp: Find a vertex v and minimum spanning tree T in G − v, then add v to T by using to
smallest cost edges adjacent to v. Modify cost of edges/vertices and rerun. Try to make costs such
that every vertex is in exactly two edges.

0 0 1

0

0

0

0

10

10

MATH 566 - 27, page 1/2



• Linear-programming: Can be used to provide a relaxation of integer programing version.
(can be modified to match Held-Karp)

MATH 566 - 27, page 2/2


