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Mantel’s Theorem

Theorem 1 (Mantel’s Theorem, 1907). The maximum number of edges in a graph on n vertices with no triangle

subgraph is bn2

4 c.

1: Show that the n-vertex complete balanced bipartite graph has bn2

4 c edges. It means that the bound in
Mantel’s theorem is achieved by some graphs.

Solution: Observe that the n-vertex complete bipartite graph with class sizes dn2e
and bn2c has no triangle subgraph and has exactly dn2eb

n
2c = b

n2

4 c edges.
Now we show that there are no triangle-free graphs with more edges than claimed by Mantel’s theorem.

2: Prove Mantel’s theorem by induction, where the induction step removes two adjacent vertices.

Solution: Induction on n. If n = 1, 2 we are done, so assume n > 2 and that the
statement of the theorem holds for smaller graphs. Let G be a triangle-free graph on
n vertices and let xy be an edge of G. The graph G − xy is obviously triangle-free
and has n − 2 vertices, so it has at most b (n−2)2

4 c edges by induction. The edge xy

has at most n − 2 edges incident (otherwise there is a triangle). Thus G has at most

1 + (n− 2) + (n−2)2

4 = n2

4 edges.

3: If G is a triangle-free graph, then adjacent vertices have no common neighbors. So for an edge xy we have
d(x) + d(y) ≤ n (don’t forget to count the edge xy twice!). Use it in the following equation (and argue the
equation is right) ∑

x∈V (G)

d(x)2 =
∑

xy∈E(G)

(d(x) + d(y)), (1)

where d denotes the degree of a vertex. Then combine (1) with Cauchy-Schwartz(∑
i

aibi

)2

≤

(∑
i

a2i

)(∑
i

b2i

)

to get the proof of Mantel’s theorem. Hint1

Solution: First, we get∑
x∈V (G)

d(x)2 =
∑

xy∈E(G)

(d(x) + d(y)) ≤ n|E(G)|

By Cauchy-Schwarz we have

1

n

 ∑
x∈V (G)

d(x)

2

≤
∑

x∈V (G)

d(x)2.

By the Handshaking lemma, the LHS is 1
n(2|E(G)|)2. Thus 1

n(2|E(G)|)2 ≤ n|E(G)|.
Solving for |E(G)| gives the theorem.

1Handshaking lemma:
∑

v d(v) = 2|E(G)|
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4: If G is triangle-free then the neighborhood of any vertex is an independent set. Let A be the largest
independent set in G and let B be the remaining vertices. Thus d(x) ≤ |A|. Use

∑
x∈B d(x) and AGM

inequality2 to prove Mantel’s theorem.

Solution: Every edge has an endpoint in B, thus by an application of the AGM
inequality we get

|E(G)| ≤
∑
x∈B

d(x) ≤ |B||A| ≤ (|B|+ |A|)2

4
=

n2

4
.

5: (Motzkin-Straus, 1965) To each vertex x assign a non-negative weight w(x) such that
∑

x∈V (G)w(x) = 1.
We would like to determine the maximum value of

S =
∑

xy∈E(G)

w(x)w(y).

Assigning 1/n to each vertex gives that the maximum of S is ≥ |E(G)|/n2. Showing that S cannot exceed 1/4
will complete the proof. We employ the “weight shifting technique.” Let x and y be non-adjacent vertices and
let Wx and Wy be the sum of the weights on vertices adjacent to x and y, respectively. Show that it is possible
to shift weight from y to x. Then argue it is possible to shift all weight to just 2 vertices and thus prove the
theorem.

Solution: Assume Wx ≥ Wy and let ε ≥ 0. Thus

(w(x) + ε)Wx + (w(y)− ε)Wy ≥ w(x)Wx + w(y)Wy.

This implies that we can shift all of the weight from one vertex y to some non-adjacent
vertex x and not decrease S (if Wy ≤ Wx). The graph G is triangle-free, so we can shift
all of the weight to two adjacent vertices and not decrease S. Thus S is maximized at
1/4 when these two vertices each have weight 1/2.

2AGM states 4xy ≤ (x+ y)2. Comes from
√
xy ≤ x+y

2
on geometric and arithmetic means.
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