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Turán’s Theorem

Theorem 1 (weak Turán’s Theorem, 1941). The maximum number of edges in a graph on n vertices with no
(k + 1)-clique subgraph is at most (

1− 1

k

)
n2

2
.

Let Tk(n) be a complete k-partite graph on n vertices with parts of as equal sizes as possible, i.e., sizes are bnk c
or dnk e. Another way of defining it would be a balanced blow-up of Kk. Such graph is called the Turán graph.

1: Show that Tk(n) gives asymptotically tight lower bound for Turán’s theorem.

Solution: It is easy to see that Tk(n) cannot contain a (k+1)-clique as any set of k+1
vertices in Tk(n) will have two vertices in the same class and therefore not connected
by an edge. Furthermore, e(Tk(n)) ≥

(
k
2

)
(bnkc)

2 >
(
k
2

)
(nk − 1)2 = (1− 1

k)n
2

2 −O(n).

2: Prove Turán’s theorem by induction. Idea: Find a clique A of size k and remove it for induction.

Solution: [First proof.] (Turán, 1941) Induction on n. The theorem is trivially true for
n ≤ k, so let n > k and assume the theorem holds for smaller graphs. Let G be a graph
on n vertices with no (k + 1)-clique and the maximum number of edges. Therefore, G
must contain a k-clique as otherwise we could add edges to G contradicting maximality.
Let A be a clique of size k and let B be the remaining n − k vertices. The graph B

has no (k + 1)-clique so by induction e(B) ≤ (1 − 1
k) (n−k)2

2 . Furthermore, each vertex
in B can have at most k − 1 neighbors in A, so we have

e(G) ≤
(
k

2

)
+

(
1− 1

k

)
(n− k)2

2
+ (n− k)(k − 1) =

(
1− 1

k

)
n2

2
.

Actually, Turán proved more.

Theorem 2 (Turán’s Theorem, 1941). The maximum number of edges in an n-vertex graph with no (k + 1)-
clique is exactly e(Tk(n)). Furthermore, Tk(n) is the unique graph attaining this maximum.

We show several more proofs that prove one version or the other. Note that Tk(n) is a complete multipartite
graph and among complete multipartite graphs with no (k+1)-clique is it the largest. This leads to a ingenious
approach: if we can show that a graph G with no (k + 1)-clique and the maximum number of edges is complete
multipartite then we are done.

3: Prove Tk(n) is the unique extremal graph by using induction on k. Idea: Take a vertex x of maximum
degree, use induction on neighbors of x, and maximality arguments on non-neighbors of x.

Solution: [Second proof.] (Erdős, 1970) Induction on k. The theorem is trivially
true for k = 1, so let k > 1 and assume the theorem holds for k − 1. We will prove
that if G has no (k + 1)-clique and the maximum number of edges, then G = Tk(n).
Let x be a vertex of maximum degree, let S be the neighbors of x and let T = G− S
be the remaining vertices. The graph S has no k-clique (as otherwise we could build
a (k + 1)-clique with x). Let us construct a new graph H on the vertex set of G as
follows. The graph H is the same as G on S, it contains all edges between S and T ,
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and it has no edges in T . Observe that all degrees in H are at least as large as in G.
Thus H has at least as many edges as G. However, if the graph G has an edge in T ,
then H would have more edges. Therefore, as G was maximal, T contains no edges
in G and thus G = H. Because S does not contain a k-clique, H does not contain a
(k+1)-clique and therefore H is a graph with the maximum number of edges with this
property. Furthermore, S must be an edge-maximal graph with no k-clique. Thus, by
induction on k, we have S = Tk−1(|S|), so H is a complete multipartite graph. The
largest (most edges) n-vertex complete multipartite graph with no (k + 1)-clique is
Tk(n).

Another proof is based on the characterization of complete multipartite-graphs by a forbidden subgraph on 3
vertices.

4: Let G be a graph with no three vertices that induce exactly one edge. That is, G does not contain P3, so
called co-cherry. Show that G is a complete multipartite graph.

Solution: Suppose G does not contain P3. If G is a complete graph, we are done.
Let x, y be two non-adjacent vertices. Since G does not contain P3, all other vertices
are partitioned to sets A and B, where A are neighbors of both x and y, while B are
non-neighbors of both x and y. Let a ∈ A and b ∈ B. By considering triple a, b, x, we
conclude ab is an edge. Let b1, b2 ∈ B By considering triple b1, b2, x, we conclude b1, b2

is not an edge. Hence B∪{x, y} is an independent set and there is a complete bipartite
graph between B ∪ {x, y} and A. Hence B ∪ {x, y} is one part of the multi-partite
graph and other parts can be obtained by repeating the same argument on A.

5: Prove Tk(n) is the unique extremal graph by showing the extremal graph must be a complete multilartite
graph. Idea: Take a co-cherry and consider degrees of its vertices. Duplicate/erase vertices to get more edges.

Solution: [Third proof.] (Zykov, 1949)1 Let G be an n-vertex graph with no (k +
1)-clique and the maximum number of edges. We will show that G is a complete
multipartite graph. If G is not multipartite, then there is a pair of non-adjacent
vertices x and y and a vertex z such that xz is an edge, but yz is not an edge. If
d(x) > d(y), then remove all edges incident to y and connect y to all neighbors of x
(but not x itself). The resulting graph has no (k + 1)-clique but has more edges than
G which contradicting maximality. Thus d(y) ≥ d(x) and d(y) ≥ d(z) (by the same
argument for z). Now remove all edges incident to x and z and connect both vertices
to the neighbors of y. The resulting graph has more edges than G and has no (k + 1)-
clique again contradicting maximality. Therefore G must be a complete multipartite
graph. The largest complete multipartite graph with no (k + 1)-clique is Tk(n).

1Due to WWII, Zykov’s work was done without the knowledge of Turán’s.
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[Fourth proof on Turán’s Theorem](Katona-Nemetz-Simonovits, 1965)2

6: Denote the number of edges of the Turán graph on n vertices with k classes by

tk(n) = |E(Tk(n))|.

Show a technical lemma that
(n + 1)tk(n) < (n− 1)tk(n + 1) + (n− 1)

Idea: Write n = qk + r where r < k and precisely calculate 2tk(n) and tk(n) = tk(n + 1) − something. Then
prove the inequality.

Solution: Put n = qk+ r where r < k. Because n > k we have either r > 0 or q > 1.
Then Tk(n) has k− r classes of size q and r classes of size q + 1. The maximum degree
in Tk(n) is n − q and there are r(q + 1) many vertices of degree 1 less, so summing
degrees gives

2tk(n) = n(n− q)− r(q + 1).

Adding a vertex to a class of size q gives Tk(n + 1), thus

tk(n) = tk(n + 1)− (n− q).

Now we use the above two equalities to get

(n + 1)tk(n) = (n− 1)tk(n) + 2tk(n) = (n− 1)tk(n + 1) + (n− q)− r(q + 1).

Observe that (n−q)− t(q+1) < n−1 as long as either r > 0 or q > 1 which completes
the proof.

7: Now for the main proof, let gk(n) be the maximum number of edges possible in an n-vertex graph with no
Kk+1 subgraph. Obviously tk(n) ≤ gk(n) we we would like to show tk(n) ≥ gk(n).
Idea: Proceed by induction on n. Double count pairs (v, e) where v is a vertex and e is an edge NOT incident
to v. Use the previous inequality.

Solution: We proceed by induction on n. The assertion is true for n ≤ k + 1 so let
us assume the inequality holds for n ≥ k + 1 and now show it holds for n + 1.

Let G be an (n + 1)-vertex Kk+1-free graph with the maximum number of edges. We
will double count the pair (v, e) where v is a vertex and e is an edge NOT incident to
v. We can fix v first in n+ 1 ways and then fix e in at most gk(n) ways. Alternatively,
we can fix e in gk(n + 1) ways and then fix v in exactly n− 1 ways. Combining these
estimates and applying induction to gk(n) gives

gk(n + 1)(n− 1) ≤ (n + 1)gk(n) ≤ (n + 1)tk(n). (1)

To complete the proof it is enough to recall that (n+1)tk(n) < (n−1)tk(n+1)+(n−1).

2This proof is from the first paper of Nemetz and Simonovits and the second of Katona.

cbna Remixed from notes of Cory Palmer by Bernard Lidický
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