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More Turan’s Theorem

Theorem 1 (Turdn’s Theorem, 1941). The mazimum number of edges in an n-vertex graph with no (k+ 1)-
clique is exactly e(Ty(n)). Furthermore, T (n) is the unique graph attaining this mazximum.

Fifth proof. We begin with the following theorem about the independence number « of a graph.
Theorem 2 (Caro, 1979; Wei, 1981). Let G be a graph with independence number a(G), then
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Proof. (Alon-Spencer, 1992) Randomly order the vertices of G. The set of vertices that appear in this ordering
before all of their neighbors forms an independent set S.
1: Calculate the expected size of S, which finishes the proof.

n
d(v)+1
permutation and d(v)! ways to arrange those vertices (v must be first). The remaining

elements can be arranged in (n — d(v) — 1)! ways. So the probability that a vertex v is
in S in a given random ordering is

Solution: There are ( ) ways to select locations for v and its neighbors in the

1 n 1
a(d(v) N 1)d(v)!(n —d(v)—1)I = A0+ 1

Thus the expected size of S is simply the RHS of the inequality. In particular, there
is an ordering of the vertices of GG such that S is at least this large. The LHS is the
maximum possible size of 5.

O

Let H be an n-vertex graph.
2: Use Cauchy-Schward!] on

" (veg(:H) ) (ve%(:H) Vd ) (UE; )( ) (7 E;H d(v )

Then follow-up by using hand-shaking lemma to get e(H) into the inequality. Finally, apply this to the
complement of G, denoted by G, i.e., use G as H. What can you tell about a(G)? (Hint: Prove the Turan’s
theorem.)

Solution: Applying the Handshaking lemma and the theorem above we can replace
the rightmost term with (2¢(H) 4+ n)a(H). Solving for e(H) gives

e(H) > % (a?;) - n> | (1)

Haibi)? < (X af) (0 b7)
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We are now ready to prove Turan’s theorem. Given an n-vertex graph G with no
(k + 1)-clique consider its complement GG which will contain no independent set of size
k+1,ie., a(G) < k. Applying (1) to G gives e(G) > 1(n?*/k — n). Thus

0 ()= ()45 -0)- (1)

Sizth proof. (Li-Li, 1981; Kleitman-Lovasz, 1994) Given a graph G we can assign a variable x; to each vertex
of G and define the polynomial

O

pG:pG(x17x2a'--7xn): H (xl_x])
i<j,ij¢E(G)

An identification of a set of variables means that we set the variables equal to each other.

3: Show a key observation that a graph G is Ky41-free if and only if for the identification of any set of k£ + 1
variables, we get a polynomial fg = 0.

Solution: If G contains Kj,1, then its identification does not give fg = 0. If G is
Ky 1-free, then any set of k + 1 vertices contains a non-edge, this making fo = 0.
Let P(n) denote the set of n-variable polynomials where the identification of any set of k+ 1 variables gives the

zero polynomial. It is easy to see that P(n) forms an ideal in the ring of polynomials. Furthermore, let P(n)
be the ideal generated by the polynomials pg(z1,...,x,) where H is a k-partite n-vertex graph.

4: What is an ideal generated by some polynomials?

Solution:

P(n) = Z pm, - g; where g any polynom

]

Now let G be an K 1-free n-vertex graph with the maximum number of edges. Clearly pg € P(n). As in the
previous proofs, it is enough to show that G is k-partite. We will need the following claim.

Claim 3. P(n) = P(n).

Proof. Clearly, P(n) C P(n), so let us show that f € P(n) implies f € P(n). We proceed by induction on
n. For n = 2 this is obvious so let n > 2 and assume the statement holds for smaller values. Let S C [n — 1]
and define fg as the polynomial resulting from replacing each z; with x,, for ¢ € S in the polynomial f. Now

consider the polynomial
b= 3 s
SC[n—1]

Which gives
f=9- > (DFlfs.

0£SCn—1]

If S # (), then fg has at most n—1 variables, thus fg € P(n—1) which by induction implies fg € P(n—l) - P(n)
Therefore to show that f € P(n), it is enough to show that g € P(n).

5: Show that z; for i < n, then g is divisible by (z; — xy,).
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Solution: If we replace z; with x,, (for ¢ < n) in g, then all terms cancel and we are left
with the zero polynomial. Therefore g is divisible by (x; — z,)(xe — ) - - (L1 — Tp).

Hence we get
g=(x1 —xn)(x2 —Xp) -+ (Tp—1 — Ty) .

The identification of any k 4+ 1 variables in g gives ¢ = 0, so if we identify any k + 1 variables among

{x1,29,...,7n_1} in h we must get h = 0. Factoring out terms of the form ¢, in h gives
h=>hil,
where each h; is a polynomial over variables x1, o, ..., z,_1 and has the property that the identification of any

A

of any k + 1 of these variables gives h; =0, i.e., h; € P(n —1) = P(n — 1).
Therefore, g can be written as the sum of polynomials of the form
ah (21 — @) (Tne1 — T0)PE
where py is the polynomial defined by the (n — 1)-vertex k-partite graph H'.
6: How to change H' into a graph on n vertices? (and use some nice polynom)
Solution: Adding an isolated vertex (with variable z,,) to the graph H’ gives an
n-vertex graph H; Observe that py = (1 — z,) -+ - (x—1 — ,,)pyr. Now one can add

edges to make H' a complete k-partite, and it just removes some of the terms in the
product.
Therefore, g can be written as the sum of polynomials of the form % py. Because P(n) is an ideal each of these

terms is in P(n) and therefore g € P(n). O

By the claim we have pg € P(n), SO pa can be written

bGc = Z 4iPH;

where each where H; is an n-vertex k-partite graph (and ¢; are some other polynomials).
7: Show that e(G) < e(Tx(n)) by considering the degrees of pg and pg,.

Solution: Clearly, the degree of pg is at least as large as that of each of the polyno-
mials pg,, i.e.,

itpe) = (1) ~e(G) = (1) = eltt) = dpm)

Furthermore, deg(pp,) > (3) — e(Tk(n)) as Tj(n) is the n-vertex k-partite graph with

the most edges. Rearranging terms gives that e(G) < e(T;(n)) completing the theorem.
O
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Theorem 4 (Application of Mantel’s theorem, Katona, 1969). Let u, v be independent and identically dis-
tributed random vectors in R, then

1
Pr(lu+wv| >1) > §Pr(|u| > 1)2.

Proof. Suppose there are N vectors in the distribution and n of them have length at least 1. Then Pr(|u| >
1) = . Consider the graph with these n vectors as vertices and two (distinct) vectors u,v are connected by
an edge if |[u +v| < 1.

8: What can you say about the graph? (property and number of edges?)

Solution: It is easy to see that this graph will not contain triangles. Thus, by
2
edges.

n

Mantel’s theorem there are at mos T

9: How many pairs of vectors u and v (not necessarily distinct) are there such that that |u+v| > 17 (use the
graph)

Solution: The vectors u and v need not be distinct, so there are at least (g) +n— % =
n?

4
10: Count the total number of pairs and finish the proof.

5 pairs of (distinct) vectors u, v such that |u +v| > 1.

Solution: As u and v are not necessarily distinct, there are (];[) + N total possible
pairs, u,v. This gives

Pr(ju+v| >1) > (?/233%%:21)) > %Pr(|u| > 1)2,
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