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Goodman’s bound and Moon-Moser

Instead of determining the maximum number of edges in a Kj1-free graph we may ask how many copies of
Ky are in a graph with some fixed number of edges. Moon and Moser gave a strong answer to this question
that will lead to another proof of Turdn’s theorem.

As a warm-up, we start with an extension of Mantel’s theorem. Let Ng be the number of copies of K, in G.
Theorem 1 (Goodman bound). For every n-vertex graph G with m edges holds

m(4dm — 712).

N3 >
3= 3n

The bound is not always tight. Tight asymptotic solution was obtained by Razborov and more precise count is
in https://arxiv.org/pdf/1712.00633.pdfl

1: Show that Goodman bound is tight for Turdn’s graphs Ty (¢ - k).

Solution: Let Ti(kf) be a Turan’s graph on n vertices, i.e., n = kf. Thee vertices
induce a triangle iff they are from three different parts, so N3 = (é) ¢3. On the other
hand, e = (5)52, hence we get

(£)6 < = i =r) _ U~ 601

3 B 3n - 3kl

2: Prove Goodman bound. Outline of the proof: For every edge zy, give a lower bound on the number of
triangles containing xy (use d(x),d(y),n). Use the bound in ) over edges and change the ) to sum over
vertices. And then use Cauchy-Schwart

Solution: The number of triangles using edge xy is at least d(z) + d(y) — n (as this
counts the number of common neighbors of x and y). Summing over all edges counts
each triangle three times, so the total number of triangles is at least

% Z (d(z) +d(y) —n) = % Z d(x)* — nm

ryeE(G) zeV(G)

Applying Cauchy-Schwartz inequality gives the total number of triangles is at least
2
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Theorem 2 (Moon-Moser theorem). Let Ny be the number of copies of K in G. Then

N, s2N,
Noiq > —n).
s+1 = 82 1 <Ns—1 n)

Proof. Let S be a copy of K, in G. Define d(A) as the number of common neighbors of a set of vertices A. As
a generalization of the Handshaking lemma we have

> d(S) = (s +1)Nys1. (1)
S

3: Why is valid?
Solution: Double count pairs (S, x), where S is a copy of Kg and x is a vertex
adjacent to all of S.

To prove Moon-Moser, we will count triples (S’,z,y) such that S’ is a copy of Ks_1 and z and y are (not
necessarily distinct) vertices each adjacent to all vertices of S’.

4: Count (S5, z,y) by first picking S’ use d(S’) for the calculation and use Cauchy-Schwarz and Handshaking
to give a lower bound.

Solution: Fixing, S’, then z and y must be common neighbors of S’, thus the total
number of desired triples is

2
1 s2N?2
N2 > / — S )
> d(s')? > N > d(s) N
S’ S’

Where the first inequality is by Cauchy-Schwarz and the equality uses .

5: Count (S',z,y) by first considering zy. Make two cases - where you distinguish if zy is an edge or not
(non-edge also works as x = y). For zy begin and edge, use Ny 1. For non-edge, what is S’ U{z} and use some
bounds of how many choices are for . The sum it all up!

Solution: If xy is an edge, then S’ is inside a K1 and there are (s + 1)sNg. 1 ways
to form a desired triple. If zy is not an edge (allowing x = y), then S’ U {z} forms a
K, and y is adjacent to all vertices but x. Fix S = K and pick a vertex y adjacent to
all but one vertex of S (so y may also be inside of S), then we have a triple (S, z,y).
There are at most n — d(5) such choices for y. Thus the total number of triples is at

most (using ([I))).
(54 1)sNap1+ > _(n=d(S)) = (s+1)sNesy +nN, = (s+ 1) Nysy = (s> = 1) Noyy +nhN,.
S

6: Combine the two estimates solving for Ny 1, which proves the theorem.

Solution: Obvious.
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Corollary 3. Let G is a graph with e(G) = (1 — %)% If Ny is the number of copies of Ks11 in G, then

S n
N, >(1_—) N..
sl = ) s+1 °

7: Prove the corollary by induction on s.

Solution:

Proof. Induction on s. For s = 1 the claim follows immediately as N, is the number
of edges and N; is the number of vertices. Let s > 1 and assume the statement for
smaller values. By the Moon-Moser theorem and the inductive hypothesis we have

Ny 52Ns Ny 32(1_ — 1) Ny-1
]\/’9 > o > : x /s o .
e s?—1 (NSl n) st ( Ny_1 n)
Simplifying the RHS yields the claim. H

The weak version of Turan’s theorem follows easily.

8: Prove (weak) Turdn’s theorem using the corollary.

Solution:

Seventh proof of (weak) Turdn’s theorem. Let G be a graph with e(G) > (1— —)— and

fix x such that e(G) = (1— —)i (note that = > s). We can repeatedly apply Corollary
to get that N3 >0, Ny > 0,...,Ny, >0, Ng,1 > 0, i.e., G contains a copy of K 1. [

Another important corollary states that when G exceeds the number of edges given by Turan’s theorem, then
not only do we have a copy of Kj; but in fact we have many copies. This property is called supersaturation.

Corollary 4. Fix € > 0 and s, then there exists ¢ = c(e, s) such that any n-vertex graph G with (1 — % + e)%2
edges, has at least cn®t' copies of Kyy1.

Proof. Set ———e thus z > s.

9: Repeatedly apply Corollary [3| and get a lower bound on Ngy;.

Solution: Repeatedly applying Corollary (3| gives the number of copies of K. is

el 3]

Simplifying gives

n\ s+1 T n s+1 T s+1 n s+1
Nsy1 2 (-) > (—) = :
T s+ 1 T s+1 s+1

Note that in the corollary above if we have that € = 0, then s = x and the lower bound on N, is simply O.
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