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Goodman’s bound and Moon-Moser

Instead of determining the maximum number of edges in a Kk+1-free graph we may ask how many copies of
Kk+1 are in a graph with some fixed number of edges. Moon and Moser gave a strong answer to this question
that will lead to another proof of Turán’s theorem.

As a warm-up, we start with an extension of Mantel’s theorem. Let Ns be the number of copies of Ks in G.

Theorem 1 (Goodman bound). For every n-vertex graph G with m edges holds

N3 ≥
m(4m− n2)

3n
.

The bound is not always tight. Tight asymptotic solution was obtained by Razborov and more precise count is
in https://arxiv.org/pdf/1712.00633.pdf.

1: Show that Goodman bound is tight for Turán’s graphs Tk(` · k).

Solution: Let Tk(k`) be a Turán’s graph on n vertices, i.e., n = k`. Thee vertices
induce a triangle iff they are from three different parts, so N3 =

(
k
3

)
`3. On the other

hand, e =
(
k
2

)
`2, hence we get(

k

3

)
`3 = N3 =

m(4m− n2)

3n
=

(
k
2

)
`2(4

(
k
2

)
`2 − (k`)2)

3k`

2: Prove Goodman bound. Outline of the proof: For every edge xy, give a lower bound on the number of
triangles containing xy (use d(x), d(y), n). Use the bound in

∑
over edges and change the

∑
to sum over

vertices. And then use Cauchy-Schwartz1.

Solution: The number of triangles using edge xy is at least d(x) + d(y)− n (as this
counts the number of common neighbors of x and y). Summing over all edges counts
each triangle three times, so the total number of triangles is at least

1

3

∑
xy∈E(G)

(d(x) + d(y)− n) =
1

3

 ∑
x∈V (G)

d(x)2 − nm

 .

Applying Cauchy-Schwartz inequality gives the total number of triangles is at least

1

3

1

n

 ∑
x∈V (G)

d(x)

2

− nm

 =
4m

3n

(
m− n2

4

)
.

1(
∑

aibi)
2 ≤ (

∑
a2
i )(

∑
b2i )
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https://arxiv.org/pdf/1712.00633.pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/


Math 608:13 2/3

Theorem 2 (Moon-Moser theorem). Let Ns be the number of copies of Ks in G. Then

Ns+1 ≥
Ns

s2 − 1

(
s2Ns

Ns−1
− n

)
.

Proof. Let S be a copy of Ks in G. Define d(A) as the number of common neighbors of a set of vertices A. As
a generalization of the Handshaking lemma we have∑

S

d(S) = (s+ 1)Ns+1. (1)

3: Why is (1) valid?

Solution: Double count pairs (S, x), where S is a copy of KS and x is a vertex
adjacent to all of S.

To prove Moon-Moser, we will count triples (S′, x, y) such that S′ is a copy of Ks−1 and x and y are (not
necessarily distinct) vertices each adjacent to all vertices of S′.

4: Count (S′, x, y) by first picking S′, use d(S′) for the calculation and use Cauchy-Schwarz and Handshaking
(1) to give a lower bound.

Solution: Fixing, S ′, then x and y must be common neighbors of S ′, thus the total
number of desired triples is

∑
S′

d(S ′)2 ≥ 1

Ns−1

(∑
S′

d(S ′)

)2

=
s2N 2

s

Ns−1
.

Where the first inequality is by Cauchy-Schwarz and the equality uses (1).

5: Count (S′, x, y) by first considering xy. Make two cases - where you distinguish if xy is an edge or not
(non-edge also works as x = y). For xy begin and edge, use Ns+1. For non-edge, what is S′ ∪{x} and use some
bounds of how many choices are for y. The sum it all up!

Solution: If xy is an edge, then S ′ is inside a Ks+1 and there are (s + 1)sNs+1 ways
to form a desired triple. If xy is not an edge (allowing x = y), then S ′ ∪ {x} forms a
Ks and y is adjacent to all vertices but x. Fix S = Ks and pick a vertex y adjacent to
all but one vertex of S (so y may also be inside of S), then we have a triple (S ′, x, y).
There are at most n − d(S) such choices for y. Thus the total number of triples is at
most (using (1)).

(s+ 1)sNs+1 +
∑
S

(n−d(S)) = (s+ 1)sNs+1 +nNs− (s+ 1)Ns+1 = (s2−1)Ns+1 +nNs.

6: Combine the two estimates solving for Ns+1, which proves the theorem.

Solution: Obvious.
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Corollary 3. Let G is a graph with e(G) = (1− 1
x)n

2

2 . If Ns is the number of copies of Ks+1 in G, then

Ns+1 ≥
(

1− s

x

) n

s+ 1
Ns.

7: Prove the corollary by induction on s.

Solution:

Proof. Induction on s. For s = 1 the claim follows immediately as N2 is the number
of edges and N1 is the number of vertices. Let s > 1 and assume the statement for
smaller values. By the Moon-Moser theorem and the inductive hypothesis we have

Ns+1 ≥
Ns

s2 − 1

(
s2Ns

Ns−1
− n

)
≥ Ns

s2 − 1

(
s2(1− s−1

x )nsNs−1

Ns−1
− n

)
.

Simplifying the RHS yields the claim.

The weak version of Turán’s theorem follows easily.

8: Prove (weak) Turán’s theorem using the corollary.

Solution:

Seventh proof of (weak) Turán’s theorem. Let G be a graph with e(G) > (1− 1
s)
n2

2 , and

fix x such that e(G) = (1− 1
x)n

2

2 (note that x > s). We can repeatedly apply Corollary 3
to get that N3 > 0, N4 > 0, . . . , Ns > 0, Ns+1 > 0, i.e., G contains a copy of Ks+1.

Another important corollary states that when G exceeds the number of edges given by Turán’s theorem, then
not only do we have a copy of Kk+1 but in fact we have many copies. This property is called supersaturation.

Corollary 4. Fix ε > 0 and s, then there exists c = c(ε, s) such that any n-vertex graph G with (1− 1
s + ε)n

2

2
edges, has at least cns+1 copies of Ks+1.

Proof. Set 1
x = 1

s − ε, thus x > s.

9: Repeatedly apply Corollary 3 and get a lower bound on Ns+1.

Solution: Repeatedly applying Corollary 3 gives the number of copies of Ks+1 is

Ns+1 ≥ N1

s∏
i=1

[(
1− i

x

)
n

i + 1

]
.

Simplifying gives

Ns+1 ≥
(n
x

)s+1
(

x

s + 1

)
≥
(n
x

)s+1
(

x

s + 1

)s+1

=

(
n

s + 1

)s+1

.

Note that in the corollary above if we have that ε = 0, then s = x and the lower bound on Ns+1 is simply 0.
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