Goodman's bound and Moon-Moser

Instead of determining the maximum number of edges in a K_{k+1} -free graph we may ask how many copies of K_{k+1} are in a graph with some fixed number of edges. Moon and Moser gave a strong answer to this question that will lead to another proof of Turán's theorem.

As a warm-up, we start with an extension of Mantel's theorem. Let N_s be the number of copies of K_s in G.

Theorem 1 (Goodman bound). For every n-vertex graph G with m edges holds

$$N_3 \ge \frac{m(4m-n^2)}{3n}.$$

The bound is not always tight. Tight asymptotic solution was obtained by Razborov and more precise count is in https://arxiv.org/pdf/1712.00633.pdf.

1: Show that Goodman bound is tight for Turán's graphs $T_k(\ell \cdot k)$.

Solution: Let $T_k(k\ell)$ be a Turán's graph on *n* vertices, i.e., $n = k\ell$. The vertices induce a triangle iff they are from three different parts, so $N_3 = \binom{k}{3}\ell^3$. On the other hand, $e = \binom{k}{2}\ell^2$, hence we get

$$\binom{k}{3}\ell^3 = N_3 = \frac{m(4m-n^2)}{3n} = \frac{\binom{k}{2}\ell^2(4\binom{k}{2}\ell^2 - (k\ell)^2)}{3k\ell}$$

2: Prove Goodman bound. Outline of the proof: For every edge xy, give a lower bound on the number of triangles containing xy (use d(x), d(y), n). Use the bound in \sum over edges and change the \sum to sum over vertices. And then use Cauchy-Schwartz¹.

Solution: The number of triangles using edge xy is at least d(x) + d(y) - n (as this counts the number of common neighbors of x and y). Summing over all edges counts each triangle three times, so the total number of triangles is at least

$$\frac{1}{3} \sum_{xy \in E(G)} (d(x) + d(y) - n) = \frac{1}{3} \left(\sum_{x \in V(G)} d(x)^2 - nm \right).$$

Applying Cauchy-Schwartz inequality gives the total number of triangles is at least

$$\frac{1}{3}\left(\frac{1}{n}\left(\sum_{x\in V(G)}d(x)\right)^2 - nm\right) = \frac{4m}{3n}\left(m - \frac{n^2}{4}\right).$$

 $^{{}^1(\}sum a_i b_i)^2 \le (\sum a_i^2)(\sum b_i^2)$

^{© () (}S) Remixed from notes of Cory Palmer by Bernard Lidický

Theorem 2 (Moon-Moser theorem). Let N_s be the number of copies of K_s in G. Then

$$N_{s+1} \ge \frac{N_s}{s^2 - 1} \left(\frac{s^2 N_s}{N_{s-1}} - n \right).$$

Proof. Let S be a copy of K_s in G. Define d(A) as the number of common neighbors of a set of vertices A. As a generalization of the Handshaking lemma we have

$$\sum_{S} d(S) = (s+1)N_{s+1}.$$
(1)

3: Why is (1) valid?

Solution: Double count pairs (S, x), where S is a copy of K_S and x is a vertex adjacent to all of S.

To prove Moon-Moser, we will count triples (S', x, y) such that S' is a copy of K_{s-1} and x and y are (not necessarily distinct) vertices each adjacent to all vertices of S'.

4: Count (S', x, y) by first picking S', use d(S') for the calculation and use Cauchy-Schwarz and Handshaking (1) to give a lower bound.

Solution: Fixing, S', then x and y must be common neighbors of S', thus the total number of desired triples is

$$\sum_{S'} d(S')^2 \ge \frac{1}{N_{s-1}} \left(\sum_{S'} d(S') \right)^2 = \frac{s^2 N_s^2}{N_{s-1}}.$$

Where the first inequality is by Cauchy-Schwarz and the equality uses (1).

5: Count (S', x, y) by first considering xy. Make two cases - where you distinguish if xy is an edge or not (non-edge also works as x = y). For xy begin and edge, use N_{s+1} . For non-edge, what is $S' \cup \{x\}$ and use some bounds of how many choices are for y. The sum it all up!

Solution: If xy is an edge, then S' is inside a K_{s+1} and there are $(s+1)sN_{s+1}$ ways to form a desired triple. If xy is not an edge (allowing x = y), then $S' \cup \{x\}$ forms a K_s and y is adjacent to all vertices but x. Fix $S = K_s$ and pick a vertex y adjacent to all but one vertex of S (so y may also be inside of S), then we have a triple (S', x, y). There are at most n - d(S) such choices for y. Thus the total number of triples is at most (using (1)).

$$(s+1)sN_{s+1} + \sum_{S}(n-d(S)) = (s+1)sN_{s+1} + nN_s - (s+1)N_{s+1} = (s^2 - 1)N_{s+1} + nN_s.$$

6: Combine the two estimates solving for N_{s+1} , which proves the theorem.

Solution: Obvious.

Corollary 3. Let G is a graph with $e(G) = (1 - \frac{1}{x})\frac{n^2}{2}$. If N_s is the number of copies of K_{s+1} in G, then

$$N_{s+1} \ge \left(1 - \frac{s}{x}\right) \frac{n}{s+1} N_s.$$

7: Prove the corollary by induction on *s*.

Solution:

Proof. Induction on s. For s = 1 the claim follows immediately as N_2 is the number of edges and N_1 is the number of vertices. Let s > 1 and assume the statement for smaller values. By the Moon-Moser theorem and the inductive hypothesis we have

$$N_{s+1} \ge \frac{N_s}{s^2 - 1} \left(\frac{s^2 N_s}{N_{s-1}} - n \right) \ge \frac{N_s}{s^2 - 1} \left(\frac{s^2 (1 - \frac{s-1}{x}) \frac{n}{s} N_{s-1}}{N_{s-1}} - n \right).$$

Simplifying the RHS yields the claim.

The weak version of Turán's theorem follows easily.

8: Prove (weak) Turán's theorem using the corollary.

Solution:

Seventh proof of (weak) Turán's theorem. Let G be a graph with $e(G) > (1 - \frac{1}{s})\frac{n^2}{2}$, and fix x such that $e(G) = (1 - \frac{1}{x})\frac{n^2}{2}$ (note that x > s). We can repeatedly apply Corollary 3 to get that $N_3 > 0, N_4 > 0, \ldots, N_s > 0, N_{s+1} > 0$, i.e., G contains a copy of K_{s+1} . \Box

Another important corollary states that when G exceeds the number of edges given by Turán's theorem, then not only do we have a copy of K_{k+1} but in fact we have many copies. This property is called **supersaturation**.

Corollary 4. Fix $\epsilon > 0$ and s, then there exists $c = c(\epsilon, s)$ such that any n-vertex graph G with $(1 - \frac{1}{s} + \epsilon)\frac{n^2}{2}$ edges, has at least cn^{s+1} copies of K_{s+1} .

Proof. Set $\frac{1}{x} = \frac{1}{s} - \epsilon$, thus x > s.

9: Repeatedly apply Corollary 3 and get a lower bound on N_{s+1} .

Solution: Repeatedly applying Corollary 3 gives the number of copies of K_{s+1} is

$$N_{s+1} \ge N_1 \prod_{i=1}^{s} \left[\left(1 - \frac{i}{x} \right) \frac{n}{i+1} \right].$$

Simplifying gives

$$N_{s+1} \ge \left(\frac{n}{x}\right)^{s+1} \binom{x}{s+1} \ge \left(\frac{n}{x}\right)^{s+1} \left(\frac{x}{s+1}\right)^{s+1} = \left(\frac{n}{s+1}\right)^{s+1}.$$

Note that in the corollary above if we have that $\epsilon = 0$, then s = x and the lower bound on N_{s+1} is simply 0.

€ () (S) Remixed from notes of Cory Palmer by Bernard Lidický