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Stability for F -free graphs

We now examine the structure of extremal and almost-extremal graphs. We will see that an F -free graph with
close to the extremal number of edges closely resembles a Turán graph. This concept is called stability.

Theorem 1 (Füredi, 2015). Suppose G is an n-vertex Kk+1-free graph with e(G) = e(Tk(n))− t. Then G can
be obtained from a complete k-partite graph (on n vertices) by adding and removing at most 3t total edges.

The theorem uses the following lemma.

Lemma 2 (Füredi, 2015). Suppose G is an n-vertex Kk+1-free graph with e(G) = e(Tk(n))− t. Then G has a
k-partite (i.e., k-colorable) subgraph G′ with e(G′) ≥ e(G)− t.

Proof. First we build a partition of G as follows: let x1 be a vertex with maximal neighborhood N1 ⊂ G (i.e.,
x1 has maximum degree) and let V1 = G−N1.

Now suppose that for for j = 1, 2, . . . , i − 1 we have defined xj , Nj and Vj . Let xi be a vertex with maximal
neighborhood in the graph induced on Ni−1. Call this neighborhood Ni and put Vi = Ni−1 −Ni.

1: Show the process stops (what graph is formed by xis?) Are all vertices of G covered? Try to use
∑k

i=1 |Vi||Ni|
to somehow estimate e(G) and also relate this to the number of edges in Turán graph. And hopefully get the
proof out of it.

Solution:

Observe that xi ∈ Ni−1 ⊂ Ni−2 ⊂ · · · ⊂ N1. Thus the xis form a complete graph.
Therefore, this process stops after at most k steps (for simplicity assume that it stops
after choosing xk), i.e., the vertex xk has no neighbors in Nk−1. Thus Vk = Nk−1 − ∅.
The collection of subsets V1, V2, . . . , Vk form a vertex-partition of G.

First observe that the number of edges in the complete k-partite graph with classes
V1, . . . , Vk is

k∑
i=1

|Vi||Ni|. (1)

The Turán graph Tk(n) has the most edges among the complete k-partite graphs, so
(1) is a lower bound on e(Tk(n)) = e(G) + t.

On the other hand, for a vertex x ∈ Vi, the number of edges from x to a vertex in
Vi ∪ Vi+1 ∪ · · · ∪ Vk is at most |Ni|. So (1) is an upper bound for e(G) +

∑
i e(Vi) (as

edges inside of Vi are counted twice).

Combining the two bounds for (1) and simplifying gives
∑

i e(Vi) ≤ t, i.e., after remov-
ing the (at most) t edges inside the Vis we are left with a k-partite graph G′
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Theorem 3 (First stability theorem). For any ε > 0 and any (k + 1)-chromatic graph F , there exists δ > 0
and n0 such that if G is an F -free n-vertex graph with n > n0 and

e(G) >

(
1− 1

k

)
n2

2
− δn2,

then G can be obtained from Tk(n) by adding and removing at most εn2 total edges.

The first stability theorem essentially states that F -free graphs that have close to the maximal number of edges
closely resemble the Turán graph.

Theorem 4 (Asymptotic structure theorem). If G is an n-vertex extremal graph for a (k+ 1)-chromatic graph
F , then the minimum degree of G is

δ(G) =

(
1− 1

k
+ o(1)

)
n.

Proof. By the first stability theorem we know that Tk(n) can be transformed into G by adding and removing
o(n2) total edges. For some transformation and some vertex v, let r(v) be the number of edges incident to v
that were removed.

Let V1, V2, . . . , Vk be the partition classes of Tk(n) and let V1 be a class of minimal size, i.e., |V1| = bn/kc ≤ n/k.

2: Finish the proof. Idea: There are not many edges removed incident with V1, so we could use some
symmetrization technique (Zykov’s proof of Turán’s theorem - all vertices have same degree) - but the sym-
metrization needs to something bigger than just a vertex (preserve F -free).

Solution: By the first stability theorem we know that the number of edges incident
to V1 removed in the transformation is∑

v∈V1

r(v) = o(n2)

Now consider a set S of |V (F )| many vertices in V1 such that
∑

v∈S r(v) is minimal.
Thus by averaging, we have∑

v∈S

r(v) ≤ |S|
|V1|

∑
v∈V1

r(v) = o(n).

We now use the symmetrization technique from Zykov’s proof of Turán’s theorem. Let
v be an arbitrary vertex of G. Let d(S) be the number of vertices in the common
neighborhood of S. If d(v) < d(S), then remove all edges incident to v and connect
v to all the common neighbors of S. Observe that the resulting graph remains F -free
and has more edges; a contradiction. Thus,

d(v) ≥ d(S) ≥ n−
⌊n
k

⌋
−
∑
v∈S

r(s) ≥ n− n

k
− o(n).
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Supersaturation

A consequence of the Moon-Moser theorem was that if we have an n-vertex graph with > ex(n,Kk+1) edges,
then we not only have a copy of Kk+1 but cnk+1 many copies. We generalize this result for all graphs F .

Lemma 5. Fix q and ε positive reals and suppose G is an n-vertex graph with e(G) > (q + ε)
(
n
2

)
many edges.

Then for m ≥ 2, there exists δ > 0 such that G contains at least δ
(
n
m

)
many induced subgraphs on m vertices

with at least (q + ε/2)
(
m
2

)
many edges.

Proof. 3: Suppose for contradiction the lemme is false and double-count the number of pairs (S, e), where e is
an edge and S is a vertex set of size m containing e. Show that is δ is really small, contradiction happens.

Solution: Let e(S) count the number of edges in the induced graph on vertices
S ⊂ V (G). Each edge of G is contained in

(
n−2
m−2

)
many vertex sets of size m, so∑

S∈(V (G)
m )

e(S) =

(
n− 2

m− 2

)
(q + ε)

(
n

2

)
.

On the other hand, if we suppose that the lemma is false, then all but δ
(
n
m

)
many m

vertex sets have < (q + ε/2)
(
m
2

)
edges and the remaning have at most

(
m
2

)
edges. So∑

S∈(V (G)
m )

e(S) <

(
n

m

)(
m

2

)(
q +

ε

2

)
+ δ

(
n

m

)(
m

2

)
<

(
n

m

)(
m

2

)(
q +

3ε

4

)
for δ chosen to be small enough. Combining these two estimates gives(

n− 2

m− 2

)(
n

2

)
(q + ε) <

(
n

m

)(
m

2

)(
q +

3ε

4

)
.

This is a contradiction as
(
n−2
m−2

)(
n
2

)
=
(
n
m

)(
m
2

)
.

Theorem 6. Fix a graph F on f many vertices. For ε > 0, there exists an α > 0 such that if G is an n-vertex
graph with

e(G) > ex(n, F ) + εn2,

then G contains at least αnf many copies of F . (for n large enough)

Proof. 4: Use Erdős-Stone-Simonovits to get q and then use the lemma above but! use it for real large n and
so you can use the dense pieces to harvest copies of F . And then fix possible overcounting.

Solution: By ESS, we know that

ex(n, F ) ≤
(

1− 1

χ(F )− 1

)(
n

2

)
+ o(n2).

Put q = 1− 1
χ(F )−1 and fix m large enough such that

ex(m,F ) <
(
q +

ε

2

)(m
2

)
.
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Now apply the above lemma with to find δ
(
n
m

)
many vertex subsets S of size m such

that

e(S) ≥
(
q +

(
ε

2

))
m

2
> ex(n, F ).

Each such S clearly must contain a copy of F for a total of δ
(
n
m

)
many copies of F .

However, these copies may have been counted many times. A fixed copy of F appears
in
(
n−f
m−f
)

many vertex sets of size m, so the number of copies of F is at least

δ
(
n
m

)(
n−f
m−f
) ≥ αnf

for some β.
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