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C4-free graphs

Lemma 1 (Jensen’s inequality). If 0 ≤ λi ≤ 1,
∑
λi = 1 and f is a convex function, then

f
(∑

λixi

)
≤
∑

λif(xi).

If each λi = 1
n (and the sum has n terms), then Jensen’s inequality simplifies to

f

(
1

n

∑
xi

)
≤ 1

n

∑
f(xi).

For graphs of chromatic number 3 or greater, ESS gives a good answer for the Turán number. Our only hope
is to improve the smaller-order terms. However, when H is bipartite, then ESS only says that ex(n,H) = o(n2)
so it is a natural question to try to improve this.

Theorem 2 (Erdős, 1938).

ex(n,C4) ≤
n

4

(√
4n− 3 + 1

)
∼ 1

2
n3/2.

Proof. Let us count the number of paths on three vertices by their center vertex (it is helpful to think of the
two edges forming a letter V or as a K1,2).

1: Give an upper bound on the number of V’s using C4-free property and give lower bound using Jensen’s
inequality.

Solution: The number of Vs centered at x is
(
d(x)

2

)
. Therefore the total number of

Vs is ∑
v∈V (G)

(
d(v)

2

)
≥ n

( 1
n

∑
d(v)

2

)
= n

(
2e(G)/n

2

)
=

2e(G)2

n
− e(G).

Where the first inequality is due to Jensen’s inequality (as
(
x
2

)
is convex) and the first

equality uses the Handshaking lemma.

On the other hand, two Vs cannot share the same endpoints as this would form a C4,
so there are at most

(
n
2

)
total Vs. Combining these bounds gives

(
n
2

)
≥ 2e(G)2

n − e(G).
Solving for e(G) (use the quadratic formula) gives the theorem.

The lower bound on ex(n,C4) was given by Erdős-Rényi-Sós and involves a bit of number theory and gives the
full theorem.

Theorem 3.

ex(n,C4) ∼
1

2
n3/2.

Proof. The upper bound is the previous theorem. For the lower bound we will construct a C4-free graph G
with the desired number of edges.

Let p be prime and define a graph G with vertex set Fp × Fp −{0, 0} where distinct pairs (x, y) and (a, b) form
an edge iff ax+ by = 1.
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2: What is n? What is the (minimum) degree of G? What is then the lower bound on the number of edges?
Is G actually C4-free?

Solution: Observe that n = p2−1. For a fixed (x, y) it is easy to check that there are
p solutions (a, b) to ax + by = 1 (when x = 0, then a anything, but b = y−1 and when
x and y both non-zero, a can be anything, but then b = (1 − ax)y−1). It is possible
that one solution is (x, y) itself which we discard. Therefore, the degree of (x, y) is at
least p− 1 in G. Thus, e(G) ≥ 1

2(p− 1)n = 1
2(p− 1)(p2− 1) ∼ 1

2p
3 ∼ 1

2n
3/2. Now let us

confirm that G is C4-free. If two vertices (a, b), and (a′, b′) are non-adjacent in a C4,
then there would be two solutions (x, y) to the equations ax+ by = 1 and a′x+ b′y = 1
which is clearly impossible.

Finally, note that this construction only works if
√
n + 1 is prime. However, for any n,

there is a prime between (1− o(1))
√
n and

√
n which will still result in a construction

(just add some isolated vertices to p2 − 1 to get n) with leading term ∼ 1
2n

3/2.

The graph C4 is both a cycle and a complete bipartite graph. We will first generalize the above result to
complete bipartite graphs

Theorem 4 (Erdős; Kővari-Sós-Turán, 1954). For any naturals s ≤ t we have

ex(n,Ks,t) ≤
1

2
(t− 1)1/sn2−1/s +O(n).

The proof is simply a generalization of the proof for C4.

3: Let G be an n-vertex graph with no Ks,t subgraph. Count the pairs (v, S) where v is a vertex and S is a
set of s vertices in the neighborhood of v. Use this to finish the proof.
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