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C,-free graphs

Lemma 1 (Jensen’s inequality). If0 < \; <1, >\, =1 and f is a convex function, then
f (Z Aﬂi) < Z Aif (i)

If each \; = % (and the sum has n terms), then Jensen’s inequality simplifies to

(3 Xw) < 5 .

For graphs of chromatic number 3 or greater, ESS gives a good answer for the Turan number. Our only hope
is to improve the smaller-order terms. However, when H is bipartite, then ESS only says that ex(n, H) = o(n?)
so it is a natural question to try to improve this.

Theorem 2 (Erdés, 1938).
1
(\/4n -3+ 1) ~ §n3/2.

eX(TL, 04) < %

Proof. Let us count the number of paths on three vertices by their center vertex (it is helpful to think of the
two edges forming a letter V or as a Kj ).

1: Give an upper bound on the number of V’s using Cy-free property and give lower bound using Jensen’s
inequality.

d(x)
2

veV(G)

Solution: The number of Vs centered at x is < ) Therefore the total number of

Vs is

Where the first inequality is due to Jensen’s inequality (as (;) is convex) and the first
equality uses the Handshaking lemma.

On the other hand, two Vs cannot share the same endpoints as this would foZrm a Oy,
so there are at most (g) total Vs. Combining these bounds gives (g) > @ —e(G).
Solving for e(G) (use the quadratic formula) gives the theorem.

O

The lower bound on ex(n, Cy) was given by Erdds-Rényi-Sés and involves a bit of number theory and gives the
full theorem.

Theorem 3.

ex(n,Cy) ~ %n3/2.

Proof. The upper bound is the previous theorem. For the lower bound we will construct a Cy-free graph G
with the desired number of edges.

Let p be prime and define a graph G with vertex set F,, x F,, — {0,0} where distinct pairs (z,y) and (a, b) form
an edge iff ax 4+ by = 1.
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2: What is n? What is the (minimum) degree of G? What is then the lower bound on the number of edges?
Is G actually Cy-free?

Solution: Observe that n = p? —1. For a fixed (z,y) it is easy to check that there are
p solutions (a,b) to ax + by = 1 (when z = 0, then a anything, but b = y~! and when
x and y both non-zero, a can be anything, but then b = (1 — ax)y~!). It is possible
that one solution is (x,y) itself which we discard. Therefore, the degree of (x,y) is at
least p— 1 in G. Thus, e(G) > 3(p—1)n = 2(p—1)(p* — 1) ~ 3p* ~ In¥?2 Now let us
confirm that G is Cy-free. If two vertices (a,b), and (a’,V’) are non-adjacent in a Cl,
then there would be two solutions (z,y) to the equations ax + by = 1 and 'z + by = 1

which is clearly impossible.

Finally, note that this construction only works if v/n + 1 is prime. However, for any n,
there is a prime between (1 — o(1))y/n and /n which will still result in a construction
(just add some isolated vertices to p? — 1 to get n) with leading term ~ %n?’/ 2.

O]

The graph Cy is both a cycle and a complete bipartite graph. We will first generalize the above result to
complete bipartite graphs

Theorem 4 (Erdds; Kévari-Sés-Turdn, 1954). For any naturals s < t we have
Lo \1ys, 2-1/s
ex(n, Kg¢) < 2(t 1)"7*n + O(n).
The proof is simply a generalization of the proof for Cj.

3: Let G be an n-vertex graph with no K,; subgraph. Count the pairs (v,S) where v is a vertex and S is a
set of s vertices in the neighborhood of v. Use this to finish the proof.
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