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Applications of C4-free graphs

We begin with the problem that motivated the study of the Turán number of the C4.

Theorem 1 (Erdős1, 1938). Let A ⊂ [n] be a set of integers such that all products of pairs of elements of A
are distinct. Then

|A| ≤ π(n) +O(n3/4)

where π(n) is the number of primes not exceeding n (recall π(n) ≈ n/ lnn).

Note that the set of primes form a construction of A of size π(n). To prove the theorem we need two easy
lemmas.

Lemma 2. Let D be the naturals at most n2/3 and B be the set containing D and all primes between n2/3 and
n. Then each integer in [n] can be written as a product of an element of D and B.

Proof. 1: Prove Lemma 2.

Solution: We show that x ∈ [n] can be written as the product d · b such that d ∈ D
and b ∈ B. If x ≤ n2/3, then x = 1 · x is a solution, so assume x > n2/3. If x has a
prime factor p that is greater than n2/3 then x = p · (x/p) is a solution as (x/p) ≤ n2/3,
so we can assume all prime factors are at most n2/3. Then some product q of prime
factors of x is between n1/3 and n2/3, thus x = q · (x/q) is a solution.

Lemma 3. Let G be a C4-free bipartite graph with class sizes a and b, then

e(G) ≤ a
√
b+ b.

2: Prove Lemma 3.

Hint: Similar to the proof of KST (count cherries centered in B, recall Jensen)

Solution: Let G be a C4-free bipartite graph with classes of size a and b. Call the
classes A and B, respectively Let us count the number of Vs with center in B. Each
pair of vertices A has at most one common neighbor in B so the number of such Vs is
at most (

a

2

)
≤ a2

2
.

On the other hand, the number of Vs on a vertex x in B is
(
d(x)

2

)
. So the total number

of such Vs is∑
x∈B

(
d(x)

2

)
≥ b

(1
b

∑
d(v)

2

)
= b

(
e(G)/b

2

)
≥ b

(e(G)/b− 1)2

2
.

Combining these two estimates for the number of Vs and solving for e(G) completes
the proof.

1Erdős showed that the error term is between O
(

n3/4

(logn)3/2

)
and O(n3/4).
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https://creativecommons.org/licenses/by-nc-sa/4.0/


Math 608:18 2/3

Proof of Theorem 1, up to error term. Let A be a set as in the theorem and consider each element of A as its
product given by Lemma 2. There may be many such representations, so choose the representation where the
element of B is smallest. Consider the bipartite graph with vertex set B ∪D and connect two vertices b ∈ B
and d ∈ D if there is an element in a with representation b · d.

3: Show that G is C4-free.

Solution: Suppose for contradiction that there is a C4 in G. Denote its vertices by
b1, b2 ∈ B and d1, d2 ∈ D. Notice that b1d1 · b2d2 = b1d2 · b2d1, while all four products
are in A, which is a contradiction.

We need to be more careful when applying the edge-bound.

We partition the elements x ∈ B into three parts B1, B2, B3 such that B1 contains x < n1/2, the set B2 contains
n1/2 ≤ x < n3/4, and B3 contains the rest.

4: Notice what are adjacencies in D for each of the Bis and finish the proof by applying Lemma 3 a couple
times.

Solution: Observe that B2 is only adjacent to vertices in D that are at most n1/2

and B3 is only adjacent to vertices in D that are at most n1/3

Applying Lemma 3 to each class of B and its potential neighbors gives

e(G) = π(n) +O(n5/6) = (1 + o(1))π(n).

For the next application, we restate KST theorem.

Theorem 4 (Erdős; Kővari-Sós-Turán, 1954). For any naturals s ≤ t we have

ex(n,Ks,t) ≤
1

2
(t− 1)1/sn2−1/s +O(n).

To get the next application we need a definition. Given a set A, the sumset of A is the set of all sums of pairs
of elements of A; denoted A+A = {a+ a′ | a, a′ ∈ A}. We are interested in determining the minimum possible
size of a set A ⊂ N such that A+A contains all perfect squares 12, 22, 32, . . . , n2.

Theorem 5 (Erdős-Newman2, 1977). Given ε > 0 and n large enough, if A is a set of non-negative integers
such that {12, 22, 32, . . . , n2} ⊂ A+A, then |A| ≥ n2/3−ε.

Proof. Let G be a graph with vertex set A and two vertices a and a′ are connected by an edge if a + a′ is a
perfect square at most n2. Observe that G has at least n edges.

5: Estimate the number of common neighbors of two vertices. Use KST on K2,t-free graphs for a suitable t.
Useful to know: If d(x) is the number of divisors of x, then a consequence of the prime number theorem is that
for any δ > 0, that d(x) = o(xδ).

Solution: Let us determine an upper-bound on the number of common neighbors b
of two fixed vertices a and a′. Then there exists x2 and y2 such that a + b = x2 and
a′ + b = y2 which implies a − a′ = x2 − y2. Therefore x − y and x + y divide a − a′.

2The best known construction has n

logω(1) n
elements.
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Each common neighbor b uniquely determines x and y, thus there are at most as many
common neighbors as pairs of divisors of a − a′. If d(x) is the number of divisors of
x, then we have that the number of common neighbors is at most (d(a − a′))2. It
is well-known (e.g., it is a consequence of the prime number theorem.) that for any
δ > 0, that d(x) = o(xδ). Note that a − a′ ≤ n2, so for n large enough we can force
(d(a−a′))2 = o(n3ε) for all pairs a, a′. Thus, for n large enough, the number of common
neighbors of a pair of vertices is less than n3ε. So for any t = n3ε we have that G is
K2,t-free. By KST we get that

n ≤ e(G) ≤ (n3ε)1/2|A|3/2.

Solving for |A| gives the theorem.

We only have sharp (in the order of magnitude) constructions for some specific values of s and t. In general,
we have

Theorem 6. For naturals s ≥ t we have

ex(n,Ks,t) ≥
1

16
n2−

s+t−2
st−1 .

Proof. Build a graph randomly with edge probability

p =
1

2
n−

s+t−2
st−1 .

6: Finish the proof.

Solution: The expected number of edges is p
(
n
2

)
≥ 1

4pn
2. The expected number of

copies of Ks,t is at most (
n

s

)(
n

t

)
pst ≤ ns+tpst.

Let X be the random variable defined by the difference between the number of edges
and number of Ks,ts. By linearity of expectation we have that E(X) ≥ 1

4pn
2− ns+tpst.

By the definition of expectation, there exists an n-vertex graph such that X ≥ E(X).
This means that if we remove one edge from every Ks,t we are left with an n-vertex
graph G that is Ks,t-free and has

e(G) ≥ 1

4
pn2 − ns+tpst ≥ 1

8
pn2 =

1

16
n2− s+t−2

st−1 .

cbna Remixed from notes of Cory Palmer by Bernard Lidický
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