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Paths and Matchings

Theorem 1 (Erdős -Gallai1, 1959).

ex(n, Pk+1) ≤
n

k

(
k

2

)
=
k − 1

2
n.

Note we think of Pk as a path on k vertices.

1: Show that the bound given by Erdős-Gallai is sharp when k divides n, i.e., find a construction.

Solution: Consider the graph of n/k copies of Kk which clearly does not contain
Pk+1 and has the desired number of edges. Before proving the theorem we will need
an intermediate lemma that will be of interest later.

Lemma 2. If G is a connected n-vertex graph with minimum degree δ(G), then G contains a path on min{n, 2δ(G)+
1} vertices.

Proof. Let P be a path of maximum length in G with endpoints x and y. Clearly all neighbors of x and y are
inside of P (otherwise we get a longer path). If P contains all n vertices of G, then we are done, so we may
assume that there is a vertex z not on P but incident to some internal vertex of P (as G is connected).

Let S be the set of vertices immediately preceding the neighbors of x and let N(y) be the neighbors of y.

2: Use the pigeonhole principle to finish the proof.

Solution: Clearly these two sets are subsets of the vertices of P − y and each is of
size δ(G). Thus, by the pigeonhole principle, if |P − y| < 2δ(G) we get S ∩N(y) 6= ∅
which implies that P contains the following configuration (note that the right figure is
a special case of the left).

x y x y

In both cases we can form a longer path with z. Thus, |P − y| ≥ 2δ(G) and thus P
must contain at least 2δ(G) + 1 vertices.

Proof of Erdős-Gallai. 3: Use induction on n (vertex of small degree) and Lemma 2 to finish the proof.

Solution: Induction on n. For n ≤ k + 1, the theorem is trivial so let n > k + 1
and assume the theorem holds for smaller graphs. If G is not connected, then we can
apply induction to each component to get the theorem so we will assume that G is
connected. By Lemma 2 we may assume that G contains a vertex of degree less than
k
2 (otherwise we get a path on k + 1 vertices). However, if we remove this vertex and
apply induction to the remaining graph we get the theorem.

1The exact value of ex(n, Pk) for all values of n was found by Faudree and Schelp
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We can also consider the Turán number of graphs that are not connected. Hall’s theorem will be helpful.

4: State Hall’s theorem

Solution:

Theorem 3 (Hall’s marriage theorem, 1935). Let A and B be the classes of a bipartite
graph. There is a matching incident to each vertex of A if and only if for every S ⊂ A
we have |S| ≤ |N(S)|.

Theorem 4 (Erdős-Gallai2, 1959). Let k ·K2 be the graph of k independent edges, then

ex(n, k ·K2) = max

{(
k − 1

2

)
+ (k − 1)(n− k + 1),

(
2k − 1

2

)}
.

Proof (adapted from Brandt). We prove the upper bound by contrapositive, i.e., if an n-vertex graph G has
e(G) > ex(n, F ) then G contains k independent edges. We proceed by induction on k. Clearly if k = 1 the
theorem holds, so let k > 1 and assume the statement holds for smaller values.

First we consider the case when G has minimum degree k. Let A be a set of k vertices such that the number
of edges in A is minimal; let B be G−A. Consider the bipartite graph between A and B.

5: Use Hall’s theorem to show that there is a matching between A and B, which finishes the proof of the
theorem.

Solution: Suppose (to the contrary) that there is no matching incident to each vertex
of A, then by Hall’s theorem, there is a set X ⊂ A such that |X| > |N(X)|. Let x be
an arbitrary vertex of X. Clearly x has at most |N(X)| < |X| neighbors in B, thus x
has more than k − |X| neighbors in A (as the degree of x is at least k). However, if y
is an arbitrary vertex of B −N(X), then y is not adjacent to X and therefore has at
most k−|X| neighbors in A. Thus swapping x and y in A contradicts the construction
of A. Therefore, G contains a k-matching.

Now we may assume G contains a vertex v of degree at most k − 1. Let u be an arbitrary neighbor of v.

6: Consider the graph G− v − u and finish the proof by using induction.

Solution: Then

e(G−v−u) ≥ e(G)−(k−1)−(n−2) >

(
k − 1

2

)
+(k−1)(n−k+1)−(k−1)−(n−2).

With some calculation (two cases) we can show

e(G− v − u) > ex(n− 2, (k − 1) ·K2).

So by induction G−u− v contains a (k− 1) independent edges. Together with uv this
gives a k independent edges.

7: Find a construction that shows the Theorem is tight.

2Brandt showed that the upper-bound holds for any forest on k edges (without isolated edges)
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Solution:
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https://creativecommons.org/licenses/by-nc-sa/4.0/

