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Paths and Matchings
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1: Show that the bound given by Erdds-Gallai is sharp when k divides n, i.e., find a construction.

Theorem 1 (Erdds —Gallaﬂ 1959).

eX(na Pk+1) <
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Note we think of P as a path on k vertices.

Solution: Consider the graph of n/k copies of K} which clearly does not contain
Pr.1 and has the desired number of edges. Before proving the theorem we will need
an intermediate lemma that will be of interest later.

Lemma 2. If G is a connected n-vertex graph with minimum degree 6(G), then G contains a path on min{n, 26(G)+
1} vertices.

Proof. Let P be a path of maximum length in G with endpoints « and y. Clearly all neighbors of x and y are
inside of P (otherwise we get a longer path). If P contains all n vertices of G, then we are done, so we may
assume that there is a vertex z not on P but incident to some internal vertex of P (as G is connected).

Let S be the set of vertices immediately preceding the neighbors of x and let N(y) be the neighbors of y.

2: Use the pigeonhole principle to finish the proof.

Solution: Clearly these two sets are subsets of the vertices of P — y and each is of
size 0(G). Thus, by the pigeonhole principle, if |P — y| < 26(G) we get SN N(y) # 0
which implies that P contains the following configuration (note that the right figure is
a special case of the left).

X Y X Y

In both cases we can form a longer path with z. Thus, |P — y| > 20(G) and thus P
must contain at least 26(G) + 1 vertices.
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Proof of Erdds-Gallai. 3: Use induction on n (vertex of small degree) and Lemma [2 to finish the proof.

Solution: Induction on n. For n < k + 1, the theorem is trivial so let n > k + 1
and assume the theorem holds for smaller graphs. If G is not connected, then we can
apply induction to each component to get the theorem so we will assume that G is
connected. By Lemma [2] we may assume that G contains a vertex of degree less than
% (otherwise we get a path on k + 1 vertices). However, if we remove this vertex and
apply induction to the remaining graph we get the theorem.

O]

!The exact value of ex(n, Py) for all values of n was found by Faudree and Schelp
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We can also consider the Turdn number of graphs that are not connected. Hall’s theorem will be helpful.

4: State Hall’s theorem

Solution:

Theorem 3 (Hall’s marriage theorem, 1935). Let A and B be the classes of a bipartite
graph. There i1s a matching incident to each vertex of A if and only if for every S C A
we have |S| < |N(S)].

Theorem 4 (Erdés—Gallaﬂ, 1959). Let k - Ky be the graph of k independent edges, then

ex(n,k-Kg)zmax{<k;1) = 1)(n—k+1), (2’“2_1)}

Proof (adapted from Brandt). We prove the upper bound by contrapositive, i.e., if an n-vertex graph G has
e(G) > ex(n, F') then G contains k independent edges. We proceed by induction on k. Clearly if £ = 1 the
theorem holds, so let £ > 1 and assume the statement holds for smaller values.

First we consider the case when GG has minimum degree k. Let A be a set of k vertices such that the number
of edges in A is minimal; let B be G — A. Consider the bipartite graph between A and B.

5: Use Hall’s theorem to show that there is a matching between A and B, which finishes the proof of the
theorem.

Solution: Suppose (to the contrary) that there is no matching incident to each vertex
of A, then by Hall’s theorem, there is a set X C A such that | X| > |N(X)|. Let x be
an arbitrary vertex of X. Clearly x has at most |N(X)| < |X]| neighbors in B, thus z
has more than k& — | X| neighbors in A (as the degree of = is at least k). However, if y
is an arbitrary vertex of B — N(X), then y is not adjacent to X and therefore has at
most k — | X| neighbors in A. Thus swapping = and y in A contradicts the construction
of A. Therefore, G contains a k-matching.

Now we may assume G contains a vertex v of degree at most k — 1. Let u be an arbitrary neighbor of v.

6: Consider the graph G — v — u and finish the proof by using induction.
Solution: Then

k—1

e(G—v—u)>e(G)—(k—1)—(n—2) > < 5

)+(/€—1)(n—k—i—1)—(k—l)—(n—Z).

With some calculation (two cases) we can show
e(G—v—u)>ex(n—2,(k—1) Ky).

So by induction G — u — v contains a (k — 1) independent edges. Together with wv this
gives a k independent edges.

7: Find a construction that shows the Theorem is tight.

2Brandt showed that the upper-bound holds for any forest on k edges (without isolated edges)
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Solution:

E@®®O Remixed from notes of Cory Palmer by Bernard Lidicky


https://creativecommons.org/licenses/by-nc-sa/4.0/

