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Abstract

A graph drawn in a surface is a near-quadrangulation if the sum of the
lengths of the faces different from 4-faces is bounded by a fixed constant.
We leverage duality between colorings and flows to design an efficient algo-
rithm for 3-precoloring-extension in near-quadrangulations of orientable
surfaces. Furthermore, we use this duality to strengthen previously known
sufficient conditions for 3-colorability of triangle-free graphs drawn in ori-
entable surfaces.

1 Introduction

In general, it is NP-hard to decide whether a planar graph is 3-colorable [14];
however, a well-known theorem of Grötzsch [17] states that every planar triangle-
free graph is 3-colorable. This result motivated further exploration into sufficient
conditions for 3-colorability of planar graphs, see e.g. [3], as well as for more
general graph classes, such as graphs drawn on other surfaces.

A graph is (k + 1)-critical if it is not k-colorable, but all its proper sub-
graphs are k-colorable; hence, (k + 1)-critical graphs are exactly the minimal
forbidden subgraphs for k-colorability. Thus, Grötzsch’s theorem is equivalent
to the fact that there are no planar triangle-free 4-critical graphs. Gimbel and
Thomassen [15] extended this result by showing that a triangle-free graph drawn
in the projective plane is 4-critical if and only if it is a non-bipartite quadran-
gulation without separating 4-cycles.
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It turns out that near-quadrangulations play an important role in 3-colorability
of triangle-free graphs in any fixed surface. For reasons that will become clear
later (see Observation 20), it is convenient to use the following definition. For
an integer n, let q(n) be the number of integers i such that 3|i, i ≡ n (mod 2),
and |i| ≤ n, and let b(n) be the largest such integer i. Let H be a graph with
a 2-cell drawing in a surface and let F (H) denote the set of faces of H. For a
face f ∈ F (H), let |f | denote the length of the closed walk in H that bounds f .
We let

q⋆(H) =
∏

f∈F (H)

q(|f |) and

b⋆(H) = 1 +
∑

f∈F (H)

b(|f |).

Note that q(4) = 1 and b(4) = 0, and thus if H is a quadrangulation, then
q⋆(H) = b⋆(H) = 1. We say that H is an a-near-quadrangulation if b⋆(H) ≤ a.
Dvořák, Král’ and Thomas [8] proved the following key result.

Theorem 1 (Dvořák, Král’ and Thomas [8]). For every surface Σ of Euler
genus g, there exists a positive integer aΣ = O(g) such that every 4-critical
triangle-free graph H drawn in Σ satisfies at least one of the following conditions:

• The drawing of H is not 2-cell, or

• H contains a non-contractible 4-cycle, or

• H is an aΣ-near-quadrangulation.

Dvořák, Král’ and Thomas [7] also gave a linear-time algorithm to 3-color
near-quadrangulations and combined these results in a linear-time algorithm to
decide 3-colorability of triangle-free graphs drawn in any fixed surface [9].

The algorithm of [7] for 3-coloring near-quadrangulations is quite compli-
cated; it uses cutting and precoloring arguments to transform the input instance
into a generic one (where there are no short non-contractible cycles) at the cost
of introducing precolored vertices incident with pairwise distant faces and then
characterizes precoloring extension in such a generic instance by a topological
criterion. The downside of this approach is that it is quite non-explicit, and
the complexity and large multiplicative constants make it unusable in practice.
Hence, it is interesting to investigate alternative approaches.

To establish one of the basic cases (plane graph with vertices incident with
the outer faces precolored and with all other faces of length four), Dvořák,
Král’ and Thomas [7] used the duality with nowhere-zero flows. Dvořák and
Lidický [10, Lemma 4 and the remarks after it] explored this connection in more
detail and gave the following algorithm.

Theorem 2 (Dvořák and Lidický [10]). There exists an algorithm that, given
a simple n-vertex plane graph H, decides whether H is 3-colorable (and finds a
3-coloring if it exists) in time O(q⋆(H)b⋆(H)n). Moreover, this algorithm can
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also decide whether a precoloring of the vertices incident with the outer face of
H extends to a 3-coloring of H.

The algorithm is based on at most q⋆(H) invocations of a maximum flow
algorithm, and thus it is easy to implement in practice. In a similar vein, Dvořák
and Pekárek [12] considered plane graphs with two precolored faces, showing the
following result.

Theorem 3 (Dvořák and Pekárek [12]). There exists an algorithm that, given
a simple n-vertex plane graph H and a precoloring ψ of the vertices incident
with two faces of H, decides whether ψ extends to a 3-coloring of H (and finds
such a 3-coloring if it exists) in time O(q⋆(H)b⋆(H)n).

Dvořák and Pekárek [12] used their result to obtain a practical algorithm
for 3-coloring near-quadrangulations of the torus with bounded edgewidth, as
well as for deciding 3-colorability of triangle-free toroidal graphs.

Our main result is a far-reaching generalization of this approach:

• We consider graphs drawn in any orientable surface and do not put any
restriction on the edgewidth.

• We allow an arbitrary subset of the vertices to be precolored.

Theorem 4. Let Σ be an orientable surface of Euler genus g. There exists a
function γ and an algorithm that, given a simple n-vertex graph H with a 2-cell
drawing in Σ and a precoloring ψ of a subset S of its vertices, decides whether
ψ extends to a 3-coloring of H (and finds such a 3-coloring if it exists) in time

O

(
q⋆(H)b⋆(H)n+ q⋆(H) ·min

(
ng(n2 + |S|3),

γ(|S|)n2 polylog n

))
.

It is remarkable that in Theorem 4 we get a polynomial algorithm even if an
arbitrary number of vertices is precolored. In contrast, deciding 3-colorability
of bipartite graphs with only three precolored vertices is NP-complete, as shown
by Kratochv́ıl and Sebő [22], and deciding 3-colorability in planar triangle-free
graphs of maximum degree four with (unbounded number of) precolored vertices
was shown to be NP-complete by Monnot [23].

Compared to the algorithm of Dvořák, Král’ and Thomas [7], our algorithm
is much more practical (it is based on a simple combination of off-the-shelf
algorithms—maximum flow, shortest path, integer programming in bounded
dimension) and allows one to precolor an arbitrary number of vertices. On the
other hand, the time complexity of Dvořák et al. [7] algorithm is linear in the
number of vertices of the input graph.

Compared with Theorem 3, we offer a worse dependence on the number of
precolored vertices. However, the algorithm from Theorem 4 can be adjusted
so that its complexity does not depend on |S|, but only on the number of
components of H[S], thus bridging this gap. This is achieved by contracting the
edges between precolored vertices and adjusting the flow constraints according
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to the flow amount forced on the duals of these edges by the precoloring; see [12,
Observation 17] for a precise explanation of the idea, which can be easily adapted
to our setting.

A homomorphism from a graph H to a graph C is a function f : V (H) →
V (C) such that for every uv ∈ E(H), we have f(u)f(v) ∈ E(C). A 3-coloring of
H is equivalent to a homomorphism to C3. Theorem 4 can be generalized to ho-
momorphisms to odd cycles. A motivation to study such homomorphisms arises
from their relation to the circular chromatic number : The circular chromatic
number χc(H) of a graph H is the minimum length of a circle for which there
exists a mapping from V (H) to open arcs of length 1 in the circle such that the
arcs of adjacent vertices are disjoint. Circular chromatic number is a refinement
of the ordinary chromatic number [26], in the sense that χ(H) = ⌈χc(H)⌉ for
every graph H. And, for any positive integer k, a graph has circular chromatic
number at most 2 + 1/k if and only if it has a homomorphism to C2k+1.

For a cycle C of length m and an integer n, let qC(n) be the number of
integers i such that m|i, i ≡ n (mod 2), and |i| ≤ n, and let bC(n) be the
largest such integer i. For a graph H with a 2-cell drawing in a surface, let
q⋆C(H) =

∏
f∈F (H) qC(|f |) and b⋆C(H) = 1 +

∑
f∈F (H) bC(|f |).

Theorem 5. Let Σ be an orientable surface of Euler genus g and let C be an
odd cycle. There exists a function γ and an algorithm that, given a simple n-
vertex graph H with a 2-cell drawing in Σ and a function ψ : S → V (C) from a
subset S of its vertices, decides whether ψ extends to a homomorphism from H
to C (and finds such a homomorphism if it exists) in time

O

(
q⋆C(H)b⋆C(H)n+ q⋆C(H) ·min

(
ng(n2 + |S|3),

γ(|S|)n2 polylog n

))
.

Going back to the 3-coloring case, Hutchingson [19] proved that for each
orientable surface, all graphs drawn in this surface with no odd-length faces
and with sufficiently large edgewidth are 3-colorable (the edgewidth ew(H) of a
graph H drawn in a surface other than the sphere is the length of the shortest
non-contractible cycle in H). Dvořák, Král’ and Thomas [7] extended this claim
to all triangle-free graphs. Our argument gives a more general result with an
explicit bound on edgewidth. To state it, we need a few definitions. Let H be
a graph drawn in an orientable surface Σ and let U be a subgraph of H.

• We say U is flat if U does not contain any non-contractible cycle; or
equivalently, there exists a disk ∆ ⊆ Σ containing U . We call the unique
face of U not contained in ∆ the outer face and all other faces internal
faces.

• We say that U captures non-4-faces of H if every face of H of length other
than four is also a face of U .

• A graph U ′ drawn in the plane is a planar quadrangulation extension
of U if U ′ is obtained from U by quadrangulating its outer face. More
precisely, U ′ is a planar quadrangulation extension of U if there exists a
homeomorphism θ from ∆ to a disk ∆′ in the plane such that
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– θ maps U to a subgraph of U ′,

– θ maps internal faces of U to faces of U ′ contained in ∆′, and

– every face of U ′ that is not the image of a face of U under θ has
length four.

A graph H drawn in an orientable surface is locally 3-colorable if every flat
subgraph capturing non-4-faces of H has a 3-colorable planar quadrangulation
extension.

Theorem 6. Let H be a simple graph with a 2-cell drawing in an orientable
surface of Euler genus g > 0 with edgewidth at least b⋆(H) + Ω(g4/3). Then H
is 3-colorable if and only if it is locally 3-colorable.

If H is a triangle-free graph, then every flat subgraph of H has a triangle-
free planar quadrangulation extension, which is 3-colorable by Grötzsch’s the-
orem [17]. Hence, the condition of being locally 3-colorable is automatically
satisfied. In conjunction with Theorem 1, this gives the following corollary.

Corollary 7. Let H be a triangle-free graph drawn in an orientable surface of
Euler genus g > 0. If H has edgewidth Ω(g4/3), then G is 3-colorable.

Proof. Suppose for a contradiction that H is not 3-colorable. Without loss
of generality, we can assume that H is 4-critical. Moreover, we can assume
that the drawing of H is 2-cell, as otherwise we can cut the surface along a
non-contractible simple closed curve contained in one of the faces and cap the
resulting holes by disks, obtaining a drawing of H in an orientable surface of
smaller genus, without decreasing the edgewidth. We can also assume that the
edgewidth is at least five. By Theorem 1, this implies that b⋆(H) = O(g), and
Theorem 6 shows that H is 3-colorable.

Let us remark that the existence of a lower bound on edgewidth guaranteeing
3-colorability of a triangle-free graph in an orientable surface (together with an
analogous, slightly more complicated result for non-orientable surfaces) has been
proven in [7], without quantifying the dependence on the genus. For graphs on
the torus, a more detailed analysis gives the following explicit bound.

Corollary 8. Let H be a simple graph with a 2-cell drawing on the torus. If H
is triangle-free and has edgewidth at least 5 + b⋆(H), then H is 3-colorable.

For quadrangulations of the torus, we have b⋆(H) = 1, and Corollary 8 states
that if the edgewidth is at least 6, then H is 3-colorable. This bound cannot
be improved, as Archdeacon et al. [1] found a non-3-colorable quadrangulation
Q13 of the torus with edgewidth five, see Figure 1. Let us remark that Král’
and Thomas [21] proved that every non-3-colorable graph drawn of the torus
without odd faces contains Q13 as a subgraph.

More generally, the results of Dvořák and Pekárek [11] imply that if H is
a 4-critical triangle-free graph drawn on the torus, then b⋆(H) ≤ 13; conse-
quently, Corollary 8 implies that every triangle-free graph drawn on the torus
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Figure 1: Cayley graph C(Z13; 1, 5) and its drawing as a quadrangulation Q13

of the torus.

with edgewidth at least 18 is 3-colorable. Let us remark that an exact charac-
terization of 3-colorability of the triangle-free graphs drawn on the torus was ob-
tained using computer-assisted enumeration [13] and implies that every triangle-
free graph drawn on the torus with edgewidth at least 6 is 3-colorable.

Finally, for graphs without odd faces (and in particular for quadrangula-
tions), we can strengthen the bound from Corollary 7.

Theorem 9. For any orientable surface Σ of Euler genus g > 0, every graph H
with a 2-cell drawing in Σ of edgewidth Ω(g log g) such that all faces have even
length is 3-colorable.

The rest of the paper is organized as follows:

• In Section 2, we introduce the basic notions from the homology theory and
flow-coloring duality and reduce the coloring of near-quadrangulations to
the problem of finding circulations with prescribed homology. In Section 3
we give an algorithm for this problem.

• In Section 4, we show that realizable homologies form a polytope and
study its properties.

• In Section 5, we argue that finding a suitable realizable homology reduces
to finding an integer point in a related polytope and give an algorithm for a
special case arising when dealing with precolored vertices. Combining the
results obtained till this point, we give the algorithm proving Theorem 5.

• In Section 6, we state bounds on the width of polytopes with no integer
pointsand show how edgewidth of the graph lower bounds the width of
the polytopes relevant for its coloring. Using these bounds, we prove
Theorem 9.

• In Section 7, we relate local 3-colorability to existence of nowhere-zero
flows with boundary divisible by 3 and prove Theorem 6 and Corollary 8.

We finish in Section 8 by some concluding remarks.
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Figure 2: A graph G drawn in red drawn on the torus (obtained by gluing the
top edge of the picture with the bottom one, and the left edge with the right
one). The dual G⋆ is drawn in black.

2 Preliminaries

We aim to find a coloring of a graph H drawn in a surface by utilizing flows
in its dual graph G (the vertices of G are the faces of H, and each edge of H
contributes an edge to G joining the two incident faces). Let us remark that
even though H can be assumed without loss of generality to be a simple graph,
G may have parallel edges and loops. We will mostly focus on the properties of
G, and when needed, we will use G⋆ to refer to H.

We provide a number of figures to illustrate the concepts and results. All
figures should be interpreted as depicting a graph drawn on the torus obtained
by identifying the opposite sides of the rectangle. We drawn the graph G in red
and the graph G⋆ in black. For example, Figure 2 depicts a graph G with 10
vertices and with a double edge between vertices v6 and v9, and its dual graph
G⋆ (which is simple and also has 10 vertices). When we are asked to select faces
in G, we will often depict the corresponding vertices in G⋆ instead to avoid
cluttering the picture.

Graphs on surfaces

Let G be a connected graph. A drawing η of G in a surface Σ maps vertices
of G to pairwise distinct points of Σ, each non-loop edge e = uv ∈ E(G) to a
simple curve in Σ with ends η(u) and η(v), and each loop e = vv ∈ E(G) to a
non-trivial simple closed curve containing η(v), such that for each e, e′ ∈ E(G),
the intersection of the curves η(e) and η(e′) consists only of the points η(v) for
vertices v ∈ V (G) incident with both e and e′. The faces of the drawing are
the maximal connected subsets of Σ \⋃e∈E(G) η(e); let F (G) denote the set of

7



u v = tgt(h)

opp(h) h

left(h)

Figure 3: Illustration of a half-edge h, tgt(h), opp(h), and left(h).

faces of G. The drawing is 2-cell if each face is homeomorphic to an open disk.
We only consider 2-cell drawings, since if a connected graph has a non-2-cell
drawing in a surface Σ, it also has a drawing in a surface of smaller genus.
In particular, any drawing of a connected graph in the sphere is 2-cell. We
also restrict ourselves to orientable surfaces (we briefly discuss non-orientable
surfaces in Section 8).

We view each edge of the graph as consisting of two oppositely directed half-
edges, see Figure 3 for illustration. For a half-edge h, let tgt(h) denote the vertex
of G towards which h is directed, let opp(h) denote the opposite half-edge, and
let left(h) denote the face of G drawn to the left of h. Let hes(G) denote the set
of half-edges of G. It will be often convenient to select just one half-edge from
each pair arbitrarily; let h⃗es(G) denote a subset of hes(G) containing exactly
one half-edge from each pair of oppositely directed half-edges.

It would be needlessly complicated for algorithms to operate on drawings
as defined at the beginning of the section (we would need to come up with a
discrete way to describe the curves). For the purposes of our algorithm, a graph
G with a 2-cell drawing is represented by giving

• the set V (G) of vertices of G, the set hes(G) of half-edges of G, and the set
F (G) of faces of G, where the faces are taken as abstract elements rather
than subsets of the surface, and

• the functions opp : hes(G) → hes(G), tgt : hes(G) → V (G), and left :
hes(G) → F (G).

We also occassionally refer to the set E(G) of edges of G, which can be viewed
as pairs {h, opp(h)} for h ∈ hes(G). Let us remark that information contained
in this representation determines the drawing of G up to homeomorphisms of
Σ. The size of G is defined as |V (G)|+ |F (G)|+ |E(G)|. Note that a graph and
its dual have the same size, and generalized Euler’s formula implies that if G is
drawn in a surface of Euler genus g and G⋆ is a simple graph with n vertices,
then the size of G is O(n+ g).

Homology

We are going to need some simple definitions from the homology theory.
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• A 0-chain is a formal sum of vertices of G with integer coefficients; 0-
chains form a free abelian group C0(G). For a 0-chain b and a vertex v,
let b[v] denote the coefficient at v, and let |b| =∑v∈V (G) |b[v]|.

• A 1-chain is a formal sum K =
∑

h∈h⃗es(G) ch · h with integer coefficients,

i.e., 1-chains form a free abelian group C1(G) generated by h⃗es(G). For

a half-edge h, let us define K[h] = ch if h ∈ h⃗es(G) and K[h] = −copp(h)
otherwise. Note that

K[opp(h)] = −K[h]. (1)

We view each half-edge h ∈ hes(G) \ h⃗es(G) as the 1-chain −opp(h). For
example, a directed walk W traversing half-edges h1, . . . , hm corresponds
to the 1-chain K = h1 + · · · + hm, and for each half-edge h, K[h] is the
number of times W traverses h minus the number of times it traverses
opp(h). Let us also define |K| =∑h∈h⃗es(G) |K[h]|.

• A 2-chain is a formal sum of faces of G with integer coefficients. Let
C2(G) be the free abelian group of 2-chains. For a 2-chain A and a face
x, let A[x] denote the coefficient of x in A.

Let us now define boundary operators:

• For a face x ∈ F (G), let

∂2x =
∑

h∈hes(G):left(h)=x

h.

That is, the boundary of x consists of the incident half-edges that are
directed counter-clockwise around x, see Figure 4(a) for an example. Let
us extend ∂2 to 2-chains linearly.

• To each half-edge h, we assign a 0-chain ∂1h = tgt(h)− tgt(opp(h)), and
we extend the mapping ∂1 to all 1-chains linearly. For example, if W is
the 1-chain corresponding to a walk starting in a vertex u and ending in
a vertex v, then ∂1W = v − u.

• For each 0-chain b =
∑

v∈V (G) bv · v, we define ∂0b =
∑

v∈V (G) bv.

Now, for i ∈ {0, 1},

• an i-boundary is an i-chain belonging to the subgroup Bi(G) = {∂i+1a :
a ∈ Ci+1(G)} of Ci(G), and

• an i-cycle is an i-chain belonging to the subgroup Zi(G) = {K ∈ Ci(G) :
∂iK = 0}. For example, if W is the 1-chain corresponding to a closed
walk, then W is a 1-cycle.

Note that
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• every i-boundary is an i-cycle, and thus Bi(G) is a subgroup of Zi(G);

• since G is connected, every 0-cycle is a 0-boundary, and thus B0(G) =
Z0(G); and

• for any contractible cycle C inG, the corresponding 1-chain is a 1-boundary,
since it can be expressed as the sum of ∂2x over the faces x drawn in the
open disk bounded by C.

The (first) homology group H1(G) is defined as the quotient Z1(G)/B1(G).
For example, suppose that W1 and W2 are closed walks and W2 is freely homo-
topic toW1. ThenW2 can be obtained fromW1 by a sequence of the operations
of adding a walk around a face and removing the subwalks consisting of taking
an edge in one direction and immediately coming back over it. Hence, for the
corresponding 1-chains, W2 = W1 + Q for some 1-boundary Q, and thus W1

and W2 correspond to the same element of H1(G).
Let us also define the dual (cohomology) operators:

• For a vertex v, let ∂⋆2v =
∑

h∈hes(G):tgt(h)=v h and let us extend ∂⋆2 to

0-chains linearly, see Figure 4(a) for an example.

• For a half-edge h, let ∂⋆1h = left(h)− left(opp(h)) and let us extend ∂⋆1 to
all 1-chains linearly.

• For a 2-chain d =
∑

x∈F (G) dx · x, let ∂⋆0d =
∑

x∈F (G) dx.

And,

• a coboundary is a 1-chain belonging to the subgroup B⋆(G) = {∂⋆2a : a ∈
C0(G)} of C1(G),

• a cocycle is a 1-chain belonging to the subgroup Z⋆(G) = {K ∈ C1(G) :
∂⋆1K = 0}, and

• the cohomology group H⋆(G) = Z⋆(G)/B⋆(G).

Note that coboundaries correspond to edge cuts in G, similarly to the way 1-
boundaries correspond to separating cycles. The dual graph G⋆ to G is a graph
with vertex set F (G) and with each edge e of G corresponding to an edge e⋆ of
G⋆ joining the faces incident with e. Note that rather than defining the dual
boundary operators, we could work with chains in the dual graph; however,
having both primal and dual boundary operators act on the same sets simplifies
the notation. For two faces x and y of G, a copath from x to y is a 1-chain P
with ∂⋆1P = y − x, see Figure 4(b) for an illustration. Let us remark that a
cocycle is a copath from any face to itself.

For a 1-chain f in G and h ∈ hes(G), define τf (h) = f [h], and let us extend
the function τf to all 1-chains K in G linearly. The following observation based
on (1) will be helpful in future calculations.
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Figure 4: (a) Example of ∂2x and ∂⋆2v in a graph G (red) for a face x and a
vertex v of G. (b) A path from face x to face y in the dual (blue) and the
corresponding copath in G (orange).

Observation 10. Let G be a graph with a 2-cell drawing in an orientable surface
and let f and K be 1-chains in G. Then

τf (K) =
∑

h∈h⃗es(G)

f [h]K[h] =
∑

h∈hes(G):K[h]>0

f [h]K[h].

In a typical application, we view f as a flow with excess (∂1f)[v] at each
vertex v (see the next section for details) and K as a cocycle. In this case, τf (K)
gives the amount of flow f sends over K. In particular, as one would expect,
the following relation holds in the case that K consists of half-edges entering a
vertex.

Observation 11. Let G be a graph with a 2-cell drawing in an orientable sur-
face, let f be a 1-chain in G, let v be a vertex of G, and let K = ∂⋆2v. Then

τf (K) = (∂1f)[v].

Moreover, if f is a 1-cycle, then τf (R) = 0 for every coboundary R.

Proof. Since K = ∂⋆2v =
∑

h∈hes(G):tgt(h)=v h, we have

τf (K) =
∑

h∈hes(G):tgt(h)=v

τf (h) =
∑

h∈hes(G):tgt(h)=v

f [h]

=
∑

h∈h⃗es(G)

f [h] · (∂1h)[v] = (∂1f)[v].

If f is a 1-cycle, i.e., ∂1f = 0, then this implies τf (∂
⋆
2v) = 0 for each vertex v,

and we can extend this claim linearly to all coboundaries.
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Let us note the dual form of this observation.

Observation 12. Let G be a graph with a 2-cell drawing in an orientable sur-
face, let x be a face of G, let K be a 1-chain in G, and let f = ∂2x. Then

τf (K) = (∂⋆1K)[x].

Moreover, if K is a cocycle, then τb(K) = 0 for every 1-boundary b.

Let us also note the following well-known fact, describing how to obtain a
basis of the first homology group of a graph drawn in an orientable surface.

Observation 13. Let G be a graph with a 2-cell drawing in an orientable surface
Σ of Euler genus g. Both the homology group and the cohomology group of G
are isomorphic to Zg. Moreover, there is an algorithm that in time linear in the
size of G returns their bases M = {fe : e ∈ Y } and Q = {Ke : e ∈ Y } indexed
by a set Y of size g, such that for e, e′ ∈ Y , we have

τfe(Ke′) =

{
1 if e = e′

0 otherwise.
(2)

Proof outline. The bases can be obtained as follows (see Figure 5 for an illus-
tration): Let T be a spanning tree of G and let X = {e⋆ : e ∈ E(T )}. Observe
that G⋆−X is connected, let T ′ be a spanning tree of G⋆−X, and let S be the
subgraph of G with V (S) = V (G) and E(S) = {e : e⋆ ∈ E(T ′)}. Observe that
the set Y = E(G) \ (E(T ) ∪ E(S)) has size g. For each e ∈ Y , choose one of
the half-edges he forming e, let fe be the unique 1-cycle in C1(T + e) such that
fe[he] = 1 and let Ke be the unique cocycle in C1(S + e) such that Ke[he] = 1.
Then M = {fe : e ∈ Y } is a basis of H1(G) and Q = {Ke : e ∈ Y } is a basis of
H⋆(G) satisfying (2).

Corollary 14. Let G be a graph with a 2-cell drawing in an orientable surface.
A 1-cycle f is a 1-boundary if and only if τf (K) = 0 for every K ∈ H⋆(G).

Proof. By Observation 12, τf (K) = 0 for every 1-boundary f and cocycle K.
Conversely, suppose that τf (K) = 0 for every K ∈ H⋆(G). Let Y , M = {fe :
e ∈ Y } and Q = {Ke : e ∈ Y } be as in Observation 13. Since f is a 1-cycle and
M is a basis of H1(G), we have f = b+

∑
e∈Y αefe for some 1-boundary b and

integers αe for e ∈ Y . For each e′ ∈ Y , linearity and (2) give

0 = τf (Ke′) = τb(Ke′) +
∑
e∈Y

αeτfe(Ke′) = αe′ ,

and thus f = b is a 1-boundary.
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e1

e1

e2e2

T T ′ Y = {e1, e2}
(a)

e1

e1

e2e2

Ke2

Ke1

(b)

e1

e1

e2e2

Ke2

Ke1

(c)

fe1

fe1

(d)

fe2fe2

(e)

Figure 5: Example of obtaining a basis of the first homology group as described
in Observation 13. (a) Depicts a spanning tree T of G (blue), a spanning tree
T ′ of G⋆ −X (orange), and the set Y = {e1, e2} (green), (b) depicts cycles in
T ′ + e⋆1 (orange) and T ′ + e⋆2 (blue), (c) depicts the corresponding cocycles Ke1

and Ke2 forming the basis of H⋆(G), (d) and (e) depict the cycles fe1 and fe2
in T + e1 and T + e2 forming the basis of H1(G).
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Figure 6: A homomorphism of G⋆ to a triangle and the corresponding nowhere-
zero flow f in G.

Flow-coloring duality

We say that a 1-chain f is a flow if f [h] ∈ {−1, 0, 1} for each h ∈ hes(G)—we
view f as sending the amount f [h] in the direction of h. Note that for each
v ∈ V (G), (∂1f)[v] is the excess of the flow f in v; we consider flows with
sources and sinks, and thus, in general, we do not require that ∂1f = 0. We say
that a flow f is nowhere-zero if f [h] ̸= 0 for each h ∈ hes(G). We say that a
0-chain d is divisible by k if k|d[v] for each v ∈ V (G).

The duality between flows and colorings was discovered by Tutte [25], and
the version for homomorphisms to cycles by Goddyn et al. [16]. We include the
proof to account for the differences in terminology. We define the vertex set
of a cycle C of length m to be {0, . . . ,m − 1}, with each vertex v adjacent to
v − 1 and v + 1 (mod m). Figure 6 gives an example of a homomorphism to a
triangle and the corresponding nowhere-zero flow in the dual graph.

Lemma 15. Let G be a graph with a 2-cell drawing in an orientable surface,
let S be a non-empty subset of F (G), let C be a cycle of length m, and let
ψ : S → V (C) be an arbitrary function. Let x be an arbitrary element of S and
for each y ∈ S \ {x}, let Py be a copath from x to y. Let Q be a basis of H⋆(G).
Then the following claims are equivalent:

(i) ψ extends to a homomorphism from G⋆ to C.

(ii) There exists a nowhere-zero flow f such that

– ∂1f is divisible by m,

– τf (K) is divisible by m for every K ∈ Q, and

– for each y ∈ S \ {x}, we have τf (Py) ≡ ψ(y)− ψ(x) (mod m).

14



Proof. Suppose φ : F (G) → V (C) is a homomorphism from G⋆ extending ψ,
and let us extend φ to 2-chains in G linearly. Let f be the nowhere-zero flow in
G such that for each h ∈ hes(G), f [h] is the unique element of {−1, 1} satisfying

f [h] ≡ φ(∂⋆1h) = φ(left(h))− φ(left(opp(h))) (mod m);

such an element exists since φ is a homomorphism to C. For any 1-chain K we
have

τf (K) =
∑

h∈h⃗es(G)

K[h]f [h] ≡
∑

h∈h⃗es(G)

K[h]φ(∂⋆1h) = φ(∂⋆1K) (mod m)

by linearity. In particular, if K is a cocycle, i.e., ∂⋆1K = 0, then τf (K) ≡ 0
(mod m). Therefore,

• τf (K) ≡ 0 (mod m) for every K ∈ Q, and

• by Observation 11, for every vertex v ∈ V (G) we have

(∂1f)[v] = τf (∂
⋆
2v) ≡ 0 (mod m),

and thus ∂1f is divisible by m.

Finally, for each y ∈ S \ {x}, we have

τf (Py) ≡ φ(∂⋆1Py) = φ(y − x)

= φ(y)− φ(x) = ψ(y)− ψ(x) (mod m).

Hence, (i) implies (ii).
Conversely, suppose that f is a nowhere-zero flow satisfying the conditions

listed in (ii). Let Q′ = {∂⋆2v : v ∈ V (G)}. By the assumptions and Observa-
tion 11, we have m|τf (K0) for each K0 ∈ Q ∪ Q′. Since Q generates H⋆(G)
and Q′ generates B⋆(G), Q ∪ Q′ generates Z⋆(G), and thus m|τf (K) for each
cocycle K. For each y ∈ F (G) \ (S \ {x}), let Py be an arbitrary copath from
x to y. For each y ∈ F (G), we define

φ(y) = (ψ(x) + τf (Py)) mod m.

We claim that φ is a homomorphism from G⋆ to C extending ψ. Indeed, suppose
that y, y′ ∈ F (G) are adjacent vertices of G⋆, and let h be a half-edge of G with
left(h) = y and left(opp(h)) = y′. Then

∂⋆1(Py − h− Py′) = (y − x)− (y − y′)− (y′ − x) = 0,

and thus Py − h− Py′ is a cocycle and m|τf (Py − h− Py′). Hence,

φ(y)− φ(y′) ≡ τf (Py)− τf (Py′)

= τf (h) + τf (Py − h− Py′)

≡ f [h] = ±1 (mod m),

15



since f is nowhere-zero. It follows that φ is a homomorphism from G⋆ to C.
Moreover, for any y ∈ S, we have

φ(y) ≡ ψ(x) + τf (Py) ≡ ψ(y) (mod m),

if y ̸= x by the assumptions and if y = x since Px is a cocycle. Therefore
φ(y) = ψ(y) for each y ∈ S, and thus (ii) implies (i).

For 1-chains K and K ′, we write K ⪯ K ′ if 0 ≤ K[h] ≤ K ′[h] for every
half-edge h such that K ′[h] ≥ 0. For a 1-chain f in G, an f -circulation is a
1-cycle c ⪯ f in G; in particular, c can only send flow in the same direction as f
does. Circulations can be used to translate between any two nowhere-zero flows
with the same boundary.

Observation 16. Suppose f0 is a nowhere-zero flow in a graph G and let
d = ∂1f0.

• If c is an f0-circulation, then f0−2c is a nowhere-zero flow in G satisfying
∂1(f0 − 2c) = d.

• If f is a nowhere-zero flow in G satisfying ∂1f = d, then (f0 − f)/2 is an
f0-circulation.

Corollary 17. Let G be a graph, let d be a 0-boundary, and let f0 be a nowhere-
zero flow in G such that ∂1f0 = d. Let Q be a system of pairs (K, a), where K
is a 1-chain and a is an integer. The following claims are equivalent:

• There exists a nowhere-zero flow f in G such that ∂1f = d and τf (K) = a
for each (K, a) ∈ Q.

• There exists an f0-circulation c such that τc(K) = 1
2 (τf0(K)− a) for each

(K, a) ∈ Q.

Note that for a fixed 0-boundary d, Corollary 17 splits the verification of the
condition (ii) of Lemma 15 to two independent steps.

(A) Deciding whether there exists a nowhere-zero flow f0 in G with ∂1f0 = d.

(B) Deciding whether there exists an f0-circulation c with the prescribed val-
ues of τc over fixed copaths and cocycles (modulo m).

The first part (A) is easily achieved using any efficient maximum flow al-
gorithm in polynomial time, as shown in the following lemmas. We say that a
0-boundary d in a graph G is parity-compliant if for each v ∈ V (G), d[v] and
the degree of v in G have the same parity.

Lemma 18. Let G be a graph and let d be a 0-boundary. The following claims
are equivalent.

(i) There exists a nowhere-zero flow f0 in G with ∂1f0 = d.

16



(ii) The 0-boundary d is parity-compliant and there exists a flow f1 in G with
∂1f1 = d.

Moreover, given f1 as in (ii), a nowhere-zero flow f0 with ∂1f0 = d can be found
in linear time.

Proof. Suppose f0 exists; since |f0[h]| = 1 for each half-edge h, d[v] = (∂1f0)[v] =
τf0(∂

⋆
2v) has the same parity as the degree of v for each v ∈ V (G). Hence, d is

parity-compliant, and we can set f1 = f0.
Conversely, suppose that (ii) holds. Consider the undirected graph T with

vertex set V (G) and the edge set consisting of the edges e ∈ E(G) such that
f1[h] = 0 for either (or equivalently, both) of the half-edges h of e. Since
d = ∂1f1 is parity-compliant, every vertex has even degree in T , and thus in
every component of T , there exists a closed walk passing through every edge
of the component exactly once. For each such walk, choose a direction, and
let f ′1 ∈ C1(G) be the sum of the half-edges of T whose direction matches the
direction selected for the walk that contains it. Then f ′1 is a flow in G and
∂1f

′
1 = 0, and for each half-edge h, exactly one of |f1[h]| and |f ′1[h]| is one and

the other one is zero. Consequently, f0 = f1 + f ′1 is a nowhere-zero flow in G
and ∂1f0 = ∂1f1 = d. Moreover, the flow f ′1 can be found in linear time using
the standard algorithm to find Eulerian tours.

Hence, (A) reduces to finding any flow with the given parity-compliant
boundary d. As is well known, this can be restated in terms of finding a flow in
a corresponding network (directed graph with edges of bounded capacities and
with two vertices designated as a source and a sink).

Lemma 19. Let G be a graph and let d be a 0-boundary. Let H be the network
obtained as follows: Start with G and replace each edge by a pair of oppositely
directed edges with capacity 1. Add a vertex s and for each v ∈ V (G) such that
d[v] < 0, add an edge from s to v of capacity |d[v]|; and add a vertex t and for
each v ∈ V (G) such that d[v] > 0, add an edge from v to t of capacity d[v].
There exists a flow f1 in G with ∂1f1 = d if and only if the network H contains
a flow of size |d|/2 from s to t.

Proof. Note that f1 can be turned into a flow in H of size |d|/2 by setting the
flow over each edge between v ∈ V (G) and s or t to |d[v]|.

Conversely, since H has integer capacities, we can assume that H contains
a network flow g of size |d|/2 from s to t with integer values. Since g has size
|d|/2, the flow over each edge between v ∈ V (G) and s or t is equal to |d[v]|.
Hence, interpreting the half-edges of G as the directed edges of H − {s, t} in
the natural way and defining f1 =

∑
h∈h⃗es(G)(g(h)− g(opp(h)) · h, we conclude

that f is a flow satisfying ∂1f1 = d.

Finally, let us note a bound on the number of possible boundaries that we
are going to need to test. We say that a 0-boundary d in a graph G is relevant
if d is parity-compliant and |d[v]| is at most the degree of v for each v ∈ V (G).
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Observation 20. Let G be a graph drawn in an orientable surface and let
H = G⋆ be its dual. For any nowhere-zero flow f in G, the 0-boundary ∂1f
is relevant. Moreover, if C is a cycle, then there are at most q⋆C(H) relevant
0-boundaries in G divisible by |C|, and each such 0-boundary d satisfies |d|+1 ≤
b⋆C(H).

To solve the second part (B), we use the algorithms that we describe in the
next section.

3 Circulations with prescribed homology

For 1-chains f and K, we define

τ+f (K) =
∑

h∈hes(G):f [h],K[h]>0

f [h]K[h].

Intuitively, if K is a cocycle, then τ+f (K) is an upper bound on the amount of
flow that can be sent over K by any flow f ′ such that f ′ ⪯ f . Let us remark
on the following basic properties of this notion.

Observation 21. For any 1-chains f and K, we have

τ+f (K) = τ+−f (−K)

and
τf (K) = τ+f (K)− τ+−f (K),

and if f is a nowhere-zero flow, then

|K| = τ+f (K) + τ+−f (K).

Proof. The first claim holds since for every h ∈ hes(G), we have (−f)[opp(h)] =
f [h], (−K)[opp(h)] = K[h], and opp is an involution. The second claim holds
since

τf (K) =
∑

h∈hes(G):K[h]>0

f [h]K[h]

=
∑

h∈hes(G):K[h]>0

(max(f [h], 0)−max(−f [h], 0))K[h] = τ+f (K)− τ+−f (K).

For the last claim, we assume that f is a nowhere-zero flow, i.e., |f [h]| = 1 for
every half-edge h. Consequently,

|K| =
∑

h∈hes(G):K[h]>0

K[h]

=
∑

h∈hes(G):K[h]>0

(max(f [h], 0) + max(−f [h], 0))K[h] = τ+f (K) + τ+−f (K).
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x

y1

y2

Figure 7: Example for Lemma 23 with S = {x, y1, y2}, a′(x) = 0, a′(y1) = 1,
a′(y2) = 1, a(Ke1) = 0, a(Ke2) = 2; see Figure 5 for the choice of the bases.
Copaths Py1

and Py2
are depicted in G⋆ as blue. The desired 1-cycle b is orange,

and it is obtained as b = 2fe2 + 3∂2y1 + ∂2y2. One edge of b has coefficient 3,
the others are with coefficient 1.

For a 1-chain K in a graph G, let τ+f (K + B⋆(G)) denote the minimum of

τ+f (K + R) over all coboundaries R. The motivation for this definition is the
following necessary condition on f -circulations.

Lemma 22. Let f and K be 1-chains in a graph G. For every f -circulation c,

τc(K) ≤ τ+f (K +B⋆(G)).

Proof. Let R be a coboundary such that letting K ′ = K +R, we have τ+f (K +

B⋆(G)) = τ+f (K ′). By Observation 11 we have τc(R) = 0. Since c is an f -
circulation, we have

τc(K) = τc(K
′)− τc(R) = τc(K

′)

=
∑

h∈hes(G):c[h]>0

c[h]K ′[h] ≤
∑

h∈hes(G):c[h],K′[h]>0

c[h]K ′[h]

≤
∑

h∈hes(G):f [h],K′[h]>0

f [h]K ′[h] = τ+f (K ′) = τ+f (K +B⋆(G)).

In (B), we ask for an f0-circulation c with the prescribed values of τc over
fixed copaths and cocycles. We start by showing that there at least always
exists a 1-cycle b with the prescribed values of τb over the relevant copaths and
cocycles. This is a straightforward consequence of the orthogonality of the bases
of H1(G) and H

⋆(G).
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Lemma 23. Let G be a graph of size n with a 2-cell drawing in an orientable
surface of Euler genus g. Let a : H⋆(G) → Z be a homomorphism. Let S
be a non-empty subset of F (G), let x be an element of S, for each y ∈ S let
Py be a copath from x to y, and let a′ : S → Z be an arbitrary function such
that a′(x) = 0. Then there exists a 1-cycle b such that τb(K) = a(K) for each
K ∈ H⋆(G) and τb(Py) = a′(y) for each y ∈ S. Moreover, b can be constructed
in time O((g + 1)|S|n).
Proof. Let Y , M = {fe : e ∈ Y } and Q = {Ke : e ∈ Y } be as in Observation 13.
The 1-cycle b is obtained from a linear combination of the elements of the basis
M chosen so that τb(Ke) = a(Ke) for each e ∈ Y , and thus also τb(K) = a(K)
for each K ∈ H⋆(G). To ensure that τb(Py) = a′(y) for each y ∈ S, we add a
suitable multiple of ∂2y to b; by Observation 12, this does not affect the values
of τb(K) for K ∈ H⋆(G). See Figure 7 for an example.

More precisely, for each y ∈ S \ {x}, let γy ∈ Z be

γy = a′(y)−
∑
e∈Y

a(Ke)τfe(Py). (3)

Let 1-cycle b be

b =
∑
e∈Y

a(Ke)fe +
∑

y∈S\{x}
γy∂2y. (4)

Consider any cocycle K ∈ H⋆(G), where K =
∑

e∈Y αeKe for some integers αe.
Note that for y ∈ F (G), we have τ∂2y(K) = 0 by Observation 12, and by (2), it
follows that

τb(K) =
∑
e∈Y

a(Ke)
∑
e′∈Y

αe′τfe(Ke′) =
∑
e∈Y

a(Ke)αe

= a

(∑
e∈Y

αeKe

)
= a(K),

since a is a homomorphism. Moreover, for each y ∈ S\{x} and a face y′ ̸∈ {x, y},
we have τ∂2y′(Py) = (∂⋆1Py)[y

′] = 0, and τ∂2y(Py) = (∂⋆1Py)[y] = 1, implying
that

τb(Py) =

(∑
e∈Y

a(Ke)τfe(Py)

)
+ γy = a′(y)

by the choice of γy.
Calculating γy in (3) takes time O(1+gn). Calculating b from (4) then takes

time O(gn+ |S|((gn+ 1) + n)) = O((g + 1)|S|n).

Let us remark that for the purposes of the algorithm mentioned in the state-
ment of Lemma 23, the homomorphism a should be given by its values on the
basis Q of H⋆(G) obtained using Observation 13. This is of course not a sub-
stantial restriction, as if it were given in any other basis, we could just transform
it; and additionally, in all the uses a is in fact represented in this way.
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Figure 8: Notation in Theorem 24.

The proof of the following theorem, which is the cornerstone of our approach,
is inspired by Chambers et al. [4, 5]. A 1-chain K is simple if |K[h]| ≤ 1 for
every half-edge h.

Theorem 24. Let G be a graph of size n with a 2-cell drawing in an orientable
surface of Euler genus g. Let a : H⋆(G) → Z be a homomorphism. Let S be
a non-empty subset of F (G), let x be an element of S, for each y ∈ S let Py

be a copath from x to y, and let a′ : S → Z be an arbitrary function such that
a′(x) = 0. Let f be a 1-chain in G. The following claims are equivalent:

(i) There exists an f -circulation c such that τc(K) = a(K) for each K ∈
H⋆(G) and τc(Py) = a′(y) for each y ∈ S.

(ii) For each y, y′ ∈ S and K ∈ H⋆(G),

a(K) + a′(y′)− a′(y) ≤ τ+f (K + Py′ − Py +B⋆(G)).

(iii) For each y, y′ ∈ S, K ∈ H⋆(G) and a coboundary R, if the copath D =
K + Py′ − Py +R is simple, then

a(K) + a′(y′)− a′(y) ≤ τ+f (D).

Moreover, there is an algorithm that in time O(n2+(g+1)|S|n) either finds an
f -circulation c as described in (i), or a simple copath D = K + Py′ − Py + R
for some y, y′ ∈ S, a coboundary R and cocycle K ∈ H⋆(G) such that a(K) +
a′(y′)− a′(y) > τ+f (D).

Proof. By Lemma 22, (i) implies (ii), since τc(K + Py′ − Py) = a(K) + a′(y′)−
a′(y). Moreover, (ii) clearly implies (iii), since τ+f (D) ≥ τ+f (K + Py′ − Py +
B⋆(G)). Hence, it remains to show that (iii) implies (i). We do so by describing
an algorithm that either produces an f -circulation satisfying (i), or a simple
copath D showing that (iii) is false.

By Lemma 23, there always exists a 1-cycle b satisfying τb(K) = a(K) for
each K ∈ H⋆(G) and τb(Py) = a′(y) for each y ∈ S; however, b is not necessarily
an f -circulation. To obtain an f -circulation c, we modify b by adding ∂2L for a
suitably chosen 2-chain L such that L[y] = 0 for every y ∈ S; by Observation 12,
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e1

L[y1] = −1

f [e1] = 1

b[e1] = 2

c[e1] = 1

−1

2

e2

L[y2] = 1

f [e2] = 4

b[e2] = 2

c[e2] = 4

2

2

e3

L[y3] = 4

f [e3] = 1

b[e3] = −2

c[e3] = 1

3

−2

e4

L[y4] = 1

f [e4] = −2

b[e4] = 3

c[e4] = 0

−3

5

L[y0] = 0

Figure 9: Situation from Theorem 24. It depicts 5 faces y0, . . . , y4, where y0 ∈ S
and ei is an edge such that left(ei) = yi and left(opp(ei)) = yi−1, and the values
of f , b, c for each of the corresponding half-edges. The black edges crossing ei
are edges of the dual and the lengths ℓ of these edges as in (5) are shown. The
value of L[yi] is depicted in each face and the directed arc shows the direction
of ∂2yi.

this ensures that τc(P ) = τb(P ) for every P ∈ H⋆(G) ∪ {Py : y ∈ S}. The 2-
chain L is chosen so that for every y ∈ F (G), L[y] is the distance from S to y
in a directed graph derived from the dual of G, where the lengths of edges are
carefully chosen to ensure that 0 ≤ (b+∂2L)[h] ≤ f [h] for each h ∈ hes(G) such
that f [h] ≥ 0. Let us now work out the details of this idea.

Let us view the dual G⋆ of G as a symmetrically oriented graph, and let ℓ
be a function assigning lengths to its directed edges as follows: For any edge
e = (y′, y) ∈ E(G⋆), let he be the half-edge of G dual to e such that left(he) = y,
see Figure 8(a). Let

ℓ(e) =

{
f [he]− b[he] if f [he] > 0

−b[he] if f [he] ≤ 0.
(5)

Let us remark that ℓ is (in general) neither symmetric nor antisymmetric, see
Figure 9.

Let us first consider the case that G⋆ with this assignment of lengths contains
a directed cycle C of negative length, and thus ℓ cannot be used to define a
metric. Let D =

∑
e∈E(C) he and note that D is a simple cocycle. We have

τ+f (D)− τb(D) =
∑

e∈E(C):f [he]>0

f [he]−
∑

e∈E(C)

b[he]

=
∑

e∈E(C):f [he]>0

(f [he]− b[he]) +
∑

e∈E(C):f [he]≤0

(−b[he])

=
∑

e∈E(C)

ℓ(e) < 0.
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Moreover, since D is a cocycle, we have D = K + R for some K ∈ H⋆(G) and
a coboundary R, and using Observation 11,

τ+f (D) < τb(D) = τb(K) = a(K).

This shows that (iii) is false, with y = y′ = x.
Hence, we can assume that there is no cycle of negative length in G⋆. Sup-

pose now that there exists a directed path P from some y ∈ S to some y′ ∈ S
in G⋆ of negative length, and let D =

∑
e∈E(P ) he. Then D is a simple copath

from y to y′, and we have

τ+f (D)− τb(D) =
∑

e∈E(P ):f [he]>0

(f [he]− b[he]) +
∑

e∈E(P ):f [he]≤0

(−b[he])

=
∑

e∈E(P )

ℓ(e) < 0.

Note that D − Py′ + Py is a cocycle, and thus D − Py′ + Py = R+K for some
K ∈ H⋆(G) and a coboundary R. Hence, D = K + Py′ − Py + R and using
Observation 11,

τ+f (D) < τb(D) = τb(K) + τb(Py′)− τb(Py) = a(K) + a′(y′)− a′(y).

This again shows that (iii) is false.
Therefore, we can assume that G⋆ does not contain any path of negative

length between elements of S. Let L be the 2-chain such that for each y ∈ F (G),
L[y] is the distance from S to y in G⋆ with edge lengths ℓ; the distance is defined
since there are no negative length cycles, and we have L[y] = 0 for every y ∈ S
since there are no negative length paths between elements of S. Let c = b+∂2L,
see Figure 9. We want to show c is the desired f -circulation for (i). Since ∂2L
is a 1-boundary and b is a 1-cycle, c is a 1-cycle. By Observation 12, we have
τ∂2L(K) = 0 for any cocycle K, and thus τc(K) = τb(K) = a(K) for each
K ∈ H⋆(G). For y ∈ S, we have

τ∂2L(Py) =
∑

y′∈F (G)

L[y′]τ∂2y′(Py) =
∑

y′∈F (G)

L[y′](∂⋆1Py)[y
′]

= L[y]− L[x] = 0,

since x, y ∈ S. Consequently, τc(Py) = τb(Py) = a′(y).
Let us now consider a half-edge h ∈ hes(G), where f [h] ≥ 0 without loss of

generality, let e be the corresponding edge of G⋆ directed towards left(h), and
let e′ be the edge opposite to e, see Figure 8(b). We have

c[h] = b[h] + (∂2L)[h] = b[h] + (L[left(h)]− L[left(opp(h))]).

Since L[left(h)] and L[left(opp(h))] are distances from S to left(h) and to left(opp(h)),
triangle inequality gives

L[left(h)] ≤ L[left(opp(h))] + ℓ(e) = L[left(opp(h))] + f [h]− b[h]
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and

L[left(opp(h))] ≤ L[left(h)] + ℓ(e′) = L[left(h)]− b[−h] = L[left(h)] + b[h].

Therefore,
−b[h] ≤ L[left(h)]− L[left(opp(h))] ≤ f [h]− b[h],

and thus 0 ≤ c[h] ≤ f [h]. Hence, c is an f -circulation, and (i) holds.
The single-source shortest paths (or a negative cycle) from S can be found

using Bellman-Ford algorithm in time O(|V (G⋆)| · |E(G⋆)|) = O(n2). Adding
the complexity of the algorithm from Lemma 23, we conclude that the described
procedure can be implemented with time complexity O(n2 + (g + 1)|S|)n).

Let us note the following flow decomposition corollary.

Corollary 25. Let G be a graph with a 2-cell drawing in an orientable surface.
Let c0 and c be 1-cycles in G and let k be a positive integer. If c−kc0 ∈ B1(G),
then there exist c-circulations c1, . . . , ck such that c = c1+ . . .+ck and ci−c0 ∈
B1(G) for i ∈ {1, . . . , k}.

Proof. We prove the claim by induction on k. If k = 1, then we can set c1 = c.
Hence, we can assume k ≥ 2. It suffices to show that a c-circulation ck such that
ck − c0 ∈ B1(G) exists, as the claim then follows by the induction hypothesis
for k − 1 and the 1-cycle c− ck.

Let a homomorphism a : H⋆(G) → Z be defined by setting a(K) = τc0(K)
for each K ∈ H⋆(G). Note that τc(K) = τkc0(K) = ka(K) by Observation 12.
Let S = {x} for an arbitrary face x of G, and let a′ : S → Z be defined as
a′(x) = 0. Since c is a c-circulation, Lemma 22 implies that for any K ∈ H⋆(G),
we have

ka(K) = τc(K) ≤ τ+c (K +B⋆(G)).

Since the right-hand side is non-negative and k ≥ 1, this implies

a(K) ≤ τ+c (K +B⋆(G)).

Hence, Theorem 24 implies the existence of a c-circulation ck such that τck(K) =
a(K) = τc0(K) for each K ∈ H⋆(G). Therefore, τck−c0(K) = 0 for each K ∈
H⋆(G), and thus ck − c0 ∈ B1(G) by Corollary 14.

We will actually need the dual form of this corollary. By a K-cocirculation,
we mean a cocycle K ′ ⪯ K.

Corollary 26. Let G be a graph with a 2-cell drawing in an orientable surface.
Let K0 and K be cocycles in G and let k be a positive integer. If K − kK0 ∈
B⋆(G), then there exist K-cocirculations K1, . . . , Kk such that K = K1+ . . .+
Kk and Ki −K0 ∈ B⋆(G) for i ∈ {1, . . . , k}.

Let us now make some observations that are useful when dealing with the
condition (ii) from Theorem 24.
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Observation 27. Let G be a graph with a 2-cell drawing in an orientable surface
and let f be a 1-chain in G. All 1-chains K and K ′ in G satisfy

τ+f (K +K ′ +B⋆(G)) ≤ τ+f (K +B⋆(G)) + τ+f (K ′ +B⋆(G)).

Proof. Let R,R′ ∈ B⋆(G) be such that τ+f (K + B⋆(G)) = τ+f (K + R) and

τ+f (K ′ +B⋆(G)) = τ+f (K ′ +R′). Since R+R′ ∈ B⋆(G),

τ+f (K +K ′ +B⋆(G)) ≤ τ+f (K +K ′ +R+R′)

=
∑

h∈hesG:f [h]>0

f [h] max(0, (K +K ′ +R+R′)[h])

≤
∑

h∈hesG:f [h]>0

f [h](max(0, (K +R)[h]) + max(0, (K ′ +R′)[h]))

= τ+f (K +R) + τ+f (K ′ +R′).

Moreover, Corollary 26 implies multiplicativity of τ+f over cocycles.

Lemma 28. Let G be a graph with a 2-cell drawing in an orientable surface
and let f be a 1-chain in G. For every positive integer k and a cocycle K, we
have

τ+f (kK +B⋆(G)) = k · τ+f (K +B⋆(G)).

Proof. The inequality τ+f (kK+B⋆(G)) ≤ k ·τ+f (K+B⋆(G)) follows from Obser-
vation 27. For the converse inequality, consider a cocycleK ′ such thatK ′−kK ∈
B⋆(G) and τ+f (K ′) = τ+f (kK + B⋆(G)). By Corollary 26, there exist K ′-
cocirculationsK1, . . . , Kk such thatK ′ = K1+. . .+Kk andKi−K ∈ B⋆(G) for
i ∈ {1, . . . , k}. Note that since Ki ⪯ K ′, for every h ∈ hes(G) we have Ki[h] ≥ 0

if K ′[h] > 0 and K ′[h] > 0 if Ki[h] > 0, and thus τ+f (K ′) =
∑k

i=1 τ
+
f (Ki).

Therefore,

τ+f (kK +B⋆(G)) = τ+f (K ′) =
k∑

i=1

τ+f (Ki) ≥ k · τ+f (K +B⋆(G)).

4 Polytopes of allowed homologies

The conditions (ii) and (iii) from Theorem 24 can be viewed as linear inequalities
constraining the functions a and a′, implying that the possible homologies of
f -circulations form a polytope in a space of bounded dimension. In this section,
we make this intuition precise.

Let G be a graph with a 2-cell drawing in an orientable surface, let Q be
a basis of H⋆(G), and let f be a 1-chain in G. Let S be a non-empty subset
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K1

K2

(0, 0)

(0, 1) (1, 1)

(2, 0)

(2,−1)

(1,−2)(0,−2)

a(K2)

a(K1)

Figure 10: A graph G with a nowhere-zero flow f drawn on the torus, a basis
Q = {K1,K2} of its cohomology group, and the corresponding polytope PG,F,Q

of allowed homologies of f -circulations.

of F (G), let x be an element of S and let P be a function assigning to each
y ∈ S a copath P (y) from x to y, where P (x) = 0. For a ∈ RQ and z ∈ ZQ, let
⟨z,Q⟩ =∑K∈Q z(K)K and ⟨z, a⟩ =∑K∈Q z(K)a(K). Let us define

PG,f,Q,P =


(a, a′) ∈ RQ × RS : a′(x) = 0,
⟨z, a⟩+ a′(y′)− a′(y) ≤ τ+f (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G))

for every z ∈ ZQ and y, y′ ∈ S

 ;

and

PG,f,Q = {a ∈ RQ : ⟨z, a⟩ ≤ τ+f (⟨z,Q⟩+B⋆(G)) for every z ∈ ZQ}.

By Theorem 24, there exists an f -circulation c such that τc(K) = a(K) for each
K ∈ Q and τc(P (y)) = a′(y) for each y ∈ S if and only if (a, a′) ∈ PG,f,Q,P .
Figure 10 shows an example of a graph on the torus with a nowhere-zero flow
and the corresponding polytope PG,f,{K1,K2}. We also show how to obtain the
constraint a(K1) + a(K2) ≤ 2 for PG,f,{K1,K2}. We start by fixing z = (1, 1).
This gives constraint

a(K1) + a(K2) ≤ τ+f (K1 +K2 +B⋆(G)).

We find a particular R ∈ B⋆(G) as depicted in Figure 11 on the left. This gives
τ+f (K1 +K2 +B⋆(G)) ≤ τ+f (K1 +K2 +R) = 2.

Since PG,f,Q,P and PG,f,Q are given by infinite systems of inequalities, it is
not obvious that they are indeed polytopes (rather than more general convex
shapes). We show this together with other useful properties in the following
lemma.
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1

1 1

−1−1

−1 −1

Figure 11: Adding the coboundary R ∈ B⋆(G) on the left to K1 and K2 gives
the resulting cocycle on the right. On the left the coefficients at vertices give
the 0-chain d such that R = ∂⋆2d, the orange edges show R and the blue edges
are the corresponding edges in G⋆. On the right, the orange edges are the ones
that are counted in τ+f (K1 +K2 +R) = 2.

Lemma 29. Let G be a graph with a 2-cell drawing in an orientable surface,
let Q be a basis of H⋆(G), and let f be a 1-chain in G. Let S be a non-empty
subset of F (G), let x be an element of S, and let P be a function assigning to
each y ∈ S a copath P (y) from x to y, where P (x) = 0. Then

(a) PG,f,Q,P and PG,f,Q are polytopes determined by finite sets of inequalities,

(b) for each K ∈ Q and y ∈ S, if a ∈ PG,f,Q or (a, a′) ∈ PG,f,Q,P , then

−τ+f (−K) ≤ a(K) ≤ τ+f (K) and

−τ+f (−P (y)) ≤ a′(y) ≤ τ+f (P (y)),

(c) the vertices of PG,f,Q have integer coordinates, and

(d) for every z ∈ ZQ,

τ+f (⟨z,Q⟩+B⋆(G)) = max{⟨z, a⟩ : a ∈ PG,f,Q}.

Proof. For any y, y′ ∈ S and any copath D from y to y′, note that D− (P (y′)−
P (y)) is a cocycle, and thus there exists zD ∈ ZQ such that D − (P (y′) −
P (y)) − ⟨zD, Q⟩ ∈ B⋆(G). Similarly, for any cocycle D, let zD ∈ ZQ be such
that D − ⟨zD, Q⟩ ∈ B⋆(G). Observe that

P = {a ∈ RQ : ⟨zD, a⟩ ≤ τ+f (D) for every simple cocycle D}
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and

PP =


(a, a′) ∈ RQ × RS : a′(x) = 0,
⟨zD, a⟩+ a′(y′)− a′(y) ≤ τ+f (D)

for every y, y′ ∈ S and a simple copath D from y to y′


are polytopes determined by finite sets of inequalities, since there are only 3|E(G)|

simple 1-chains in G. Moreover, by the equivalence of (ii) and (iii) in Theo-
rem 24, we have PG,f,Q = P and PG,f,Q,P = PP . Therefore (a) holds.

For each K ∈ Q, the definition of PG,f,Q gives

a(K) ≤ τ+f (K +B⋆(G)) ≤ τ+f (K)

and
−a(K) = a(−K) ≤ τ+f (−K +B⋆(G)) ≤ τ+f (−K)

for each a ∈ PG,f,Q or (a, a′) ∈ PG,f,Q,P (by considering the case y = y′ = x);
and for (a, a′) ∈ PG,f,Q,P , we similarly get (by considering y together with x
and K = 0)

a′(y) ≤ τ+f (P (y) +B⋆(G)) ≤ τ+f (P (y))

and
−a′(y) ≤ τ+f (−P (y) +B⋆(G)) ≤ τ+f (−P (y)).

Therefore (b) holds.
Consider now any z ∈ ZQ, and let m = max{⟨z, a⟩ : a ∈ PG,f,Q}. Note that

m ≤ τ+f (⟨z,Q⟩ + B⋆(G)), since the definition of PG,f,Q includes the inequality

⟨z, a⟩ ≤ τ+f (⟨z,Q⟩ + B⋆(G)). If m < τ+f (⟨z,Q⟩ + B⋆(G)), then by Farkas

lemma and (a), the inequality ⟨z, a⟩ < τ+f (⟨z,Q⟩+B⋆(G)) follows from a linear
combination with non-negative rational coefficients of the constraints defining
PG,f,Q; i.e., there exists a function λ : ZQ → Z+

0 with finite support and a
positive integer D such that ∑

z′∈supp(λ)

λ(z′)
D

z′ = z

and ∑
z′∈supp(λ)

λ(z′)
D

τ+f (⟨z′, Q⟩+B⋆(G)) < τ+f (⟨z,Q⟩+B⋆(G)).

However, by Lemma 28 and Observation 27, we have

D · τ+f (⟨z,Q⟩+B⋆(G)) = τ+f (⟨Dz,Q⟩+B⋆(G))

= τ+f

〈 ∑
z′∈supp(λ)

λ(z′)z′, Q

〉
+B⋆(G)


≤

∑
z′∈supp(λ)

λ(z′)τ+f (⟨z′, Q⟩+B⋆(G)),
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which is a contradiction. Therefore, m = τ+f (⟨z,Q⟩+B⋆(G)) and (d) holds.

Since max{⟨z, a⟩ : a ∈ PG,f,Q} is an integer for every z ∈ ZQ, it follows that
all vertices of PG,f,Q have integer coordinates and (c) holds.

Note that the minimal system of inequalities defining PG,f,Q,P may have
exponential size, and thus for algorithmic purposes, we cannot afford to repre-
sent the polytope explicitly. A separation oracle for a polytope P ⊆ Rd is an
algorithm that for an input u ∈ Qd either decides that u ∈ P, or returns z ∈ Qd

such that the size of the binary encoding of z is polynomial in the size of the
binary encoding of u and ⟨z, a⟩ < ⟨z, u⟩ for every a ∈ P. Theorem 24 can be
used to obtain a separation oracle for PG,f,Q,P .

Lemma 30. Let G be a graph of size n with a 2-cell drawing in an orientable
surface of Euler genus g, let Q be a basis of H⋆(G), and let f be a 1-chain
in G. Let S be a non-empty subset of F (G), let x be an element of S, and
let P be a function assigning to each y ∈ S a copath P (y) from x to y, where
P (x) = 0. There exists a separation oracle for PG,f,Q,P with time complexity
O(n2 + (g + 1)|S|n).

Proof. Consider the input (u, u′) ∈ QQ ×QS . If u′(x) ̸= 0, we can return (0, z′)
such that z′(x) = sgn(u′(x)) and z′(y) = 0 for all y ∈ S \ {x}. Hence, suppose
that u(x) = 0. We find a positive integer µ such that (a0, a

′
0) = µ·(u, u′) belongs

to ZQ ×ZS . Note that a0 can be extended to a homomorphism from H⋆(G) to
Z. We apply the algorithm from Theorem 24 for G, paths Py = P (y) for y ∈ S,
a0 and a′0, and the 1-chain µf .

If the outcome is a µf -circulation c such that τc(K) = a0(K) for each K ∈
H⋆(G) and τc(Py) = a′0(y) for each y ∈ S, then by Lemma 22, for every z ∈ ZQ

and y, y′ ∈ S, we have

⟨z, a0⟩+a′0(y′)−a′0(y) = τc(⟨z,Q⟩+P (y′)−P (y)) ≤ τ+µf (⟨z,Q⟩+P (y′)−P (y)+B⋆(G)),

and thus

⟨z, u⟩+ u′(y′)− u′(y) ≤ τ+f (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G))

and (u, u′) ∈ PG,f,Q,P .
Otherwise, the outcome is a simple copath D = P (y′) − P (y) + ⟨z,Q⟩ + R

for some y, y′ ∈ S, z ∈ ZQ and a coboundary R, satisfying

τ+µf (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G)) ≤ τ+µf (D) < ⟨z, a0⟩+ a′0(y
′)− a′0(y).

Consequently, letting z′(y′) = 1, z′(y) = −1 (or z′(y) = 0 if y = y′), and
z′(t) = 0 for t ∈ S \ {y, y′}, for any (a, a′) ∈ PG,f,Q,P we have

⟨(z, z′), (a, a′)⟩ ≤ τ+f (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G)) < ⟨(z, z′), (u, u′)⟩,

and thus we can return (z, z′).
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Let us remark that while we have included scaling by µ in the proof of
Lemma 30 to match the statement of Theorem 24, it is easy to check that the
algorithm from Theorem 24 can be also directly used for (possibly non-integral)
u and u′.

Let G be a graph with a 2-cell drawing in an orientable surface of Euler genus
g, let Q be a basis of H⋆(G), and let f be a 1-chain in G. Let S be a non-empty
subset of F (G), let x be an element of S, and let P be a function assigning to
each y ∈ S a copath P (y) from x to y, where P (x) = 0. When we deal with
the precoloring of an unbounded number of vertices, |S| can be unbounded,
and thus the polytope PG,f,Q,P has unbounded dimension, preventing us from
applying general integer programming results. To deal with this issue, for a
fixed a ∈ RQ, let us define

PG,f,Q,a,P =


a′ ∈ RS : a′(x) = 0,
a′(y′)− a′(y) ≤ minz∈ZQ τ+f (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G))− ⟨z, a⟩

for every y, y′ ∈ S

 .

Clearly, we have (a, a′) ∈ PG,f,Q,P if and only if a ∈ PG,f,Q and a′ ∈ PG,f,Q,a,P .
The dimension of PG,f,Q is g, and the polytope PG,f,Q,a,P is defined by poly-
nomially many inequalities that can be enumerated efficiently as shown in the
following lemma.

Lemma 31. Let Σ be an orientable surface of Euler genus g. There exists an
algorithm that, given a graph G of size n with a 2-cell drawing in Σ, a basis
Q of H⋆(G), a 1-chain f in G, a non-empty subset S of F (G), an element x
of S, a function P assigning to each y ∈ S a copath P (y) from x to y (where
P (x) = 0), and a vector a ∈ PG,f,Q ∩ ZQ, computes the right-hand sides of all
inequalities defining PG,f,Q,a,P in time O(n2 + |S|n log n).
Proof. Consider any y, y′ ∈ S; we need to determine the minimum βy,y′ of

τ+f (⟨z,Q⟩+ P (y′)− P (y) +B⋆(G))− ⟨z, a⟩

over all z ∈ ZQ. Applying the equivalence between (i) and (ii) in Theorem 24
with {y, y′} playing the role of S and with the copath P (y′)−P (y) from y to y′,
it follows that βy,y′ is the largest value such that there exists an f -circulation c
such that τc(⟨z,Q⟩) = ⟨z, a⟩ for each z ∈ ZQ and τc(P (y

′)− P (y)) = βy,y′ .
Let b be the 1-cycle satisfying τb(⟨z,Q⟩) = ⟨z, a⟩ for each z ∈ ZQ obtained

using Lemma 23 with {x} playing the role of S. Let us remark that for any
integer β, if we define bβ = b+ β∂2y

′, then τbβ (⟨z,Q⟩) = ⟨z, a⟩ for each z ∈ ZQ

and τbβ (P (y
′) − P (y)) = τb(P (y

′) − P (y)) + β. Let ℓβ be the assignment of
the lengths to the edges of the symmetric orientation of the dual G⋆ as defined
in the proof of Theorem 24 with bβ playing the role of b. Note that for any
edge e of G⋆ entering y′, letting he be the corresponding dual edge such that
left(he) = y′, we have

ℓβ(e) =

{
f [he]− b[he]− β if f [he] > 0

−b[he]− β if f [he] ≤ 0.
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Since a ∈ PG,f,Q, G
⋆ with length assignment ℓβ does not contain any negative

cycle, and βy,y′ is the largest value of τb(P (y
′) − P (y)) + β such that there

does not exist a path of negative length from y′ to y. Denoting by db(y, y
′) the

distance from y to y′ according to ℓ0, observe that the distance from y to y′

according to ℓβ is db(y, y
′)− β, and thus

βy,y′ = τb(P (y
′))− τb(P (y)) + db(y, y

′).

Hence, to determine the right-hand sides βy,y′ for all y, y ∈ S, it suffices to
determine the pairwise distances between all elements of S in the length as-
signment ℓ0 for β = 0. Using Bellman-Ford algorithm followed by Johnson’s
reweighting and |S| repetitions of Dijkstra’s algorithm, this can be done in time
O(n2 + |S|n log n). We can compute b using Lemma 23 and τb(P (y)) for each
y ∈ S in total time O(n2), and thus we obtain an algorithm with the desired
time complexity.

Finally, we will need a better understanding of the polytope PG,f,Q in the
case that f is a nowhere-zero flow. For a 0-chain d, a cocycle K, and a function
t : V (G) → Z, let us define

⟨t, d⟩ =
∑

v∈V (G)

t(v)d(v)

⟨t, ∂⋆2⟩ =
∑

v∈V (G)

t(v)∂⋆2v

τ+d (K +B⋆(G)) =
1

2
min

z′∈ZV (G)
|K + ⟨z′, ∂⋆2 ⟩|+ ⟨z′, d⟩

PG,d,Q = {a ∈ RQ : ⟨z, a⟩ ≤ τ+d (⟨z,Q⟩+B⋆(G)) for every z ∈ ZQ}.

The polytope PG,d,Q is an analogue of PG,f,Q defined in terms of the boundary,
and as we show next, PG,f,Q is a translation of PG,∂1f,Q, i.e., the polytope PG,f,Q

is essentially the same for all nowhere-zero flows with the same boundary.
We are also going to need a result on the width of these polytopes, defined

as follows. For a compact set P ⊆ Rd and a vector z ∈ Zd, let

w(P, z) = max{⟨z, a⟩ : a ∈ P} −min{⟨z, a⟩ : a ∈ P}.

Let w(P) = min{w(P, z) : z ∈ Zd \ {0}}.

Lemma 32. Let G be a graph with a 2-cell drawing in an orientable surface, let
Q be a basis of H⋆(G), let f be a nowhere-zero flow in G, and let d = ∂1f . Then
PG,f,Q is a translation of PG,d,Q. Moreover, there exist a cocycle K ∈ Z⋆(G) \
B⋆(G) and a coboundary R such that w(PG,f,Q) = (|K|+ |K +R| − τf (R))/2.

Proof. Note that for any cocycle K0, Observation 21 gives

τ+f (K0) = (|K0|+ τf (K0))/2.
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Moreover, by Observation 11, τf (⟨z′, ∂⋆2⟩) = ⟨z′, d⟩ for any z′ ∈ ZV (G). There-
fore,

τ+f (K0 +B⋆(G)) = min
z′∈ZV (G)

τ+f (K0 + ⟨z′, ∂⋆2⟩)

=
1

2
min

z′∈ZV (G)
|K0 + ⟨z′, ∂⋆2⟩|+ τf (K0 + ⟨z′, ∂⋆2⟩)

=
1

2
τf (K0) +

1

2
min

z′∈ZV (G)
|K0 + ⟨z′, ∂⋆2⟩|+ ⟨z′, d⟩

=
1

2
τf (K0) + τ+d (K0 +B⋆(G)). (6)

For any a ∈ RQ, define a′ ∈ RQ by letting a′(K) = a(K) − 1
2τf (K) for each

K ∈ Q. For any z ∈ ZQ, letting K0 = ⟨z,Q⟩ in (6) gives

τ+f (⟨z,Q⟩+B⋆(G))− ⟨z, a⟩ = 1

2
τf ⟨z,Q⟩+ τ+d (⟨z,Q⟩+B⋆(G))− ⟨z, a⟩

= τ+d (⟨z,Q⟩+B⋆(G))− ⟨z, a′⟩.

Consequently, a ∈ PG,f,Q if and only if a′ ∈ PG,d,Q, and thus PG,f,Q is a
translation of PG,d,Q.

Let z ∈ ZQ \ {0} be such that w(PG,f,Q) = w(PG,f,Q, z), let K0 = ⟨z,Q⟩,
and let R1, R2 ∈ B⋆(G) be such that τ+f (K0 + B⋆(G)) = τ+f (K0 + R1) and

τ+−f (K0 + B⋆(G)) = τ+−f (K0 + R2). By Lemma 29(d) and Observation 21, we
have

max{⟨z, a⟩ : a ∈ PG,f,Q} = τ+f (K0 +B⋆(G)) = τ+f (K0 +R1)

= (|K0 +R1|+ τf (K0 +R1))/2,

min{⟨z, a⟩ : a ∈ PG,f,Q} = −max{⟨−z, a⟩ : a ∈ PG,f,Q}
= −τ+f (−K0 +B⋆(G)) = −τ+−f (K0 +B⋆(G))

= −τ+−f (K0 +R2) = −(|K0 +R2| − τf (K0 +R2))/2,

and

w(PG,f,Q) = (|K0 +R1|+ τf (K0 +R1) + |K0 +R2| − τf (K0 +R2))/2

= (|K0 +R1|+ |K0 +R2|+ τf (R1 −R2))/2.

Hence, for the cocycle K = K0+R1 and the coboundary R = R2−R1, we have
w(PG,f,Q) = (|K|+ |K+R|− τf (R))/2. Note that K ̸∈ B⋆(G), since z ̸= 0.

5 Circulations with prescribed modulo

So far, we have considered the problem of determining whether there exists a
circulation with a prescribed value over given copaths and cocycles. However,
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for the application in testing the existence of a homomorphism to an odd cycle,
we need to know whether there exists one with a given value modulo an odd
integer. The following lemma is used to deal with the precolored vertices via
the polytope PG,f,Q,a,P .

Lemma 33. There exists an algorithm that, given a finite set S, an element
x ∈ S, a positive integer m, a function d : S2 → Z, and a function r : S →
{0, 1, . . . ,m−1} such that r(x) = 0, decides in time O(|S|3) whether there exists
a function ℓ : S → Z such that

• ℓ(x) = 0,

• for every y, y′ ∈ S, ℓ(y′)− ℓ(y) ≤ d(y, y′), and

• for every y ∈ S, ℓ(y) ≡ r(y) (mod m).

If such a function exists, the algorithm returns one.

Proof. For every y, y′ ∈ S, let d′(y, y′) be the largest integer such that d′(y, y′) ≤
d(y, y′) and d′(y, y′) ≡ r(y′)− r(y) (mod m). Clearly, if a ≡ r(y) (mod m) and
b ≡ r(y′) (mod m), then b− a ≤ d(y, y′) if and only if b− a ≤ d′(y, y′). Hence,
it suffices to solve the problem with d replaced by d′. If d′(y, y) < 0 for any
y ∈ S, then ℓ does not exist; hence, suppose that d′(y, y) ≥ 0 for every y ∈ S.

Consider the complete symmetrically oriented graph K with vertex set S
and with each edge (y, y′) ∈ E(K) having length d′(y, y′). If K contains a cycle
y0y1y2 . . . yk of negative length, where y0 = yk, then the function ℓ does not
exist, since otherwise we would have

0 =

k∑
i=1

(ℓ(yi)− ℓ(yi−1)) ≤
k∑

i=1

d′(yi−1, yi) < 0.

Otherwise, let ℓ(y) be the distance from x to y in K. By the triangle inequality,
this ensures that ℓ(y′) − ℓ(y) ≤ d′(y, y′) for every y, y′ ∈ S. Moreover, if x =
x0, x1, . . . , xt = y is a shortest path from x to y in K, then

ℓ(y) =

t∑
i=1

d′(xi−1, xi) ≡
t∑

i=1

(r(xi)− r(xi−1)) = r(y)− r(x) = r(y) (mod m).

Therefore, one can find ℓ or decide that it does not exist by applying Bellman-
Ford algorithm to K, with time complexity O(|S|3).

Also, let us note the following simple observation, relevant because of Lemma 29.

Observation 34. For a polytope P ⊆ Rd, a positive integer m, and a vector
r ∈ {0, . . . ,m − 1}d, there exists a point p ∈ Zd ∩ P such that p(i) ≡ r(i)
(mod m) for 1 ≤ i ≤ n if and only if the polytope (P − r)/m contains a point
with integer coordinates.

To take advantage of this observation, we use the following integer program-
ming result of Dadush [6].
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Theorem 35 (Dadush [6, Algorithm 7.2]). There exists a function γ0(d) =
d(1+o(1))d and an algorithm that, given a convex set P ⊆ [−n, n]d described by a
separation oracle with time complexity T , returns in time O(γ0(d)T polylog n)
a point in Zd ∩ P or decides no such point exists.

We can now combine the results from the previous sections to obtain the
following key algorithm.

Lemma 36. Let Σ be an orientable surface of Euler genus g. There exists
a function γ and an algorithm that, given a graph G of size n with a 2-cell
drawing on Σ, a basis Q of H⋆(G) formed by simple cocycles, a positive odd
integer m, a non-empty subset S of F (G), an element x ∈ S, a function P
assigning to each y ∈ S a copath P (y) from x to y, where P (x) = 0, a function
r : S \ {x} → {0, . . . ,m − 1}, and a 0-boundary b divisible by m, in time
O((|b|+ 1)n+min(ng(n2 + |S|3), γ(|S|)n2 polylog n)) either

• finds a nowhere-zero flow f such that ∂1f = b, m|τf (K) for every K ∈ Q,
and τf (P (y)) ≡ r(y) (mod m) for each y ∈ S \ {x}, or

• decides no such nowhere-zero flow exists.

Proof. Let us remark that the genus g is a fixed constant and |S| ≤ n, and thus
the time complexity of the algorithms from Theorem 24 and Lemma 30 is O(n2).
Let γ0 be the function from Theorem 35, and let us define γ(s) = γ0(g + s).

First, using Ford-Fulkerson algorithm and the algorithms from Lemmas 18
and 19, we can in time O((|b| + 1)n) find a nowhere-zero flow f0 such that
∂1f0 = b, or decide no such flow exists.

Suppose we found such a flow f0. For K ∈ Q, let r0(K) = m+1
2 τf0(K),

for y ∈ S \ {x} let r′0(y) = m+1
2 (τf0(P (y)) − r(y)), and let r′0(x) = 0. By

Corollary 17, there exists a nowhere-zero flow f with the properties described
in the statement of the lemma if and only if there exists an f0-circulation c such
that τc(K) ≡ r0(K) (mod m) for K ∈ Q and τc(P (y)) ≡ r′0(y) (mod m) for
y ∈ S.

By Theorem 24 and Observation 34, such an f0-circulation c exists if and
only if the polytope

PG,f0,Q,P − (r0, r
′
0)

m

contains a point with integer coordinates. By Lemma 30, Theorem 35 and
the bounds from Lemma 29(b), we can decide whether such a point (u, u′)
exists (and find it if this is the case) in time O(γ0(g + |S|)n2 polylog n) =
O(γ(|S|)n2 polylog n). Given this point, we can then apply the algorithm from
Theorem 24 with the homomorphism a that maps Q to mu + r0 and with
a′ = mu′ + r′0 to find the desired f0-circulation c.

Alternately, instead of using the integer programming, we can go over O(ng)
points u within the bounds given by Lemma 29(b) such that u− r0 is divisible
by m, and for each of them use the algorithm from Theorem 24 to determine
whether u belongs to PG,f0,Q. For each such point u belonging to PG,f0,Q, we
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can then find the right-hand sides of the inequalities defining PG,f,Q,u,P in time
O(n2 + |S|n log n) by Lemma 31, then use Lemma 33 to find u′ ∈ PG,f,Q,u,P

such that u′ − r′0 is divisible by m in time O(|S|3). The time complexity per
each point is O(n2+ |S|n log n+ |S|3) = O(n2+ |S|3). If such a point u′ is found,
we proceed with (u, u′) ∈ PG,f0,Q,P as described in the previous paragraph.

This easily implies our main algorithmic result.

Proof of Theorem 5. Let m = |C| and let G be the dual of H. Without loss of
generality, we can assume that S is non-empty (otherwise add any face of G to
S and color it arbitrarily); let x be any element of S. For each y ∈ S \ {x},
let r(y) = (ψ(y) − ψ(x)) mod m. Let Q be a basis of H⋆(G) obtained using
Observation 13. By performing a depth-first search in H from x, we find a
simple copath P (y) from x to y for each y ∈ S \ {x}, and we let P (x) = 0.

By Lemma 15 and Observation 20, it suffices to go over all (at most q⋆C(H))
relevant 0-boundaries b divisible by m and for each of them verify whether
there exists a nowhere-zero flow f with ∂1f = b, m|τf (K) for every K ∈ Q,
and τf (P (y)) ≡ r(y) (mod m) for every y ∈ S \ {x}; this can be done using the
algorithm from Lemma 36.

6 Polytopes with no integer points

In order to obtain sufficient conditions for 3-colorability, Observation 34 suggests
that we need a sufficient condition ensuring that a polytope contains an integer
point. A polytope that does not contain any integer points is called hollow. It is
intuitively clear that a hollow polytope must be quite narrow to fit in between
the integer points. This was made precise by Kannan and Lovász [20], with an
improved bound that we state below by Rudelson [24], and the best possible
bound in the 2-dimensional case given by Hurkens [18].

Theorem 37. For every positive integer d, there exists µd = O(d4/3) such
that if a bounded polytope P ⊆ Rd is hollow, then w(P) < µd. Moreover,
µ2 = 1 + 2/

√
3.

A set P is centrally symmetric if there exists a point p such that P = p−P.
A better bound is known for centrally symmetric polytopes.

Theorem 38 (Banaszczyk [2]). For every positive integer d, there exists µd =
O(d log d) such that if a bounded centrally symmetric polytope P ⊆ Rd is hollow,
then w(P) < µd.

We are going to need the following standard observation about change of
lattice bases.

Lemma 39. Let Z ⊆ Rd be a compact set and let A ∈ Zd×d be a matrix with
|detA| = 1. Then Z is hollow if and only if ATZ is, and w(Z) = w(ATZ).
Moreover, for any c ∈ Zd, we have w(ATZ,A−1c) = w(Z, c).
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Proof. Since |detA| = 1, Cramer’s rule implies that A−1 ∈ Zd×d. Hence, if
x ∈ ATZ has integer coordinates, the point A−1Tx ∈ Z has integer coordinates
as well. Conversely, if p ∈ Z has integer coordinates, then so does the point
AT p ∈ ATZ. Hence, Z is hollow if and only if ATZ is hollow.

For any z ∈ Rd, we have ⟨c, z⟩ = ⟨A−1c, AT z⟩, and thus w(ATZ,A−1c) =
w(Z, c). Hence,

w(Z) = min{w(Z, c) : c ∈ Zd \ {0}}
= min{w(ATZ,A−1c) : c ∈ Zd \ {0}}
= min{w(ATZ, c′) : c′ ∈ Zd \ {0}} = w(ATZ).

We say that a polytope P is 1
3 -integral if the coordinates of each vertex

of P are integer multiples of 1/3. Due to Observation 34, when considering 3-
colorability, we are interested in the polytope (PG,f,Q−r)/3, which is 1

3 -integral
by Lemma 29(c). For 1

3 -integral polytopes, the bound from the dimension 2 case
of Theorem 37 can be improved; this is relevant when we consider graphs drawn
on the torus (a surface of Euler genus 2).

Lemma 40. If a bounded 1
3 -integral polytope P ⊆ R2 is hollow, then w(P) < 2.

Proof. Suppose for a contradiction that w(P) ≥ 2. By Theorem 37, there exists
c ∈ Z2 \ {(0, 0)} such that w(P, c) < 1 + 2/

√
3 < 2.1548, and since w(P, c) is a

multiple of 1/3 and w(P) ≥ 2, we conclude that w(P, c) = 2.
We are going to first transform P into a 1

3 -integral hollow polytope P ′ such
that w(P ′) = w(P ′, (1, 0)) = 2, i.e., the x-coordinates of all points of P are
contained in an interval of length two. Next, we further transform it into a
hollow 1

3 -integral polytope P ′′ such that w(P ′′) = 2 and P ⊆ [0, 2 + 2/3] ×
[0, 4 + 1/3]. There are only finitely many 1

3 -integral polytopes contained in
[0, 2+2/3]× [0, 4+1/3], and we show that all of them have width less than two
by computer-assisted enumeration, thus obtaining a contradiction.

Let c = (m,n)T . Note that m and n are co-prime, as otherwise we would
have w(P, c/ gcd(m,n)) < 2. Therefore, there exist integers α and β such that
αm+ βn = 1. Let

A =

(
m −β
n α

)
,

so that detA = 1 and A−1c = (1, 0)T . Let P ′ = ATP. By Lemma 39, the
polytope P ′ is hollow and w(P ′) = w(P ′, (1, 0)T ) = 2. Moreover, P ′ is clearly a
1
3 -integral polytope.

Let l = (l1, l2) and r = (r1, r2) be vertices of P ′ with l1 minimum and
r1 maximum; r1 − l1 = w(P ′, (1, 0)T ) = 2. Let b be the integer such that
−1 ≤ r2 − l2 + 2b < 1, and let

B =

(
1 b
0 1

)
.
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Figure 12: Situation in Lemma 40.

Note that detB = 1 and B−1(1, 0)T = (1, 0)T , and thus letting P ′′ = BTP ′, we
have w(P ′′, (1, 0)T ) = w(P ′, (1, 0)T ) = 2. Let

l′ = (l′1, l
′
2)

T = BT (l1, l2)
T = (l1, l2 + bl1)

T and

r′ = (r′1, r
′
2)

T = BT (r1, r2)
T = (r1, r2 + br1)

T ,

and note that r′2 − l′2 = r2 − l2 + b(r1 − l1) = r2 − l2 + 2b, and thus we have
|l′2 − r′2| ≤ 1.

Since r1− l1 = 2 and l1 and r1 are multiples of 1/3, there exists an integer x
such that l1 < x < r1, x− l1 ≥ 2/3, and r1−x ≥ 2/3. Let (x, y) be the point on
the line between l′ and r′ whose first coordinate is x; since P ′′ is hollow, y is not
an integer. Let L and R be the open cones with apices l′ and r′, respectively,
and rays passing through the points (x, ⌊y⌋) and (x, ⌈y⌉). Let B be the band
{(u1, u2) : l1 ≤ u1 ≤ r1, u2 ∈ R}, see Figure 12. We claim that P ′′ ⊆ (L∪R)∩B.
Indeed, consider any point u = (u1, u2) ∈ P ′′. Clearly u ∈ B. Without loss
of generality, we can assume that u1 ≥ x. Let (x, y′) be the point on the line
between l′ and u whose first coordinate is x. By convexity, (x, y), (x, y′), and
the whole segment between them lies in P ′′. Since P ′′ is hollow, this segment
does not contain any point with integer coordinates, and thus ⌊y⌋ < y′ < ⌈y⌉,
implying that (x, y′), and thus also u, lies in the open cone L.

Let δ = ⌈y⌉−y, and note that y−⌊y⌋ = 1−δ. Observe that sup{⟨(0, 1)T , z⟩ :
z ∈ L ∩B} is either l′2 or

r′2 +
r1 − l1
x− l1

(⌈y⌉ − y) = r′2 +
2δ

x− l1
.

Analogously, sup{⟨(0, 1)T , z⟩ : z ∈ R ∩B} is either r′2 or l′2 +
2δ

r1−x . Therefore,

max{⟨(0, 1)T , z⟩ : z ∈ P ′′} < max

(
r′2 +

2δ

x− l1
, l′2 +

2δ

r1 − x

)
.
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Analogously,

min{⟨(0, 1)T , z⟩ : z ∈ P ′′} > min

(
r′2 −

2(1− δ)

x− l1
, l′2 −

2(1− δ)

r1 − x

)
.

Consequently,

w(P ′′, (0, 1)T ) < max
( 2δ

x− l1
+

2(1− δ)

x− l1
,

2δ

r1 − x
+

2(1− δ)

r1 − x
,

r′2 − l′2 +
2δ

x− l1
+

2(1− δ)

r1 − x
,

l′2 − r′2 +
2δ

r1 − x
+

2(1− δ)

x− l1

)
.

Since x − l1 ≥ 2/3 and r1 − x ≥ 2/3, the first two terms of the maximum are
smaller than or equal to 3. By symmetry, we can assume that x− l1 ≤ r1 − x;
then the third term is non-decreasing in δ, and thus

r′2 − l′2 +
2δ

x− l1
+

2(1− δ)

r1 − x
< r′2 − l′2 +

2

x− l1
≤ 1 + 3 = 4.

Analogously, the fourth term is smaller than 4. Since w(P ′′, (0, 1)T ) is a multiple
of 1/3, we conclude that w(P ′′, (0, 1)T ) ≤ 4− 1/3.

We can shift P ′′ by an integer vector if necessary to ensure that 0 ≤ u1 ≤
2 + 2/3 and 0 ≤ u2 ≤ 4 + 1/3 for every (u1, u2) ∈ P ′′. However, there are only
finitely many 1

3 -integral polytopes with this property, and by computer-assisted
enumeration, we verified that for all of them, either w(P ′′) < 2 or P ′′ contains
an integer point1. This is a contradiction.

To apply these results, we need to estimate the width of the polytope PG,f,Q

in terms of the edgewidth of G⋆. First, let us give several auxiliary results.
Let G be a graph with a 2-cell drawing in an orientable surface Σ. For a
closed directed walk W in G⋆, let ◦W denote the corresponding cocycle. For
a cocycle K in G, the support K⃗ of K is the directed graph with vertex set
{left(h) : h ∈ hes(G),K[h] ̸= 0} and containing K[h] edges from left(opp(h))
to left(h) for each half-edge h such that K[h] > 0. The undirected support K

of K is the undirected graph with the same vertex set as K⃗ and with edges
{left(opp(h)), left(h)} for each half-edge h such that K[h] > 0; hence, K is a

subgraph of G⋆. We view both K⃗ and K as drawn in Σ, with their drawing
inherited from G⋆. A (directed) cycle drawn in Σ is separating if deleting it
from Σ disconnects the surface, and non-separating otherwise.

Observation 41. Let G be a graph with a 2-cell drawing in an orientable sur-
face. A (directed) cycle C in G⋆ is separating if and only if the corresponding
cocycle ◦C is a coboundary.

1We wrote two independent programs in SageMath and C++. The programs used for this
verification can be found as ancillary files at arXiv posting of this paper.
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Observation 42. Let G be a graph with a 2-cell drawing in an orientable sur-
face. If a cocycle K is not a coboundary, then there exists a non-separating
directed cycle C in G⋆ such that ◦C ⪯ K.

Proof. Since K is a cocycle, the directed graph K⃗ is Eulerian, and thus it can
be expressed as an edge-disjoint union of directed cycles C1, . . . , Cm. Since
K = ◦C1 + · · · + ◦Cm is not a coboundary, we can assume that ◦C1 is not a
coboundary, and by Observation 41, C1 is a non-separating cycle. We clearly
have ◦C1 ⪯ K.

For a cocycle R in a graph G with a 2-cell drawing in an orientable surface
of non-zero Euler genus g, let ν(R) denote the size of a smallest subset X of
E(G⋆) such that R + X contains a non-separating cycle as a subgraph. By
Observation 13, the group H⋆(G) is isomorphic to Zg and thus non-trivial.
Hence, there exists a cocycle in G that is not a coboundary. Observation 42
implies that G⋆ contains a non-separating cycle, and consequently, ν(R) is finite.
For a 1-chain f , let µf (R) = 2ν(R) + |R| − τf (R). In the following lemma, we
show that the bound on the width of PG,f,Q given in Lemma 32 can be simplified
in terms of this notion.

Lemma 43. Let G be a graph with a 2-cell drawing in an orientable surface
other than the sphere and let R be a coboundary. Then

min{|K|+ |K +R| − |R| : K ∈ Z⋆(G) \B⋆(G)} = 2ν(R).

Hence, if f is a nowhere-zero flow in G and Q is a basis of H⋆(G), then there
exists a coboundary R such that w(PG,f,Q) ≥ 1

2µf (R).

Proof. Observe that any real numbers a and b satisfy |a|+ |a+ b| − |b| ≥ 0, and
if b = 0, then |a|+ |a+ b| − |b| = 2|a|. Hence,

|K|+ |K +R| − |R| =
∑

h∈h⃗es(G)

|K[h]|+ |(K +R)[h]| − |R[h]|

≥ 2
∑

h∈h⃗es(G),R[h]=0

|K[h]| ≥ 0

for any cocycle K. Consider a cocycle K ∈ Z⋆(G) \ B⋆(G), let C ′
K be a non-

separating directed cycle in G⋆ such that ◦C ′
K ⪯ K which exists by Observa-

tion 42, and let CK be the underlying undirected cycle of C ′
k. Then

|K|+ |K +R| − |R| ≥ 2
∑

h∈h⃗es(G),R[h]=0

|K[h]| ≥ 2|E(CK) \ E(R)| ≥ 2ν(R).

Therefore, min{|K|+|K+R|−|R| : K ∈ Z⋆(G)\B⋆(G)} ≥ 2ν(R), and it suffices
to show that there exists K ∈ Z⋆(G) \B⋆(G) such that |K|+ |K +R| − |R| =
2ν(R).
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If R⃗ contains a directed non-separating cycle C as a subgraph, then let
K ′ = ◦C. Note that K ′ is not a coboundary by Observation 41, and that
K ′ ⪯ R. Letting K = K ′ −R, we have

|K|+ |K+R|− |R| = |K ′−R|+ |K ′|− |R| = |R−K ′|+ |K ′|− |R| = 0 = 2ν(R).

Hence, we can assume that all directed cycles in R⃗ are separating.
Suppose now that X is a smallest set of edges of G⋆ such that R + X

contains a non-separating cycle as a subgraph, and let C be such a cycle oriented
in one of the two possible directions (chosen arbitrarily). We view the edges
of X as directed along C, and let Y be the 1-chain formed by the sum of the
corresponding half-edges of G. By Observation 41, Q = ◦C is not a coboundary.
Let W be the closed walk obtained from C as follows: For each edge e of C−X
that is directed oppositely to a corresponding edge e′ of R⃗, let Ce be a cycle in
R⃗ containing e′ (which exists, since R⃗ is Eulerian), and replace e by the walk
Ce − e′. Note that this corresponds to the addition of ◦Ce to Q. Since all
directed cycles in R⃗ are separating, Observation 41 implies that Q′ = ◦W is
obtained from Q by adding coboundaries, and thus Q′ is not a coboundary. By
Observation 42, there exists a directed non-separating cycle C ′ such that letting
K ′ = ◦C ′, we have K ′ ⪯ Q′. By the minimality of X, we have X ⊆ E(C ′).
Note that W −X is a union of walks in R⃗, and thus R[h] > 0 for each half-edge
h ̸∈ X such that Q′[h] > 0. Since C ′ is a cycle and K ′ = ◦C ′ ⪯ Q′, we have
0 ≤ K ′[h] ≤ 1 ≤ R[h] for each such edge h, and thus K ′ − Y ⪯ R. Letting
K = K ′ −R, we have

|K|+ |K +R| − |R| = |K ′ −R|+ |K ′| − |R|
= (|Y |+ |R− (K ′ − Y )|) + (|K ′ − Y |+ |Y |)− |R|
= 2|Y | = 2|X| = 2ν(R).

We conclude that min{|K|+ |K +R| − |R| : K ∈ Z⋆(G) \B⋆(G)} = 2ν(R).
Consider now a nowhere-zero flow f in G and a basis Q of H⋆(G). By

Lemma 32, there exists a cocycle K ∈ Z⋆(G)\B⋆(G) and a coboundary R such
that

2w(PG,f,Q) = |K|+ |K +R| − τf (R)

= (|K|+ |K +R| − |R|) + |R| − τf (R)

≥ 2ν(R) + |R| − τf (R) = µf (R).

We also need the following standard topological observation on non-separating
cycles.

Lemma 44. Let G be a graph with a 2-cell drawing in an orientable surface Σ,
let C be a separating cycle in G⋆, and let Σ1 and Σ2 be the connected parts of
Σ − C. For every non-separating cycle Q in G⋆, there exists a non-separating
cycle Q′ with E(Q′) ⊆ E(Q) ∪ E(C) such that Q′ ⊆ Σ1 or Q′ ⊆ Σ2.
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Figure 13: The situation in Lemma 44.

Proof. We prove the claim by the induction on |E(Q) \E(C)|. We can assume
that there exist edges e1 ∈ E(Q) ∩ Σ1 and e2 ∈ E(Q) ∩ Σ2, as otherwise we
can set Q′ = Q. We orient the cycles Q and C in one of the two possible
directions arbitrarily. There exist distinct vertices u, v ∈ V (C) ∩ V (Q) such
that Q is the concatenation of a path P1 from u to v and a path P2 from v
to u, where e1 ∈ E(P1) and e2 ∈ E(P2). Moreover, C is the concatenation
of a path S1 from v to u and S2 from u to v. For i ∈ {1, 2}, let Wi be the
closed walk obtained as the concatenation of Pi and Si, see Figure 13. By
Observation 41, ◦Q is not a coboundary and ◦C is, and since ◦W1 + ◦W2 =
◦Q + ◦C, we can assume that ◦W2 is not a coboundary. By Observation 42,
there exist a non-separating cycle Q2 such that ◦Q2 ⪯ ◦W2. This implies that
E(Q2) ⊆ E(P2) ∪ E(S2) ⊆ (E(Q) ∪ E(C)) \ {e1}, and thus |E(Q2) \ E(C)| <
|E(Q)\E(C)|. By the induction hypothesis, there exists a non-separating cycle
Q′ with E(Q′) ⊆ E(Q2)∪E(C) ⊆ E(Q)∪E(C) such that Q′ ⊆ Σ1 or Q′ ⊆ Σ2,
as required.

Let R =
∑

v∈V (G) αv∂
⋆
2v be a coboundary. The span of R is max{αv : v ∈

V (G)}−min{αv : v ∈ V (G)}. Let us remark that the span of R is independent
of the way R is expressed, since if R can also be expressed as

∑
v∈V (G) α

′
v∂

⋆
2v,

then there exists an integer δ such that a′v = av + δ for every v ∈ V (G).

Lemma 45. Let G be a graph with a 2-cell drawing in an orientable surface Σ
other than the sphere and let R be a coboundary. If R has span at least three,
then there exists a coboundary R′ ⪯ R such that R′ ̸= 0 and ν(R−R′) = ν(R).

Proof. Let R =
∑

v∈V (G) αv∂
⋆
2v. Since

∑
v∈V (G) ∂

⋆
2v = 0 and R has span

at least three, we can without loss of generality assume that min{αv : v ∈
V (G)} ≤ −1 and max{αv : v ∈ V (G)} ≥ 2. For an integer k ≥ −1, let Rk =∑

v∈V (G):αv>k ∂
⋆
2v; note that Rk ⪯ R, since if Rk[h] > 0 for a half-edge h, then

Rk[h] = 1, αtgt(h) > k, αtgt(opp(h)) ≤ k, and R[h] = αtgt(h) − αtgt(opp(h)) ≥ 1.

Moreover, 0 ̸= Rk ̸= R for k ∈ {−1, 0, 1}, since R has span at least three. If R0

contains a non-separating cycle, then ν(R) = ν(R0) = 0, and thus we can set
R′ = R−R0. Hence, assume that all cycles in R0 are separating.
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Let X be a set of edges of G⋆ such that |X| = ν(R) and R +X contains a
non-separating cycle Q. Choose such a cycle Q with |E(Q) \E(R0)| minimum.
Consider any cycle C in R0. We claim that all edges of E(Q)\E(R0) are drawn
in the same connected part of Σ − C; indeed, otherwise the cycle Q′ obtained
by Lemma 44 would contradict the minimality of |E(Q) \ E(R0)|. Since this
claim holds for all cycles in R0, we conclude that there exists a face x of R0

such that all edges of E(Q) \ E(R0) are drawn in x. Note that either αv ≤ 0
for each v ∈ V (G) drawn in x, or αv > 0 for each v ∈ V (G) drawn in x, since
any vertices v′, v′′ ∈ V (G) such that αv′ ≤ 0 and αv′′ > 0 are necessarily drawn
in different faces of R0. By symmetry, we can assume that the former is the
case. Consequently, (E(Q) \ E(R0)) ∩ E(R1) = ∅, and thus ν(R−R1) = ν(R).
Therefore, we can set R′ = R1.

Corollary 46. Let G be a graph with a 2-cell drawing in an orientable surface
other than the sphere and let f be a nowhere-zero flow in G. If R is a coboundary
with µf (R) minimum and subject to that with |R| minimum, then R has span
at most two.

Proof. Otherwise, letR′ ⪯ R be the non-zero coboundary obtained by Lemma 45.
We have

µf (R−R′) = 2ν(R−R′) + |R−R′| − τf (R−R′)

= 2ν(R) + |R| − |R′| − (τf (R)− τf (R
′))

= µf (R) + τf (R
′)− |R′| ≤ µf (R),

and since |R−R′| < |R|, this contradicts the minimality of R.

Finally, we are ready to bound the width of PG,f,Q in terms of the edgewidth
of G.

Corollary 47. Let G be a graph with a 2-cell drawing in an orientable surface
other than the sphere, let Q be a basis of H⋆(G), and let f be a nowhere-zero
flow in G. Then w(PG,f,Q) ≥ ew(G⋆)− |∂1f |/2.

Proof. By Lemma 43, there exists a coboundary R such that w(PG,f,Q) ≥
1
2µf (R). Let R0 be a coboundary with µf (R0) minimum; by Corollary 46,
we can assume that R0 has span at most two. Hence, we can write R0 =∑

v∈V (G) αv∂
⋆
2v, where −1 ≤ αv ≤ 1 for each v ∈ V (G). By Lemma 43, there

exists a cocycle K0 ∈ Z⋆(G)\B⋆(G) such that 2ν(R0) = |K0|+ |K0+R0|−|R0|.
Since K0 is not a coboundary, Observation 42 implies that K0 contains a
non-separating cycle. Any non-separating cycle is non-contractible, and thus
|K0| ≥ ew(G⋆). Analogously, |K0 + R0| ≥ ew(G⋆). Combining these relations
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and using Observation 11, we conclude that

w(PG,f,Q) ≥
1

2
µf (R) ≥

1

2
µf (R0)

=
1

2
(2ν(R0) + |R0| − τf (R0))

=
1

2
(|K0|+ |K0 +R0| − τf (R0))

=
1

2

|K0|+ |K0 +R0| −
∑

v∈V (G)

αv(∂1f)[v]


≥ 1

2
(|K0|+ |K0 +R0| − |∂1f |) ≥ ew(G⋆)− |∂1f |/2.

We can now prove our result on 3-colorability of graphs with no odd-length
faces.

Proof of Theorem 9. Suppose that H has edgewidth at least 3µg, and let G be
the dual of H. Since every face of H has even length, the dual graph G is
Eulerian, and thus it contains a nowhere-zero flow f0 with ∂1f0 = 0, obtained
by sending a unit of flow along an Eulerian tour in G.

Let Q be a basis of H⋆(G) and recall that |Q| = g. For each K ∈ Q, let
r(K) = 2τf0(K) mod 3. Since |∂1f0| = 0, Corollary 47 implies that w(PG,f0,Q) ≥
ew(H) ≥ 3µg, and thus the polytope P = (PG,f0,Q − r)/3 has width at least
ew(H)/3 ≥ µg. By Lemma 32, PG,f0,Q is a translation of the polytope PG,0,Q.
Observe that PG,0,Q = −PG,0,Q, and thus the polytopes PG,0,Q, PG,f0,Q, and
P are centrally symmetric. By Theorem 38, this implies that P contains an
integer point.

By Theorem 24 and Observation 34, we conclude that there exists an f0-
circulation c such that τc(K) ≡ r(K) (mod 3) for each K ∈ Q. By Corollary 17,
there exists a nowhere-zero flow f in G with boundary 0 such that τc(K) ≡ 0
(mod 3) for each K ∈ Q. By Lemma 15, this implies that H is 3-colorable.

7 Local 3-colorability

Finally, let us study local 3-colorability in graphs of large edgewidth. First, let
us note the following observation, which follows by the max-flow min-cut duality
and the correspondence between edge cuts and (edge-disjoint unions of) cycles
in the dual graph. Let Σ be either an orientable surface other than the sphere,
or the plane. For a graph H drawn in Σ, a 0-boundary d in the dual G of H,
and a contractible cycle K in H bounding a disk ∆ ⊆ Σ, let

τd(K) =
∑

v∈V (G) drawn in ∆

d[v].
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Let us remark that if f is a flow in G with ∂1f = d and we view K as a cocycle
in G in the natural way, then τf (K) = τd(K).

Observation 48. Let H be a graph with a 2-cell drawing either in an orientable
surface other than the sphere or in the plane. Let G be the dual of H and let d
be a 0-boundary in G. If H is not drawn in the plane, suppose furthermore that
ew(H) ≥ |d|/2. There exists a flow f in G with ∂1f = d if and only if every
contractible cycle K in H satisfies |τd(K)| ≤ |K|.

Let H be a graph drawn in an orientable surface of non-zero genus, and let
D(H) be the set of faces of H of length other than four. For a non-empty set
L ⊆ D(H), we say a contractible cycle K in H surrounds L if L is exactly the
set of faces of H of length other than four drawn in the disk ∆ ⊆ Σ bounded
by K. Let

b(L) = min
(∑
x∈L

b(|x|),
∑

x∈D(H)\L
b(|x|)

)
,

and observe that

b(L) ≤ b⋆(H)− 1

2
. (7)

We say that L is dangerous if L is surrounded by a cycle in H of length less
than b(L); in this case, we let KL be a shortest cycle surrounding L, chosen
arbitrarily, and let HL be the subgraph of H drawn in the closed disk bounded
by KL. A single-element subset L = {x} ⊆ D(H) is semi-dangerous if no set
containing x is dangerous; in that case, we let KL be the facial walk of the face
corresponding to x and HL = KL. A local 3-colorability witness is the subgraph

U =
⋃

L⊆D(H): L dangerous or semi-dangerous

HL

of H (the naming is motivated by Lemma 51 below). We need to show that
local 3-colorability witnesses in graphs of sufficiently large edgewidth are flat.

Lemma 49. Let H be a simple graph with a 2-cell drawing in an orientable
surface of non-zero genus and let U ⊆ H be a local 3-colorability witness. If
ew(H) ≥ b⋆(H), then U is flat.

Proof. We say a closed walk W in U is covered by a sequence L1, . . . , Lm

of (not necessarily pairwise distinct) dangerous or semi-dangerous sets if W
is a concatenation of walks W1, . . . , Wm, where Wi is a walk in HLi

for i ∈
{1, . . . ,m}. Suppose for a contradiction that U contains a non-contractible walk
W , and let us choose one covered by a sequence L1, . . . , Lm of dangerous or
semi-dangerous sets with m smallest possible.

Let C be a cycle with vertices 1, . . . , m in order. Consider any indices i < j
non-adjacent in C. We claim that Li ∩Lj = ∅. Indeed, if x ∈ Li ∩Lj , then the
facial walk of x is contained in both HLi

and HLj
, and since these subgraphs

are connected, there exists a path W0 from a vertex zi of Wi to a vertex zj of
Wj such that W0 is a concatenation of a path in HLi

and a path in HLj
. For
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Figure 14: The construction of W ′ and W ′′ in Lemma 49.

a ∈ {i, j}, express Wa as the concatenation of walks W ′
a and W ′′

a ending and
starting in za, respectively. Let W ′ be the concatenation of W ′′

j , Wj+1, . . . ,
Wm, W1, . . . , Wi−1, W

′
i , and W0. Let W ′′ be the concatenation of W ′′

i , Wi+1,
. . . , Wj−1, W

′
j , and the reverse of W0, see Figure 14. Since the closed walk W

is non-contractible, by symmetry between W ′ and W ′′ we can assume that the
closed walk W ′′ is non-contractible. However, W ′′ is covered by Li, Li+1, . . . ,
Lj , contradicting the choice of W .

Since W is non-contractible, we have W ̸⊆ HL1 , and thus m > 1. Let Y be
the closed walk equal to concatenation of walks Y1, . . . , Ym obtained as follows:
We start by setting Y =W and Yi =Wi for each i. Then, for i = 1, . . . ,m:

• Replace Yi by the longest subwalk of Y contained in HLi
, and shorten

Yi−1 and Yi+1 correspondingly (note that they stay non-empty by the
minimality of m from the choice of W ). Observe that both ends xi and
yi of Yi are contained in KLi .

• Replace Yi by the shorter of the two walks between xi and yi in KLi
, see

Figure 15. Note that since Yi is contained in the disk bounded by KLi
, Y

remains homotopically equivalent to W .

At the end, Y is a non-contractible closed walk in H, and for each i, the length
of Yi is at most half the length of Ki. Since Y is non-contractible, the bound
on the edgewidth of H gives |Y | ≥ ew(H) ≥ b⋆(H).

Let S ⊆ D(H) consist of the faces x ∈ D(H) such that {x} is semi-dangerous,
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Figure 15: Each walk Wi is replaced by a walk Yi along the cycle KLi .

and let
σ =

∑
x∈S

b(|x|).

For any dangerous set L, we have L ∩ S = ∅, and thus

b(L) ≤
∑
x∈L

b(|x|) ≤ b⋆(H)− σ − 1.

Together with (7), this gives that for each i,

|Yi| ≤
⌊ |Ki|

2

⌋
≤
{

b(Li)
2 ≤ min

(
b⋆(H)−1

4 , b
⋆(H)−1−σ

2

)
if Li is dangerous

⌊|x|/2⌋ ≤ b(|x|) if Li = {x} is semi-dangerous.

Note that for each x ∈ D(H), if {x} is semi-dangerous, then there exists at most
one index i such that x ∈ Li, and we have Li = {x} for this index (if x ∈ Lj for
j ̸= i, then j would be adjacent to i in C and Lj = {x} = Li, contradicting the
minimality of m). Consequently,∑

i:Li semi-dangerous

|Yi| ≤
∑

i:Li={xi} semi-dangerous

b(|xi|) ≤ σ.

Distinguishing two cases depending on whether Li is dangerous for all i ∈
{1, . . . ,m} or not, we conclude that if m ≤ 3, then

|Y | =
m∑
i=1

|Yi| ≤ max

(
m · b

⋆(H)− 1

4
, (m− 1) · b

⋆(H)− 1− σ

2
+ σ

)
< b⋆(H).

This is a contradiction, and thus m ≥ 4. Since Li ∩ Lj = ∅ whenever i and j
are non-adjacent in C, for each x ∈ D(H) such that {x} is not semi-dangerous,
there exist at most two indices i such that x ∈ Li. Hence,

|Y | =
m∑
i=1

|Yi| ≤ σ +
∑

i:Li dangerous

|Yi| ≤ σ +
1

2

∑
i:Li dangerous

b(Li)

≤ σ +
1

2

∑
i:Li dangerous

∑
x∈Li

b(|x|) ≤ σ +
1

2

∑
x∈D(H)\S

2 · b(|x|) = b⋆(H)− 1.

This is again a contradiction.
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Let U be a flat subgraph of a graph H drawn in a surface. A subgraph
U0 ⊆ H is a consolidation of U if it is obtained from U by repeatedly adding
paths (in H) between distinct connected components until U0 is connected.
Note that every cycle in U0 is also a cycle in U , and thus U0 is also flat.

Consider a connected flat subgraph U of H, let U ′ be a planar quadrangula-
tion extension of U , and let θ be the homeomorphism mapping U to a subgraph
of U ′ from the definition of planar quadrangulation extension. Let W be the
closed walk bounding the outer face of U , and let W ′ = θ(W ) be the corre-
sponding closed walk in U ′. A walk P in U ′ is a chord if its ends are in W ′,
all other vertices and edges of P are drawn in the outer face of θ(U), and all
vertices of P except possibly for its ends are pairwise distinct (i.e. P is either
a path with both ends in W ′, or a cycle intersecting W ′ in exactly one vertex).
The plane graph θ(U) + P has exactly one internal face that is not a face of
θ(U), and the facial walk of this face consists of P and a subwalk BP of W or
the reverse of W ; we say that BP is the base of the chord. We say that the
planar quadrangulation extension U ′ of U is generic if each chord is at least as
long as its base.

Observe that if it is possible to quadrangulate the outer face of a connected
flat subgraph to obtain a planar quadrangulation extension, it is also possible
to do it so that the resulting planar quadrangulation extension is generic.

Observation 50. Let H be a graph with a 2-cell drawing in an orientable
surface of non-zero genus and let U be a connected flat subgraph of H. Then
the following claims are equivalent:

• the outer face of U has even length,

• U has a generic planar quadrangulation extension,

• U has a planar quadrangulation extension.

Let us now give the key property of a local 3-colorability witness.

Lemma 51. Let H be a simple graph with a 2-cell drawing in an orientable
surface of non-zero genus with edgewidth at least b⋆(H)/2, let G be the dual of
H, and let U ⊆ H be a flat subgraph capturing non-4-faces of H.

• If H is 3-colorable, then every generic planar quadrangulation extension
U1 of a consolidation U0 of U is 3-colorable.

• If U is a local 3-colorability witness and a planar quadrangulation exten-
sion of U is 3-colorable, then there exists a nowhere-zero flow f in G with
3|∂1f .

Proof. Recall that D(H) is the set of faces of H of length other than four, and
let I be the set of corresponding vertices of G. Since U captures non-4-faces of
H, each face in D(H) is also an internal face of U .

For the first claim, we translate a 3-coloring of H using Lemma 15 to a
nowhere-zero flow f0 in G, and we copy its boundary d0 to a boundary d1 in
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U⋆
1 . We then use Observation 48 to show that there exists a flow f1 in U⋆

1 with
boundary d1, extend f1 to a nowhere-zero flow f ′1, and finish by converting f ′1
to a 3-coloring of U1 using Lemma 15. Let us now state this argument precisely.

Let θ be a homeomorphism mapping U0 to a subgraph of U1 from the defini-
tion of planar quadrangulation extension. Slightly abusing the notation, let us
also view θ as mapping vertices of I to the corresponding vertices of the plane
dual U⋆

1 of U1. Since H is 3-colorable, Lemma 15 implies that there exists a
nowhere-zero flow f0 in G with boundary d0 = ∂1f0 divisible by 3. Let d1 be
the 0-boundary in U⋆

1 defined as

d1 =
∑
v∈I

d0[v] · θ(v).

Consider any cycle K in U1, and let M be the set of vertices of θ(I) drawn in
the disk in the plane bounded by K. IfM = θ(I) orM = ∅, then since d1 is a 0-
boundary, we have τd1

(K) = 0 ≤ |K|. Otherwise, observe that K must intersect
θ(U0). Let K ′ be the closed walk obtained from K by replacing all chords by
their bases; since U1 is generic, we have |K ′| ≤ |K|. Note that K ′ ⊆ θ(U0), and
that by the definition of the base of a chord, the set of vertices of θ(I) drawn in
the region bounded by K ′ is the same as for K, i.e., M . Observe that θ−1(M)
is exactly the set of vertices of I drawn in the part of Σ bounded by θ−1(K ′).
Therefore, viewing θ−1(K ′) as a cocycle in G, we have

τd1
(K) =

∑
v∈M

d1[v] =
∑

u∈θ−1(M)

d0[u] = τf0(θ
−1(K ′)) ≤ |K ′| ≤ |K|.

Since this holds for every cycle K, Observation 48 implies that there exists a
flow f1 in U⋆

1 with ∂1f1 = d1. Since d0 is parity-compliant by Lemma 18, d1 is
also parity-compliant, and thus Lemma 18 implies that there exists a nowhere-
zero flow f ′1 in U⋆

1 with ∂1f
′
1 = d1. Since 3|d0, we also have 3|d1, and thus

Lemma 15 implies that U1 is 3-colorable.

Suppose now that U is a local 3-colorability witness and a planar quadran-
gulation extension U2 of U is 3-colorable. To prove the second claim, we use
Lemma 15 to obtain a nowhere-zero flow f ′ in U⋆

2 with boundary d′ divisible
by 3. We then translate d′ into a 0-boundary d in G and show by contradiction
through Observation 50 that there exists a flow f in G with ∂1f = d.

More precisely, let θ be a homeomorphism mapping U to a subgraph of U2

from the definition of planar quadrangulation extension. Since U2 is 3-colorable,
by Lemma 15 there exists a nowhere-zero flow f ′ in U⋆

2 with boundary d′ = ∂1f
′

divisible by 3. Since U is a local 3-colorability witness, all internal faces of U
are also faces of H and all other faces of H have length four. Let

d =
∑
v∈I

d′[θ(v)] · v;

then d is a parity-compliant 0-boundary inG such that 3|d, and thus by Lemma 18,
it suffices to show that G contains a flow with ∂1f = d. Suppose for a contra-
diction that this is not the case. Note that |d|/2 < b⋆(H)/2 ≤ ew(H), and thus
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by Observation 48, there exists a cycle K in H bounding a disk ∆ ⊆ Σ such
that

τd(K) > |K|. (8)

For any face x of H of length other than four, if v ∈ I is the corresponding
vertex of G, then θ(v) is a vertex of U⋆

2 of degree deg v = |x|, and by the
existence of the flow f ′ and the fact that 3|d′ and d′ is parity-compliant, we
have |d[v]| = |d′[θ(v)]| ≤ b(deg v) = b(|x|).

Let L be the set of faces of H drawn in ∆ of length other than four, and let
L⋆ be the set of corresponding vertices of G. Note that

|τd(K)| =
∣∣∣∑
v∈L⋆

d[v]
∣∣∣ ≤ ∑

x∈L

b(|x|),

and since d is a 0-boundary, we also have

|τd(K)| =
∣∣∣ ∑
v∈I\L⋆

d[v]
∣∣∣ ≤ ∑

x∈D(H)\L
b(|x|).

Consequently, |τd(K)| ≤ b(L), and (8) implies that |K| < b(L). That is, L is
dangerous. Since U is a local 3-colorability witness, there exists a cycle K ′ in U
of length at most |K| surrounding L. However, then observe that θ(L) is exactly
the set of faces of U2 of length other than four drawn in the cycle θ(K ′) ⊆ U2

and
τd′(θ(K ′)) = τd(K) > |K| ≥ |θ(K ′)|.

By Observation 48, this contradicts the existence of the flow f ′.

We are ready to prove the characterization of 3-colorability for graphs of
large edgewidth.

Proof of Theorem 6. IfH is 3-colorable, then by Observation 50, a consolidation
of any flat subgraph capturing non-4-faces has a generic planar quadrangulation
extension U1, and by Lemma 51, U1 is 3-colorable. It follows that H is locally
3-colorable.

Conversely, suppose that H is locally 3-colorable and its edgewidth is at
least b⋆(H)− 1+ 3µg. Let U be a local 3-colorability witness; by Lemma 49, U
is flat. Furthermore, since each face of H of length other than four either forms
a semi-dangerous set or is contained in a dangerous set, U captures non-4-faces
of H Let G be the dual of H. Since H is locally 3-colorable, there exists a 3-
colorable planar quadrangulation extension of U , and by Lemma 51, there exists
a nowhere-zero flow f0 in G with 3|∂1f0. Let Q be a basis of H⋆(G), and recall
that |Q| = g. For each K ∈ Q, let r(K) = 2τf0(K) mod 3. By Corollary 47, we
have w(PG,f,Q) ≥ ew(H)−|∂1f0|/2 ≥ ew(H)−(b⋆(H)−1) ≥ 3µg. Consequently,
the polytope (PG,f0,Q − r)/3 has width at least µg, and thus by Theorem 37, it
contains an integer point. By Theorem 24 and Observation 34, there exists an
f0-circulation c such that τc(K) = r(K) (mod 3) for eachK ∈ Q. By Lemma 15
and Corollary 17, this implies that H is 3-colorable.
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The improved bound for the torus is proved analogously.

Proof of Corollary 8. We proceed exactly as in the second part of the proof of
Theorem 6. Since the polytope (PG,f0,Q − r)/3 is 1

3 -integral and g = 2, by
Lemma 40 it suffices to show that its width is at least two, which is implied by
the assumption ew(H) ≥ b⋆(H) + 5.

8 Concluding remarks

Let us note that no superlinear lower bound on the constant µd from Theorem 37
is known, and indeed it has been conjectured that µd = O(d log d) or even
µd = O(d). Any improvement over the current O(d4/3) bound directly translates
into improved bounds for Theorem 6.

It is natural to ask whether our techniques also apply to non-orientable
surfaces. While this seems to be the case to some extent, there are additional
challenges coming from the fact that the homology group of a non-orientable
surface of Euler genus g is Zg−1×Z2, leading to parity considerations that do not
arise in the orientable case. Dvořák, Moore and Sereni (private communication)
worked out these issues for the projective plane and Klein bottle, obtaining
simple efficient algorithms for these surfaces.

In Lemma 32, we prove that the polytope PG,f,Q is a translation of the
polytope PG,∂1f,Q, and thus it is essentially independent of the exact choice
of the initial nowhere-zero flow, subject to its fixed boundary. It is actually
possible to eliminate the dependence on the boundary and make the connection
to coloring even more direct. Let L be the set of vertices of G of degree other
than four. We define

PG,Q =

 (a, d) ∈ RQ × RL : ⟨d, 1⟩ = 0,
⟨z, a⟩+ ⟨z′, d⟩ ≤ minz′′∈ZV (G)\L |⟨z,Q⟩+ ⟨(z′, z′′), ∂⋆2 ⟩|

for every (z, z′) ∈ ZQ × ZL

 .

For K ∈ Q, let a0(K) = 3 if |K| is odd and a0(K) = 0 if |K| is even. For v ∈ L,
let d0(v) = 3 if deg v is odd and d0(v) = 0 if deg v is even. Applying the theory
developed in this paper, it is easy to see that H = G⋆ is 3-colorable if and only if
(PG,Q−(a0, d0))/6 contains an integer point. Hence, using integer programming
in bounded dimension, we actually obtain a polynomial-time algorithm for 3-
coloring graphs drawn in a fixed orientable surface as long as the number of
non-4-faces is bounded (without any restrictions on their length). However, in
the case H is a near-quadrangulation, it is likely faster to go through at most
q⋆(H) plausible boundaries and apply the integer programming to the polytopes
PG,f,Q rather than to the higher-dimensional polytope PG,Q.

Moreover, the polytope PG,Q is centrally symmetric; one could hope to use
this fact in connection with Theorem 38 to improve the bound in Theorem 6.
However, the issue here is that the width of PG,Q cannot be lower bounded in
terms of the edgewidth of G, since it can be narrow in a direction (0, z′) for
some z′ ̸= 0—in this case, the constraints are only affected by coboundaries.
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[11] Zdeněk Dvořák and Jakub Pekárek. Irreducible 4-critical triangle-free
toroidal graphs. European J. Combin., 88:103112, 14, 2020. doi:10.1016/
j.ejc.2020.103112.

51

https://doi.org/10.1002/jgt.1005
https://doi.org/10.1007/BF02711514
https://doi.org/10.1016/j.disc.2012.11.011
https://doi.org/10.1137/090766863
https://doi.org/10.1137/090766863
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3531709
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3531709
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:3531709
https://doi.org/10.1016/j.jctb.2020.09.001
https://doi.org/10.1016/j.jctb.2020.09.001
https://doi.org/10.1002/jgt.21842
https://doi.org/10.1002/jgt.21842
https://doi.org/10.1016/j.ejc.2020.103112
https://doi.org/10.1016/j.ejc.2020.103112
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