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(57) ABSTRACT 

A method determines a run-curve of a motion of a vehicle as 
a function of at least a speed of the vehicle and a position of 
the vehicle in a continuous space. First, the method deter 
mines Markov decision process (MDP) With respect to a set of 
anchor states selected from the continuous space, such that a 
control moving the vehicle to a state transitions the MDP to an 
anchor state With a probability determined as a function of a 
distance between the anchor state and the state in the continu 
ous space, and solves the MDP subject to constraints to deter 
mine an MDP policy optimizing a cost function representing 
a cost of the motion of the vehicle. Next, the method deter 
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METHOD FOR OPTIMIZING RUN CURVE OF 
VEHICLES 

FIELD OF THE INVENTION 

This invention relates to optimizing motions of vehicles, 
and more particularly to determining an optimal run curve of 
a vehicle. 

BACKGROUND OF THE INVENTION 

Many transportation problems, such as the energy-ef?cient 
operation of electrical trains, guided transport systems at 
airports, or hybrid cars can be reduced to optimizing a veloc 
ity pro?le of a moving vehicle along a route. The velocity 
pro?le is called a run curve. If a distance along the route is 
denoted by Z, then a desired velocity v(z) at position Z 
describes the run curve. The run curve has to obey legal and 
mechanical constraints of the route, e.g. speed limits, safety 
margins, and must be physically realizable by mechanisms of 
the vehicle. 

For example, an automatic train control (ATC) is a known 
method to control vehicles, such as trains. With ATC, when 
the velocity of the train exceeds a speci?ed permitted maxi 
mum velocity over a particular section of the route, a brake 
system is activated and the train is decelerated. It is advanta 
geous for the run curve determination to be adaptive to vari 
ous constraints, such as constraints on the speed limit. For 
example, the velocity of the high speed train can be regulated 
according to a stepwise reduction of predetermined maxi 
mum velocities, i.e. 80 km/h, 65 km/h, 45 km/h, and 25 km/h. 
If the train is required to run at a given limited velocity over a 
certain section, then the permitted maximum velocity is 
gradually reduced in steps approaching a target limited veloc 
ity of the section. 

However, the optimal run curve should provide more ben 
e?ts that just obeying the legal constraints of the route. For 
example, in some situations, the optimal run curve should 
minimize running times between an origin and a destination, 
e.g., located at z:0 and z:Z, respectively. Additionally, the 
optimal run curve should minimize the required minimal 
energy consumed by the vehicle along the route. 

Usually, these two requirements are contradictory to each 
other, i.e., the shorter the running time, the more energy is 
needed, and vice versa. Thus, there is a need to provide a 
method and a system for determining an optimal run curve for 
the vehicle. 

SUMMARY OF THE INVENTION 

It is an object of various embodiments of an invention to 
provide a system and a method for determining a run curve of 
a vehicle during a trip from an origin to a destination. It is 
further obj ect of some embodiments of the invention to deter 
mine the run curve that optimizes energy consumption of the 
vehicle during the trip. It is further object of some embodi 
ments of the invention to determine the run curve that opti 
mizes both the energy consumption of the vehicle and the 
time of the trip. It is further object of some embodiments of 
the invention to determine the run curve that optimizes the 
energy consumption of the vehicle for a predetermined time 
of the trip. 

It is further object of some embodiments of the invention to 
reduce the computational complexity of the calculation of the 
run curve. It is further object of some embodiment of the 
invention to determine the optimal run curve in real time. It is 
further obj ect of some embodiments of the invention to deter 
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2 
mine a sequence of controls representing the run curve for 
controlling a motion of the vehicle during the trip. 
Some embodiments of the invention are based on a real 

ization that a continuous space of the trip of the vehicle can be 
converted in a discrete space in a form of a Markov decision 

process (MDP), such that solution to the MDP in the discrete 
space can be used to determine the run curve in the continuous 

space. Speci?cally, in some embodiments, the MDP is con 
structed based on another realization that mathematical prop 
erties of probability functions used by the MDP and convex 
combinations of vectors are similar. Such realization is used 
by the embodiments to determine the MDP. Speci?cally, 
embodiments use a principle that a control action, which 
moves the vehicle to a state in a continuous space, transitions 

the MDP to a discrete state of the MDP with a probability 
determined as a function of a distance between the discrete 
state of the MDP and the state in the continuous space. 
A solution of the MDP determines an MDP policy that 

optimizes a cost function. In various embodiments, the solu 
tion to the cost function is subject to constraints, including 
one or combination of a legal constraint, a constraint of a 
route, and a constraint of the vehicle. Also, the cost function 
represents a cost of the motion of the vehicle during the trip. 
The run-curve determined based on the MDP policy opti 
mizes that cost. 

Accordingly, various embodiments vary the cost function 
to achieve speci?c objectives of the embodiments. For 
example, in one embodiment, the cost function represents the 
energy consumption of the vehicle during the trip, and the run 
curve optimizes the energy consumption. Additionally or 
alternatively, in various embodiments, the cost function rep 
resents both the energy consumption and the time of the trip, 
or the energy consumption for a predetermined time of the 
trip. 

Moreover, Applicants herein are generally realized that 
usage of the MDP reduces the complexity of the run curve 
calculation, but not always fast enough to be used in real time 
during the trip of the vehicle. This is because some MDPs 
have self-transitions for the states of the MDP resulting in a 
need for an iterative approach to solve the MDP. However, 
Applicants further realized that speci?c sampling of the con 
tinuous space to embed the MDP can eliminate the self 
transition problem and reduce the complexity of the compu 
tation. 

For example, one embodiment uses equal-distance MDP 
states sampling, wherein the states of the MDP are located on 
a number of vertical lines in a continuous space, such that 
multiple states have the same distance coordinate. Such states 
form a stage, and state transitions occur only between con 
secutive stages, enabling real time solutions, e.g., by means of 
backward dynamic programming. 

Another embodiment uses three-dimensional sampling, 
wherein the MDP for the predetermined time of the trip 
includes a replica of a triangulation for multiple time steps, 
organized into time slices. Each transition is from one time 
slice to the next, which eliminates the self-transition problem. 

Accordingly, one embodiment of the invention discloses a 
method for determining a run-curve of a motion of a vehicle 
as a function of a velocity of the vehicle and a position of the 
vehicle in a continuous space, including determining the 
MDP with respect to a set of anchor states selected from the 
continuous space, such that a control moving the vehicle to a 
state transitions the MDP to an anchor state with a probability 
determined as a function of a distance between the anchor 
state and the state in the continuous space; solving the MDP 
subject to constraints to determine an MDP policy optimizing 
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a cost function representing a cost of the motion of the 
vehicle; and determining a run-curve based on the MDP 
policy. 

Another embodiment discloses a method for determining 
an optimal sequence of controls transitioning a system from 
an initial state to a ?nal state in a continuous space de?ned by 

state variables of the system, wherein the optimal sequence is 
monotonically increasing over at least one state variable, 
wherein the system is a dynamic system having states de?ned 
by a dynamic function of previous states and a discrete set of 
controls, wherein, for each transition, a control is selected 
from the discrete set of controls, such that, for each control, 
the dynamic function transitions the system from a previous 
state to a next state over a step of transition, including: deter 
mining Markov decision process (MDP) with respect to a set 
of anchor states selected from the continuous space, such that 
each control from the discrete set of controls transitions the 
MDP from an anchor state to a next anchor state with a 

probability determined based on a location of the next anchor 
state in the continuous space with respect to a location of a 
state in the continuous space, in which the dynamic function 
of the anchor state and a corresponding control transitions the 
system; solving the MDP to determine an optimal policy for 
the MDP de?ning an optimal control for each anchor state; 
and determining the optimal sequence of controls in the con 
tinuous space based on the optimal policy. 

Yet another embodiment discloses a system for controlling 
a motion of a vehicle comprising: a Markov decision process 
(MDP) curve generating apparatus for determining an MDP 
with respect to a set of anchor states selected from the con 
tinuous space of the motion of the vehicle and for solving the 
MDP to determine an MDP policy optimiZing a cost function 
representing a cost of the motion of the vehicle; a run curve 
generating apparatus for generating a run curve based on the 
MDP policy; a control computer for generating a control 
signal according to the run curve; and a power supply device 
for supplying a power to the vehicle based on the control 
signal. The system can be con?gured to determine the run 
curve of the motion of the vehicle in real time. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1A is a block diagram of a system for determining a 
run curve of a vehicle according to some embodiments of the 

invention; 
FIG. 1B is an example of the run curve determined by a 

system of FIG. 1A; 
FIG. 2 is a schematic of embedding Markov decision pro 

cess (MDP) in a continuous space of the motion of the vehicle 
according to some embodiments of the invention; 

FIG. 3 is a block diagram of a method for determining the 
run curve using the MDP according to some embodiments of 

the invention; 
FIG. 4 is a block diagram of a process for converting a 

continuous state to a discrete state according to embodiments 

of the invention; 
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FIGS. 8A-C are schematics of a method for determining 

the run-curve for a trip of the vehicle having the end time 
?xed. 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

System Overview 
FIG. 1A show a system for determining a nm curve of a 

vehicle 110 according to some embodiments of the invention. 
In this disclosure, the term “vehicle” is used generally and 
includes any means of transportation, such as, but not limited 
to, electrical trains, guided transport systems at airports, or 
hybrid cars. In this non-limiting example, the vehicle 110 is 
an electrical train, wherein the electric power is converted and 
supplied to feeders or ground coils (GC) via breakers. 
A control system 101 of the vehicle 110 can include one or 

combination of a Markov decision process (MDP) curve gen 
erating apparatus 1, a run curve generating apparatus 3, a 
power supply device 5, and a control computer 7. The control 
system determines the run-curve of the motion of the vehicle 
as a function of a velocity of the vehicle and a position of the 
vehicle in a continuous space of a trip of the vehicle along a 
route. 

In various embodiments, the run curve is represented by a 
sequence of controls applied to the vehicle during the trip. 
The implementation of the control system can be performed 
within the circuits of the vehicle, in a remote control center 
120, and/or can be distributed between the vehicle and the 
control center. The communications between the vehicle and 
the control center can be achieved using wireless transceivers 
11-13. Various components and modules of the control sys 
tem can be implemented using a processor. 
The MDP curve generating apparatus determines the MDP 

with respect to a set of anchor states selected from the con 
tinuous space and solves the MDP to determine an MDP 
policy 111 optimiZing a cost function representing a cost of 
the motion of the vehicle. For example, in various embodi 
ments, the cost function represents one or combination of the 
energy consumption of the vehicle during the trip, a time of 
the trip, both the energy consumption and the time of the trip, 
or the energy consumption for a predetermined time of the 
trip. 
As shown in FIG. 1B, the run curve generating apparatus 3 

generates a run curve 113 based on the MDP policy from an 
origin 142 to a destination 144. In some embodiments, the run 
curve is represented by a sequence of controls de?ning the 
motion of the vehicle. 

In one embodiment, each control in the sequence is 
selected from a set of discrete controls including an acceler 
ating control 152, a decelerating control 154, a running at a 
constant speed control 156, and a coasting control 158. Also, 
in various embodiments, the solution to the MDP and/ or the 
run curve 113 is subject to constraints including one or com 
bination of a legal constraint, a constraint of the route and a 
constraint of the vehicle. The constraints and the cost function 
can be provided 125 by the control center. Examples of con 
straints include a speed limit constraint 130 and speed restric 
tion constraint 135 

c1an tn 
. 91115 n; 

angles representing selected continuous state according to 
embodiments of the invention; 

FIG. 6 is a schematic of a process for triangulating con 
tinuous states according to embodiments of the invention. 

FIG. 7A is a schematic of a MDP without self transitions; 
FIG. 7B is are schematics of an equal-distance (ED) MDP 

method according to embodiments of the invention; and 

60 
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lhe power supply deV1ce 5 supp11es power 115 to the 
ground coils GC which drive the train. The control computer 
7 generates a control signal 117 to control the power supply 
device 5 according to the run curve 113. 

Problem Formulation 
Some embodiments of the invention are based on a real 

ization that the run-curve optimization can be de?ned as an 
optimal control problem, such that a problem of determining 
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optimal run curves is reduced to optimizing, e.g., simulta 
neously, time and energy criteria of the trip. 

The dynamics of the vehicle can typically be represented 
by a set of differential equations specifying the relative posi 
tion z(t) of the vehicle along the route at time t, and the 
velocity v(t) of the vehicle according to 

where the function a(z,v,u) describes acceleration of the 
vehicle when action u is applied to the vehicle at position Z 
while moving at the velocity v. The function a incorporates 
the inertia of the vehicle, as represented by its mass and 
velocity, the slope (gradient) of the route at the location Z, as 
well as the air resistance at velocity v. 

If the state of the vehicle is a vector x:[z, v]T, then the 
dynamics of the vehicle can be represented by the vector 
valued equation x:f(x,u). The dynamic function f incorpo 
rates various constraints of the motion of the vehicle. For 
example, the velocity of the vehicle shouldnot exceed a speed 
limit. 

The instantaneous power consumed by the vehicle is rep 
resented by a function p(z,v,u), which depends on position, 
velocity, and applied control, but is otherwise time indepen 
dent. When regenerative brakes are used, the functionp(z,v,u) 
can also be negative, representing energy that is generated by 
the vehicle and returned to an energy source. For example, for 
the case of electrical trains, the source is a catenary power 
cable above the tracks. A given control trajectory u(t), OstsT 
results in a total energy expenditure of 

where T is the terminal time of the trip, that is, the time when 
the vehicle reaches its intended destination. 

The embodiments use various formulations of the run 
curve optimization problem depending on whether the termi 
nal time T of the trip is ?xed or not. 

Formulation VTT (Variable Terminal Time) 
The terminal time T is not ?xed, and the objective of the 

embodiment is to minimize a weighted sum JIuE+(l—u)T of 
energy and time, for a weight u, Osusl. The weight can be 
selected according to economic considerations, e. g., the rela 
tive cost of a unit of energy vs. that of a unit of time for all 
passengers in the vehicle. 

Formulation FTT (Fixed Terminal Time) 
The terminal time T is ?xed and speci?ed in advance, and 

the objective of the embodiment is to minimize the energy 
JIE. This formulation can be useful when the trip between the 
origin and destination can take up to T units of time. 

In both cases, the embodiments determine a function u(t), 
OstsT which minimizes the cost I of the motion of the 
vehicle, subject to the dynamics of the vehicle x:f(x,u), and 
the constraints and conditions z(0):0, z(T):Z, v(0)q/(T)q/ 
(Z):0, and Osv(z)svmax(z), where Z is the distance between 

the location z(t). 
Both formulations VTT and FTT represent optimal control 

problems, and the optimal function u(t) can be found by 
solving Equation 1 below, known as the Hamilton-Jacobi 
Bellman (HJ B) equation. If we de?ne the instantaneous cost 
incurred when control u is applied at state x as c(x,u), and the 
optimal cumulative cost-to-go until the end destination as 
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6 
V(x,t), then the H] B equation relates the time derivative of V 
to the instantaneous cost c and the gradient of V in the state 
space according to 

13V(x, r) (l) 
a 

Here the gradient VV(x,t) is the vector of all spatial deriva 
tives of V(x,t) with respect to the state variables, in this case 
z and v. For the formulationVTT, the immediate cost function 
c(x,u) is de?ned as c(x,u) “é’ p.p(x,u)+ l —p., and for formulation 
FTT, as c(x,u)‘é’ :p(x,u). 
The HJB equation is a partial differential equation (PDE) 

that is seldom possible to solve analytically. Speci?cally for 
run-curve optimization, analytical solutions do not appear to 
be available, and numerical methods must be applied instead. 
The conventional method of solving PDEs is to perform 
numerical discretization by either ?nite differences or ?nite 
elements, followed by solution procedures such as the Galer 
kin, Rayleigh-Ritz method for multidimensional problems, 
or collocation. In general, implementing and verifying direct 
solutions to the H] B equation is dif?cult, and results in 
lengthy computations. 

Accordingly, the embodiments use alternative solutions 
based on Markov decision processes, as described below. 
Markov Decision Processes for Run-Curve Computation 
FIG. 2 show a schematic of embedding the MOP in a 

continuous space of the motion of the vehicle. Various 
embodiments determine the MDP with respect to a set of 
anchor states 210 selected from the continuous space 200 of 
the motion of the vehicle 110. Typically, the continuous space 
is de?ned as a function of the velocity V of the vehicle and a 
position Z of the vehicle. Other de?nitions of the continuous 
space are possible. A control 220, e. g., acceleration or decel 
eration, moves the vehicle to a state y 225 in the continuous 
space. However, the embodiments use the realization that the 
control 220 also transitions the MDP to an anchor state, e. g., 
an anchor state p2 210' with a probability determined as a 
function of a distance 230 between the anchor state 210' and 
the state 225 in the continuous space. 

Accordingly, the embodiments represent the continuous 
state-space problem in the form of a Markov decision process 
(MDP), and solve the MDP by, e.g., dynamic programming, 
value iteration, or policy iteration. A discrete- space of MDP is 
described by the tuple (S,A,P,R). The discrete-space includes 
a discrete set S of N states Was, lsisN such that the MDP 
occupies one of these states skeS at any time tk, and a set U of 
L actions u(t)eU, lslsL that can be applied at any given time. 
The starting state so is known and ?xed. A transition prob 
ability function P expresses the probability pl-J-ZLL’ Pr(sk+l: 
so) I s k:s(l),ukq1(l)) of being in state S k+ 1:80) at time tk+1 if the 
MDP was in state S kIsU) at time tk and control (action) 11k:l1(1) 
was applied at that time. Similarly, a reward function R 
expresses the reward (or cost) RI. 1%” r(sk:s(l), uk:u(l)) of apply 
ing action ukqlw to state s kISU) at time tk. The MDP evolves 
in discrete decision epochs that can occur at regular time 
intervals (e.g., tkaAt), or can have no ?xed time duration 
aac e o em. ‘5 e so u ion 0 e V i ‘ op 1m1zes a per 

formance measure according to JIZACOKr(sk,uk). 
FIG. 3 show a block diagram of a method for determining 

the run curve using the MDP. Because the MDP has discrete 
state space and evolves in discrete decision epochs, the 
embodiments use a series of discretizations 310 of the con 
tinuous space 200 that make the problem amenable to the 
MDP method. The ?rst discretization 320 concerns the set of 
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available controls that can be applied to the vehicle. At any 
given moment, some embodiments restrict the controls to one 
of the following four: accelerating (ul), decelerating (u2), 
running at a constant velocity (u3), and coasting, (u4), which 
is a movement due to the vehicle’s own momentum. Such a 

restriction appears to be typical for transportation systems, 
and results in compact representation of the optimal 
sequences of controls. However, an alternative control dis 
cretization is possible, and within the scope of the invention. 

The second discretization 330 discretizes the continuous 
state and continuous-time dynamics of the vehicle to create 
discrete state space of the MDP. Various embodiments use 
different discretization methods 330 depending on the formu 
lation of the problem, e. g., the VTT or the FTT, and the MDP 
solution method. Examples of those methods are described 
below. 
A solution 350 of the MDP determines an MDP policy 111 

that optimizes a cost function 355. In various embodiments, 
the solution is determined subject to constraints including one 
or combination of a legal constraint, a constraint of a route 
and a constraint of the vehicle. Also, the cost function repre 
sents a cost of the motion of the vehicle during the trip, and the 
run-curve determined based on the MDP policy optimizes 
that cost. Accordingly, various embodiments vary the cost 
function to achieve speci?c objectives of the embodiments. 
For example, in one embodiment, the cost function represents 
the energy consumption of the vehicle during the trip, and the 
run curve optimizes the energy consumption. Additionally or 
alternatively, in various embodiments, the cost function rep 
resents both the energy consumption and the time of the trip, 
or the energy consumption for a predetermined time of the 
trip. 

The MDP policy represents the optimal control policy in 
discrete space. Accordingly, the embodiments determine 360 
the run curve 113 in the continuous space based on the opti 
mal policy, e.g., determines a control law u:p(x) that is a 
mapping from the continuous state x of the moving vehicle, as 
opposed to the discrete state of the embedded MDP. 

Several methods of the mapping are used by the embodi 
ments. For example, a nearest anchor point 372 method deter 
mines the closest anchor state xU) to x in the embedding 
continuous space in terms of, e.g., Euclidean distance, and 
use the optimal control for the corresponding MDP state s0): 

u:rc*(s(i)). 
Alternatively, a largest vote method 374 determines a sim 

plex in that includes the continuous state x, and determines 
the barycentric coordinates c of the state x with respect to the 
three vertices va, j:l,3 of that simplex. 
If uj:s'c*(SU)), where S0) is the state corresponding to vertex 
va, then the barycentric coordinates cj are used as an indi 
vidual vote for the control u], and the optimal control 
sequence includes the action that has a highest cumulative 
vote over all three vertices. 

Also, a highest expected merit method 376 uses the bary 
centric coordinates to estimate the merit Q(x,u) of the indi 
vidual control u taken in state x as ng,u):ZJ-:l3cJ-Q(s(j),u), 

alld lec L/UlltlUl 161W P(A)ialélllaAuQ(As Ll). Givcu barycentric coordinates c can be interpreted as individual 

probabilities that the MDP is in one of its discrete states, the 
function Q(x,u) is the expected merit of taking control action 
u at the continuous state x. 

Other variations of determining the run curves based on the 
MDP policy are possible and within the scope of the inven 
tion. 
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8 
Continuous State Discretization 
Equal-Time MDP for VTT 
In the equal-time MDP for VTT method of discretization, 

time is discretized at constant time intervals of length At, such 
that decisions and state transitions occur at times tkaAt, 
where k is an integer. Accordingly, the control 220 of FIG. 2 
transitions the system over a ?xed period of time. The equa 
tions of motion of the vehicle can be integrated forward in 
time for one time interval to obtain a set of difference equa 
tions for the successor state at the end of that time interval, as 

from initial state xqutk) 
The control action u k 220 remains constant throughout the 

entire time step, but the continuous state x(t), tkststk+l, fol 
lows a smooth trajectory from xk to xk+l. As described above, 
if one or both of the state variables reach their limits during 
this integration, the variables should remain within the limits. 

The integration method can be either exact or numerical. 
For example, if forward Euler integration is used, then the 
following set of approximate dynamical equations is used by 
some embodiments: 

where (xk is the acceleration of the vehicle, [3k is the decelera 
tion, both according to the selected action uk, and yk is the 
acceleration/deceleration due to the slope of the route, air 
resistance, and wheel friction. The time step of the integration 
can also be different, e.g., smaller, than the time interval At, in 
which case multiple integration steps are taken with total 
duration equal to At. 

Similarly, the immediate cost. C(xk,uk) incurred during one 
epoch is the integral of the instantaneous cost c(x,u) over that 
epoch. The energy part of that cost is 

In the general case, the energy has two components: a 
motive component g(xk,uk) and a regenerative component 
h(xk,uk): e(xk,uk):g(xk,uk)—h(xk,uk). The motive component 
is de?ned as g(xk,uk):motkvat/Ek, where m is the mass of the 
vehicle, and Ek<l is the ef?ciency of conversion of electrical 
energy into mechanical by the motor. When dissipative 
brakes are used, the kinetic energy of the vehicle is converted 
to heat, and the regenerative component is zero: h(xk,ak). 
When regenerative braking is used, the motor functions as a 
generator. 
The generated energy is either returned to the power grid 

via the catenary power cable, or stored in a battery. The 
regenerative component is de?ned as h(xk,uk)im[3kkakAt, 
where Xk<l is the ef?ciency of converting mechanical energy 
into electrical energy by the motor, used as a generator. In 
most cases, Xk<Ek for the same state xk. 

In the formulation of the VTT, the immediate cost also has 
a time component, which is equal to (l—p.)At, such that 

The similarities between vehicle dynamics and the MDPs 
are that both evolve in discrete time under the effect of a small 
number of discrete actions, and both seeK to optimize a per 
formance criterion de?ned over states and actions. 
The two major differences are in the type of state used 

(continuous xeR2 vs. discrete seS) and in the way state evo 
lution is described (function F(x,a) vs. probability transition 
function Pi?). The objective of the conversion method, then, is 
to construct a state set S embedded in R2 and a transition 
function Pl-jZ for every triple (s(i),s(j),u(l)). After the MDP is 
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constructed, an optimal policy u:s'c(s(i)) that maps states to 
optimal controls can be determined for every swes, by using 
various methods, such as policy iteration and/ or value itera 
tion methods. 
Some embodiments use similarities in the mathematical 

properties of probability functions and convex combinations. 
A probability function (also called sometimes a probability 
mass function to distinguish it from a probability density 
function) speci?es the probability that a random variable is 
equal to some speci?ed value. For the case of the MDPs, the 
transition function is such a (conditional) probability mass 
function, conditioned on the starting state S kISU) and the 
applied control 11k:u(l). The random variable for which the 
probability function is speci?ed is the successor state S k+ 1. If 
the size ofthe state set S is N, let S“), SQ), . . . , SW) be an 
enumeration of all states. The elements of the transition func 

tion can then be de?ned as pj‘é’ PUZIPr(sk+1:sU)||sk:s(i), 
ukqlw). From the axiomatic properties of probability mass 
functions, it is always true that ZJ-IINpJ-Il, and p120, j:l,N. 
On the other hand, a convex combination of N vectors yj, 
j:l,N is de?ned as ZJIIchyj, such that Zj_lch:l, and c120, 
j:l,N. 

By comparing the two de?nitions, Applicants realized that 
probability mass functions and the set of coef?cients de?ning 
a convex combination obey exactly the same constraints, and 
a valid probability function can be used as coef?cients of a 
valid convex combination, and vice versa. The embodiments 
use this realization to construct all transition functions of the 
MDP as sets of coef?cients for suitably de?ned convex com 
binations. 

Determining MDP 
FIGS. 4-6 show an example of determining the MDP from 

the continuous space of dynamic system, such as the vehicle 
110. In various embodiments, a sequence of controls transi 
tioning the dynamic system from an initial state to a ?nal state 
in a continuous space de?ned by state variables of the system. 
The optimal sequence is monotonically increasing over at 
least one state variable, e. g., the distance of the trip. The states 
of the dynamic system are de?ned by a dynamic function of 
previous states and a discrete set of controls. For each transi 
tion, a control is selected from the discrete set of controls, 
such that, for each control, the dynamic function transitions 
the system from a previous state to a next state over a step of 
transition. 

The dynamical system has the set X of continuous states 
x6) 401. Each state can be represented by a d-dimensional 
vector. The method selects 410 N continuous states XV) 411 
from the set X, such that each state x6) corresponds to one of 
the N discrete states SU) in the set S and forms the MDP states 
409. The selecting can sample the continuous state space 
uniformly and randomly. The selected states are stored in a 
d><N matrix B 412, where each column is one of the selected 
states. 

In one embodiment, Delaunay triangulation DTQi) is 
applied 420 to the set. The triangulation produces M triangles 
m. The triangles are stored in a matrix D 421, where each 
column corresponds to a triangle, and the three rows corre 
spond to the vertices of the triangles. 
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401 and control am 402 is retrieved 510, and used to deter 
mine 510 a next state y:f(x(i),a(l)) 504, where f is an arbitrary 
non-linear function that describes the evolution of the con 
tinuous-state-space system. FIG. 5 shows the case when i:0, 
and y:f(x(0),a), for some action a. 
As described for FIG. 6, the next state y 225 does not 

coincide with any of the selected states x0). The particular 
triangle m 240 in DTQi) that contains the next state y 225 is 
located 600 by traversing all M triangles. 

For the current triangle m, the last vertex vm, am of the 
triangle m is retrieved and stored 610 in a vector q. A d><d 
difference matrix E 621 is constructed 620. In the matrix E, 
column j contains the differences va—q, for j:l, d. A d-di 
mensional vector c is determined such that Ec:(y—q) by solv 
ing a set of simultaneous linear equations. 
The ?nal element ca,+1 641 of the vector cis determined 640 

as cd+l:l—Zj:chJ-. For every element cj, j:l, d+l, test ifcj is 
negative, i.e., c j<0. If true, then the triangle in does not contain 
the state y, increment m, and repeat for the next triangle. 

Otherwise, if all c j are positive, then the triangle m contains 
the state y. The d+l-dimensional vector c contains coef? 
cients that de?ne a valid convex combination such that 
yIZFIdchva at step 520. Therefore, the vector c de?nes a 
valid probability transition function, because all of its entries 
are non-negative and sum to unity. 

To construct a complete transition probability distribution 
for all possible N next states, the following step are performed 
for each discrete state s(1),l:l ,N. 

If the state s0) corresponds to one of the vertices of the 
triangle m, that is, x0)qu 530 for some j, then the corre 
sponding transition probability p Z 230 of the MDP is 

Conceptually, the dynamical system represented by the 
function f is equivalent to a probabilistic representation 
involving only a small set of discrete states S0) embedded in 
the continuous states X of the dynamical system. 

If the system starts in one of these states, then the next state 
y, in general, does not coincide with another one of these 
states. The d+l states that de?ne the vertices of the triangle 
completely enclose the next state y. That is, the system has 
transitioned not to the state y, but to the vertices of the corre 
sponding triangle with various probabilities. 
The probabilities are equal to a convex decomposition of 

the state y with respect to the vertices of the triangle that 
contains the state y. These probabilities can also be viewed as 
barycentric coordinates of the state y with respect to the 
vertices of the enclosing triangle. This is made possible by the 
similarities between convex combinations and probability 
mass functions for the MDP. 

To decrease processing time, an inverse E'1 of the matrix E 
can be stored for every triangle in the Delaunay triangulation, 
and then used in step 330 to determine 

CIE’IOHI), 
rather than solving a set of linear equations each iteration. 

In some embodiments, the traversal of the triangles of the 
Simplex 
Generally, each triangle can be replaced by the more gen 

eral term simplex, which is a generalization of a triangle in a 
state space X of arbitrary dimensionality d. For example if the 
number of dimensions d:2, then the number of vertices in the 
simplex (or triangle) is d+l:3, and for d:3, the simplex is a 
tetrahedron with d+ l :4 vertices. 
As shown in FIG. 5, the states s are converted 500 one state 

at a time. For each state SU) 503, the corresponding state x6) 
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Delaunay triangulation is improved based on a realization 
that the triangle that encloses the next state y is near the 
triangle for the current state. If the distance between the 
current state and the centroid of each triangle is predeter 
mined, then the triangles of the Delaunay triangulation can be 
traversed in increasing order of the distances. 

Solving the Equal-Time MDP 
Some embodiments solve the MDP using a value iteration 

procedure, which includes executing the following assign 
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ment in multiple passes over the entire state space of the MDP 
until the value function V(s) converges: 

(Z) 

s 

A single such assignment is known as a Bellman back-up 
and is computationally simple, because there are at mo st three 
possible successor states s' for each state s. During these value 
iteration steps, the value of the terminal state that corresponds 
to the destination station is held constant and equal to some 
suitable value, e.g., zero. After the value function converges, 
the value function satis?es Equation 2 as equality. After that, 
the optimal policy for the MDP can be determined as 
n*(s):argmaqu(s,u), where we make use of the auxiliary 
function Q(s,u):R(s,u)+Zs'Pr(sk+l:s'lskIs,ukq1)V(s'). 

Equal-Distance MDP for VTT 
The equal-time (ET) MDP method is relatively slow, due to 

the need to use the value iteration procedure. This need arises 
from the cycles in the transition graph of the MDP. For 
example, when a transition out of the vertex x6) of one triangle 
ends up in that same triangle, the resulting MDP has a self 
transition for the state SQ) corresponding to this vertex. 
Hence, the corresponding Bellman equation for that state 
includes V(sm) on both sides of the equation resulting in an 
iteration to a ?xed point. 

Accordingly, there is a need to construct an MDP where the 
states are linearly ordered in such a way that the Bellman 
equation for every state s includes in its right-hand side only 
successor states that are lower in that order than the state Such 
MDPs can be solved using only a single Bellman back-up per 
state, starting with the lowest elements and proceeding back 
ward to the highest. Clearly, an MDP with self-transitions 
does not have such an ordering. However, the MDPs con 
structed based on equal-distance of the control actions, rather 
than equal-time control action described above, have such 
linear ordering. 

FIG. 7A show the MPD 700 without self-transitions deter 
mined based on the equal-distance (ED) MDP method. FIG. 
7B shows an example of a method for determining the MDP 
700. The route Z in the continuous space (Z,v) of the moving 
vehicle is partitioned by multiple vertical lines 710 2:2], and 
each of these lines include a number of anchor states 715 of 
the MDP having the same coordinate Z. The transition rules 
of the MDP are also changed, i.e., each transition 720 starts at 
a state 730 with coordinates [Zj,V], for some line index j and 
velocity v, and the control action u is executed until the 
distance coordinate reaches ending state y 740 on the next 
line, i.e., ZIZj+1. Duration of the transition 725 varies accord 
ing to the starting state and the control action. 
Due to ED method, the decomposition of the ending state y 

into barycentric coordinates results in at most two non-zero 
values for the three coordinates, i.e., p2 and p3, because the 
ending state y is always on one of the sides of a triangle in the 
Delaunay triangulation of the state space. Equivalently, when 
the barycentric coordinates are interpreted as transition prob 
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decomposed in sequential stages, and the vehicle moves from 
stage to stage in each decision step, i.e., the step of the tran 
sition is determined 760 as a function of distance, such that 
each control transition the system from the previous state of a 
previous stage to the next state on a next stage. Then, by 
performing Bellman back-ups stage by stage, starting with 
the last stage and proceeding backward in time, the value 
function is determined in only one pass of state space, rather 
than in multiple passes required by the value iteration proce 
dure. 
The resulting MDP is the ED-MDP, because all transitions 

between states in stages j and j+l cover the same distance 
along the vehicle path (equal to Zj+l—Zj). The ED-MDP is a 
special case of the general MDP approach, where all bary 
centric coordinates are degenerate in a way that at most two of 
them are greater than zero. From computational point of view, 
determining these positive coordinates is also much simpler 
than in the general case, because only the states in stage j+l 
are be considered. One embodiment sorts the velocities in 
ascending order and use a binary search on the velocities to 
?nd the two states with positive transition probabilities. In 
addition, one variation of this embodiment spaces the states in 
a given stage equally along the velocity coordinate with step 
Av, and the computation of transition coordinates is reduced 
to rounding up and down of the ratio v/Av of the velocity v of 
the ending state y and the discretization step Av. 

Equal-Time MDP for FTT 
FIGS. 8A-C show some principles and an example of a 

method for determining the run-curve for a trip of the vehicle 
having the terminal time T ?xed, according to some embodi 
ments of the invention. Those embodiments augment the state 
space 800 of the MDP with a time coordinate tk, such that 
tkaAt, and TItKIKAt. In this case, the terminal time T is an 
integer multiple of the time step At 810. Each state 820 of the 
MDP is described by the triple [Z,v,t], and transitions 830 
occur between consecutive time steps. The state space of the 
MDP can be organized into time slices 840, where each slice 
is a replica of the triangulation for the ET-MDP case. e.g., the 
continuous space 200. Each transition takes place between a 
starting state in one slice and an end state in the next slice. 
The MDP policy is determined by computing the value 

functionV(s,t) for every augmented state (s,t), where the state 
includes time. In general, the value function for the same state 
s, but different times t l and t2, is not the same. In this case, the 
Bellman back-up for the augmented states is 

Because the successor states s' is always in slice k+l (for 
time tk+l), there are no self transitions in the MDP. Such 
three-dimensional sampling, wherein the MDP for the prede 
termined time of the trip includes a separate replica of the 
triangulation for multiple time steps organized into time 
slices and each transition is performed from one time slice to 

abilities of the MDP, transitions always start at a state on line 
Zj and end in one or two states on line Zj+ 1, meaning that the 
MDP does not have self transitions. 
Some embodiments partition 750 the continuous space of 

traveled distance in a set of periods of distances forming a set 
of stages in the continuous space. The set of anchor states is 
selected 770 such that a location of each anchor state in the 
continuous space is on a stage from the set of stages, i.e., the 
states lying on line Zj forms stage j. The resulting MDP is 
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the next, eliminates the self-transition problem. 
The value function can be determined by dynamic pro 

gramming, using the above equation, starting with the last 
slice (K), and proceeding backward in time until the starting 
slice and state. Although the method is not iterative, and only 
a single pass over the augmented state space is necessary. This 
MDP has K times more states than the one for the ET-MDP or 
ED-MDP for VTT, and its computation time is that many 
times longer. 
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FIG. 8C shows a block diagram of a method for determin 
ing Markov decision process transitioning a system from an 
initial state to a ?nal state in a continuous space de?ned by 
state variables of the system. The state variables include 
speed of the vehicle, position of the vehicle and a travel time 
the vehicle travels over the traveled distance forming a three 
dimensional continuous space. 
At step 850, the method partitions the traveled time in a set 

of periods of times forming a set of time slices in the continu 
ous space, such that each control transitions the system from 
the previous state in a previous time slice to the next state in 
a next time slice. At step 860, the method samples the con 
tinuous space to determine the set of anchor states, such that 
each anchor state is located in a time slice, wherein each time 
slice includes at least one anchor state, such that each control 
transitions the MDP from the anchor state in the previous time 
slice to the next anchor state in the next time slice. 

Next, a simplex 240 enclosing the state in the next time 
slice is determined 870, wherein vertices of the simplex are 
formed by a subset of the set of anchor states in the next time 
slice. The probability of transitioning the MDP from the 
anchor state to each anchor state in the subset is determined 
880 as barycentric coordinates of the location of the state 
within the simplex, and the probability of transitioning the 
MDP from the anchor state to the next anchor state not form 
ing the subset is assigned 890 zero. 

The embodiments can be implemented in any of numerous 
ways. For example, the embodiments may be implemented 
using hardware, software or a combination thereof. When 
implemented in software, the software code can be executed 
on any suitable processor or collection of processors, whether 
provided in a single computer or distributed among multiple 
computers. Such processors may be implemented as inte 
grated circuits, with one or more processors in an integrated 
circuit component. Though, a processor may be implemented 
using circuitry in any suitable format. 

Also, the various methods or processes outlined herein 
may be coded as software that is executable on one or more 

processors that employ any one of a variety of operating 
systems or platforms. Additionally, such software may be 
written using any of a number of suitable programming lan 
guages and/or programming or scripting tools, and also may 
be compiled as executable machine language code or inter 
mediate code that is executed on a framework or virtual 
machine. 

The terms “program” or “software” are used herein in a 
generic sense to refer to any type of computer code or set of 
computer-executable instructions that can be employed to 
program a computer or other processor to implement various 
aspects of the present invention as discussed above. 

Computer-executable instructions may be in many forms, 
such as program modules, executed by one or more comput 
ers or other devices. Generally, program modules include 
routines, programs, objects, components, data structures that 
perform particular tasks or implement particular abstract data 
types. Typically the functionality of the program modules 
may be combined or distributed as desired in various embodi 
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Although the invention has been described by way of 

examples of preferred embodiments, it is to be understood 
that various other adaptations and modi?cations may be made 
within the spirit and scope of the invention. Therefore, it is the 
object of the appended claims to cover all such variations and 
modi?cations as come within the true spirit and scope of the 
invention. 

We claim: 
1. A method for determining a run-curve of a motion of a 

vehicle during a trip along a route as a function of at least a 
velocity of the vehicle and a position of the vehicle in a 
continuous space of the trip, comprising steps of: 

determining a Markov decision process (MDP) with 
respect to a set of anchor states selected from the con 
tinuous space, such that a control moving the vehicle to 
a state transitions the MDP to an anchor state with a 

probability determined as a function of a distance 
between the anchor state and the state in the continuous 
space, wherein the determining the MDP comprises: 
partitioning a traveled distance of the vehicle in a set of 

periods of distances forming a set of stages in the 
continuous space; 

determining a step of the transition as a period of dis 
tance, such that each control transition the system 
from a previous state of a previous stage to a next state 
on a next stage; and 

selecting the set of anchor states such that a location of 
each anchor state in the continuous space is on a stage 
from the set of stages; 

solving the MDP subject to constraints to determine an 
MDP policy optimizing a cost function representing a 
cost of the motion of the vehicle; and 

determining the run-curve based on the MDP policy, 
wherein at least some of the steps are performed in a 
processor of the vehicle. 

2. The method of claim 1, wherein the constraints include 
one or combination of a legal constraint, a constraint of the 
route and a constraint of the vehicle. 

3. The method of claim 1, wherein the cost function repre 
sents energy consumption of the vehicle during the trip, such 
that the run-curve optimizes the energy consumption of the 
vehicle during the trip. 

4. The method of claim 1, wherein the cost function repre 
sents both energy consumption of the vehicle during the trip 
and a total time of the trip, such that the run-curve optimizes 
a combination of energy consumption of the vehicle and a 
total time of the trip. 

5. The method of claim 1, wherein the cost function repre 
sents energy consumption of the vehicle during a predeter 
mined time of a trip, such that the run-curve optimizes the 
energy consumption of the vehicle during the predetermined 
time of the trip. 

6. The method of claim 1, wherein the determining the 
run-curve based on the MDP policy uses a method selected 
from a group consisting of a nearest anchor point method, a 
largest vote method, and a highest expected merit method. 

ments. 

Also, the embodiments of the invention may be embodied 
as a method, of which an example has been provided. The acts 
performed as part of the method may be ordered in any 
suitable way. Accordingly, embodiments may be constructed 
in which acts are performed in an order different than illus 
trated, which may include performing some acts simulta 
neously, even though shown as sequential acts in illustrative 
embodiments. 
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7. The method of claim 1, wherein the determining the 
MDP comprises: 

determining a simplex enclosing the state in the continuous 
space, wherein vertices of the simplex are formed by a 
subset of the set of anchor states; and 

determining the probability of transitioning the MDP from 
the anchor state to each anchor state in the subset as 
barycentric coordinates of a location of the state within 
the simplex. 






