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Abstract5

Let C(n) denote the maximum number of induced copies of 5-cycles in graphs on n6

vertices. For n large enough, we show that C(n) = a · b · c · d · e+C(a) +C(b) +C(c) +7

C(d) + C(e), where a + b + c + d + e = n and a, b, c, d, e are as equal as possible.8

Moreover, for n being a power of 5, we show that the unique graph on n vertices9

maximizing the number of induced 5-cycles is an iterated blow-up of a 5-cycle.10

The proof uses flag algebra computations and stability methods.11

1 Introduction12

In 1975, Pippinger and Golumbic [20] conjectured that in graphs the maximum induced13

density of a k-cycle is k!/(kk − k) when k ≥ 5. In this paper we solve their conjecture for14

k = 5. In addition, we also show that the extremal limit object is unique. The problem of15

maximizing the induced density of C5 is also posted on http://flagmatic.org as one of16

the problems where the plain flag algebra method was applied but failed to provide an exact17

result. It was also mentioned by Razborov [25].18

Problems of maximizing the number of induced copies of a fixed small graph H have19

attracted a lot of attention recently [8, 14, 29]. For a list of other results on this so called20

inducibility of small graphs of order up to 5, see the work of Even-Zohar and Linial [8].21
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Denote the (k − 1)-times iterated blow-up of C5 by Ck×
5 , see Figure 1. Let Gn be the set22

of all graphs on n vertices, and denote by C(G) the number of induced copies of C5 in a23

graph G. Define24

C(n) = max
G∈Gn

C(G).25

We say a graph G ∈ Gn is extremal if C(G) = C(n). Notice that, since C5 is a self-26

complementary graph, G is extremal if and only if its complement is extremal. If n is a27

power of 5, we can exactly determine the unique extremal graph and thus C(n).28

Theorem 1. For k ≥ 1, the unique extremal graph in G5k is Ck×
5 .29

Figure 1: The graph Ck×
5 maximizes the number of induced C5s.

To prove Theorem 1, we first prove the following theorem. Note that this theorem is30

sufficient to determine the unique limit object (the graphon) maximizing the density of31

induced copies of C5.32

Theorem 2. There exists n0 such that for every n ≥ n033

C(n) = a · b · c · d · e + C(a) + C(b) + C(c) + C(d) + C(e),34

where a + b + c + d + e = n and a, b, c, d, e are as equal as possible.35

Moreover, if G ∈ Gn is an extremal graph, then V (G) can be partitioned into five sets36

X1, X2, X3, X4, and X5 of sizes a, b, c, d and e respectively, such that for 1 ≤ i < j ≤ 5 and37

xi ∈ Xi, xj ∈ Xj, we have xixj ∈ E(G) if and only if j − i ∈ {1, 4}.38

In the next section, we give a brief overview of our method, in Section 3 we prove39

Theorem 2, and in Section 4 we prove Theorem 1.40

2 Method and Flag Algebras41

Our method relies on the theory of flag algebras developed by Razborov [21]. Flag algeb-42

ras can be used as a general tool to attack problems from extremal combinatorics. Flag43
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algebras were used for a wide range of problems, for example the Caccetta-Häggkvist con-44

jecture [15, 24], Turán-type problems in graphs [7, 11, 13, 19, 22, 26, 27], 3-graphs [9, 10]45

and hypercubes [1, 3], extremal problems in a colored environment [2, 4, 6], and also to46

problems in geometry [17] or extremal theory of permutations [5]. For more details on these47

applications, see a recent survey of Razborov [23].48

A typical application of the so-called plain flag algebra method provides a bound on49

densities of substructures. To get a good bound, true inequalities and equalities involving the50

densities of substructures are combined with the help of semidefinite programming. This step51

is by now largely automated, there is even an open source application called Flagmatic [29],52

which gives easy to check certificates for the validity of this step. In some cases the bound53

is asymptotically sharp. Obtaining an exact result from the sharp bound usually consists of54

first bounding the densities of some small substructures by o(1), which can be read off from55

the flag algebra computation. Forbidding these structures can yield a lot of information56

about the structures of the extremal structure. Finally, stability arguments are used to57

extract the precise extremal structure.58

A similar approach can work in some cases where the bound on the desired density is not59

asymptotically sharp but merely very close to the extremal example. In this case, one may60

find bounds very close to 0 for a number of small substructures, and again these bounds may61

suffice for a stability argument.62

Both of these ‘lucky’ cases happen most often when the extremal construction is ‘clean’,63

for example a simple blow-up of a small graph, replacing each vertex by a large independent64

set. Simple blow-ups of small graphs appear very often as extremal graphs, in fact there65

are large families of graphs whose extremal graphs for the inducibility are of this type, see66

Hatami, Hirst and Norin [12]. However, there are also many problems where the extremal67

construction is an iterated blow-up as shown by Pikhurko [18].68

For our problem, the conjectured extremal graph has such an iterated structure, for69

which it is rare to obtain the precise density from plain flag algebra computations alone.70

One such rare example is the problem to determine the inducibility of small out-stars in71

oriented graphs [9] (note that the problem of inducibility of all out-stars was recently solved72

by Huang [16] using different techniques). Hladký, Krá
,
l and Norin announced that they73

found the inducibility of the oriented path of length 2, which also has an iterated extremal74

construction, via a flag algebra method. In [4] we determined the iterated extremal con-75

struction maximizing the number of rainbow triangles in 3-edge-colored complete graphs.76

Other than these three examples, we are not aware of any applications of flag algebras which77

completely determined an iterative structure.78

For our question, a direct application of the plain method gives an upper bound on the79

limit value and shows that limn→∞C(n)/
(
n
5

)
< 0.03846157, which is slightly more than the80

density of C5 in the conjectured extremal construction, which is 1
26
≈ 0.03846154. This81

difference may appear very small, but the bounds on densities of subgraphs not appearing82

in the extremal structure are too weak to allow the standard methods to work.83

Instead, we use flag algebras to find bounds on densities of other subgraphs, which appear84

with fairly high density in the extremal graph. This enables us to better control the slight85
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lack of performance of the flag algebra bounds as these small errors have a weaker relative86

effect on larger densities. In the remainder of this section we will give a short description of87

this new method which provides a proof of Theorem 2, the most critical part of the proof of88

Theorem 1.89

In studying the conjectured extremal example, the iterated blow-up Ck×
5 , one observes90

that the vast majority of induced C5s contain a vertex in each of the five top-level sets.91

Starting with such a typical C5 and picking an extra vertex, the adjacencies of this vertex to92

the C5 determine conclusively to which top-level set the vertex belongs. Picking two extra93

vertices, the induced graph will be in one of two general classes: either the two additional94

vertices are in the same top-level set (we call this class C31111) or in different sets (we call95

this class C22111), see Figure 2.96

With this observation in mind, we use flag algebra calculations to bound the densities of97

these two 7-vertex graph classes. We use the fact that we are studying the extremal example,98

and thus the induced density of C5 can be bounded from below by 1
26

, the density in Ck×
599

for k → ∞. Using an averaging argument, we compute bounds on the number of graphs100

of these two classes a typical C5 will lie in. We cannot expect very sharp bounds agreeing101

with the densities of a top-level C5 in the iterated blow-up, as even in the iterated blow-up102

the lower level copies of C5 affect the averaging. But this effect is small enough that these103

bounds enable us to go on.104

Using a linear combination of the bounds on the numbers of graphs in C31111 and C22111105

our now fixed typical base C5 lies in, we can define five top-level sets and a left-over set, and106

bound the sizes of these sets. Further, we can even conclude that most edges and non-edges107

between the top-level sets follow the pattern of the base C5, as otherwise the density of108

C22111 would be too small.109

Using these bounds, we can use a fairly standard stability argument to show that in fact110

all edges and non-edges between the top-level sets follow the pattern of the base C5 — if one111

of the pairs was out of pattern we could change it and increase the total number of C5s.112

In the next two steps, we show that the left-over set from above must be empty. First, we113

show that every vertex in the left-over set must look very different from the vertices in each of114

the top-level sets, again with a stability argument changing exactly one pair which is out of115

pattern. Then we show that this implies that this vertex lies in comparatively few C5s to set116

up another standard stability argument: replacing this vertex by a copy of a vertex which is117

in at least an average number of C5s would increase the total number of C5s, a contradiction118

to the extremality. This last bound relies on the solution of a fairly well-behaved quadratic119

program, which can be relaxed to a program with only 5 variables. One could possibly solve120

this program with analytic means, but we doubt that this would give much added insight121

into the problem. Instead, we use a fairly simple brute-force discretization to approximate122

the solution in a rigorous way.123

The final step of the proof of Theorem 2 is a convexity argument which shows that the124

top-level sets are balanced.125
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3 Proof of Theorem 2126

In our proofs we consider densities of 7-vertex subgraphs. Guided by their prevalence in the127

conjectured extremal graph, the following two types of graphs will play an important role.128

We call a graph C22111 if it can be obtained from C5 by duplicating two vertices. We call129

a graph C31111 if it can be obtained from C5 by tripling one vertex. The edges between130

the original vertices and their copies are not specified, and there are two complementary131

types of C22111, depending on the adjacency of the two doubled vertices in C5. Technically,132

C22111 and C31111 denote collections of several graphs. Examples of C22111 and C31111133

are depicted in Figure 2. We slightly abuse notation by using C22111 and C31111 also to134

denote the densities of these graphs, i.e., the probability that randomly chosen 7 vertices135

induce the appropriate 7-vertex blow-up of C5. Moreover, for a set of vertices Z we denote136

by C22111(Z) and C31111(Z) the densities of C22111 and C31111 containing Z, i.e., for a137

graph G on n vertices, C22111(Z) (C31111(Z)) is the number of C22111 (C31111) containing138

Z divided by
(
n−|Z|
7−|Z|

)
.139

C22111 C22111 C31111

Figure 2: Sketches of C22111 and C31111. The dotted edges may or may not be edges.

We start with the following statement.140

Proposition 3. There exists n0 such that every extremal graph G on at least n0 vertices141

satisfies:142

C5 < 0.03846157;143

4 · C22111− 11.94 · C31111 ≥ 1349894760355389179787709186391

420000000000000000000000000000000
+ o(1) > 0.003214.

(1)

144

145

Proof. This follows from a standard application of the plain flag algebra method. The first146

inequality was obtained by Flagmatic [29], which also provides the corresponding certificate.147

The computation by Flagmatic was done on 8 vertices. For the second inequality, we mini-148

mize the left side with the extra constraint that C5 ≥ 1
26

. We performed the computation on149

7 vertices since the resulting bound was sufficient and rounding the solution is easier on 7150

vertices than on 8. There are 6178 graphs to consider on 8 vertices while there are only 1044151
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on 7 vertices. It may be possible that we could use an upper bound on C5 obtained on 7152

vertices instead of 8 vertices. But since Flagmatic provides the result for 8 vertices, we used153

8 vertices. For certificates, see http://orion.math.iastate.edu/lidicky/pub/c5/.154

The expressions from Proposition 3 compare to the following limiting values in the iter-155

ated blow-up Ck×
5 , where k →∞:156

C5 =
1

26
≈ 0.03846154; 4 · C22111− 11.94 · C31111 = 4 · 5

31
− 11.94 · 5

93
≈ 0.0032258.157

158

Notice that in the iterated blow-up of C5, in the limit 4 ·C22111− 12 ·C31111 = 0. For our159

method to work, we need a lower bound greater than zero. On the other hand, computational160

experiments convinced us that the method works best if the bound is only slightly above161

zero, where a suitable factor is again determined by computations.162

Let G be an extremal graph on n vertices, where n is sufficiently large to apply Propo-163

sition 3. Denote the set of all induced C5s in G by Z. We assume that a ∈ R and164

Z = z1z2z3z4z5 is an induced C5 maximizing C22111(Z)− a · C31111(Z). Then165

(C22111(Z)− a · C31111(Z))

(
n− 5

2

)
≥ 1

|Z|
∑
Y ∈Z

(C22111(Y )− a · C31111(Y ))

(
n− 5

2

)
=166

=
(4 · C22111− 3a · C31111)

(
n
7

)
C5

(
n
5

) =
4
21
C22111− a

7
C31111

C5

(
n− 5

2

)
.167

168

As mentioned above, computations indicate that we get the most useful bounds if C22111(Z)−169

a · C31111(Z) is close but not too close to 0. Using (1) and setting a = 3.98, we get170

C22111(Z)− 3.98 · C31111(Z) > 0.0039792. (2)171
172

For 1 ≤ i ≤ 5, we define sets of vertices Zi which look like zi to the other vertices of Z.173

Formally,174

Zi := {v ∈ V (G) : G[(Z \ zi) ∪ v] ∼= C5} for 1 ≤ i ≤ 5.175

Note that Zi ∩ Zj = ∅ for i 6= j. We call a pair vivj funky, if vivj is an edge but zizj176

is not an edge or vice versa, where vi ∈ Zi, vj ∈ Zj, 1 ≤ i < j ≤ 5. In other words,177

G[Z ∪ {vi, vj}] � C22111, i.e., every funky pair destroys a potential copy of C22111(Z).178

Denote by Ef the set of funky pairs. With this notation, (2) implies that for large n we have179 ∑
1≤i<j≤5

|Zi||Zj| − |Ef | − 3.98
∑
i∈[5]

|Zi|2/2 > 0.003979

(
n− 5

2

)
.180

For any choice of sets Xi ⊆ Zi, where i ∈ [5], let X0 := V (G) \
⋃
Xi. Let f be the number181

of funky pairs not incident to vertices in X0, divided by n2 for normalization, and denote182

xi = 1
n
|Xi| for i ∈ {0, . . . , 5}. Choose the Xi (possibly Xi = Zi) such that the left hand side183

in184

2
∑

1≤i<j≤5

xixj − 2f − 3.98
∑
i∈[5]

x2
i > 0.003979 (3)185

186

is maximized. In order to simplify notation, we use Xi+5 = Xi and xi+5 = xi for all i ≥ 1.187
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Claim 4. The following inequalities are satisfied:188

0.19816 < xi < 0.20184 for i ∈ [5]; (4)189

x0 < 0.00263; (5)190

f < 0.000011. (6)191
192

Proof. To obtain (4)–(6), we need to solve four quadratic programs. The objectives are to193

minimize x1, maximize x1, maximize x0, and to maximize f , respectively. The constraints194

are (3) and
∑5

i=0 xi = 1 in all four cases. By symmetry, bounds for x1 apply also for x2, x3,195

x4, and x5.196

Here we describe the process of obtaining the lower bound on x1 in (4). We need to solve197

the following program (P ):198

(P )


minimize x1

subject to
∑5

i=0 xi = 1,

2
∑

1≤i<j≤5 xixj − 2f − 3.98
∑

i∈[5] x
2
i > 0.003979,

xi ≥ 0 for i ∈ {0, 1, . . . , 5}.

199

We claim that if (P ) has a feasible solution S, then there exists a feasible solution S ′ of (P )200

where201

S ′(x1) = S(x1), S ′(f) = 0, S ′(x0) = S(x0),202

S ′(x2) = S ′(x3) = S ′(x4) = S ′(x5) =
1

4

(
1− S(x1)− S(x0)

)
.203

204

Since x2, x3, x4 and x5 appear only in constraints, we only need to check whether (3) is205

satisfied. The left hand side of (3) can be rewritten as206

2x1

∑
2≤i<j≤5

xi + 2
∑

2≤i<j≤5

xixj − 3.98
∑

1≤i<j≤5

x2
i − 2f207

= 2x1

∑
2≤i<j≤5

xi −
∑

2≤i<j≤5

(xi − xj)
2 − 0.98

∑
2≤i<j≤5

x2
i − 3.98x2

1 − 2f.208

209

Note that the term
∑

2≤i<j≤5(xi − xj)
2 is minimized if xi = xj for all i, j ∈ {2, 3, 4, 5}.210

The term x2
2 + x2

3 + x2
4 + x2

5, subject to x2 + x3 + x4 + x5 being a constant, is also minimized211

if xi = xj for all i, j ∈ {2, 3, 4, 5}. Since f ≥ 0, the term 2f is minimized when f = 0. Hence212

(3) is satisfied by S ′ and we can add the constraints x2 = x3 = x4 = x5 and f = 0 to bound213

x1. The resulting program (P ′) is214

(P ′)


minimize x1

subject to x0 + x1 + 4y = 1,

8x1y − 0.98 · 4y2 − 3.98x2
1 ≥ 0.003979,

x0, x1, y ≥ 0.

215
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We solve (P ′) using Lagrange multipliers. We delegate the work to Sage [28] and we provide216

the Sage script at http://orion.math.iastate.edu/lidicky/pub/c5/. Finding an upper217

bound on x1 is done by changing the objective to maximization.218

Similarly, we can set x1 = x2 = x3 = x4 = x5 = 1/5 to get an upper bound on f .219

We can set f = 0 and x1 = x2 = x3 = x4 = x5 = (1 − x0)/5 to get an upper bound on220

x0. We omit the details. Sage scripts for solving the resulting programs are provided at221

http://orion.math.iastate.edu/lidicky/pub/c5/.222

For any vertex v ∈ Xi, i ∈ [5] we use df (v) to denote the number of funky pairs from v223

to (X1 ∪X2 ∪X3 ∪X4 ∪X5) \Xi after normalizing by n. If we move v from X1 to X0, then224

the left hand side of (3) will decrease by225

1

n
(2(x2 + x3 + x4 + x5)− 2df (v)− 2 · 3.98 · x1 + o(1)) .226

If this quantity was negative, then the left hand side of (3) could be increased by moving v227

to X0, contradicting our choice of Xi. This together with (4) implies that228

df (v) ≤ x2 + x3 + x4 + x5 − 3.98 · x1 + o(1) ≤ 1− 4.98 · x1 + o(1) ≤ 0.0132. (7)229
230

Symmetric statements hold also for every vertex v ∈ X2 ∪X3 ∪X4 ∪X5.231

Claim 5. There are no funky pairs in X1 ∪X2 ∪X3 ∪X4 ∪X5.232

Proof. Assume that there is a funky pair uv. By symmetry, we only need to consider two233

cases, either u ∈ X1, v ∈ X2 or u ∈ X1, v ∈ X3. In fact, it is sufficient to check the case234

where u ∈ X1 and v ∈ X2, so uv is not an edge. The other case then follows from considering235

the complement of G.236

Let G′ be a graph obtained from G by adding the edge uv, i.e., changing uv to be not237

funky. We compare the number of induced C5s containing {u, v} in G and in G′. In G′,238

there are at least239

[x3x4x5 − (df (u) + df (v)) max{x3x4, x3x5, x4x5} − f ·max{x3, x4, x5}]n3
240

induced C5s containing uv, since we can pick one vertex from each of X3, X4, X5 to form an241

induced C5 as long as none of the resulting nine pairs is funky.242

Now we count the number of induced C5s in G containing {u, v}. The number of such243

C5s which contain vertices from X0 is upper bounded by x0n
3/2. Next we count the number244

of such C5s avoiding X0. Observe that there are no C5s avoiding X0 in which uv is the only245

funky pair.246

The number of C5s containing another funky pair u′v′ with {u, v} ∩ {u′, v′} = ∅ can be247

upper bounded by fn3. We are left to count C5s where the other funky pairs contain u or v.248

The number of C5s containing at least two vertices other than u and v which are in funky249

pairs can be upper bounded by (df (u)2/2 + df (v)2/2 + df (u)df (v))n3.250

It remains to count only C5s containing exactly one vertex w where uw and vw are the251

options for funky pairs. The number of choices of w is at most (df (u)+df (v))n. As {u, v, w}252
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is in an induced C5, the set {u, v, w} induces a path in either G or the complement of G.253

Let the middle vertex of that path be in Xi. If G[{u, v, w}] is a path, then the remaining254

two vertices of a C5 cannot be in Xi+1 ∪Xi+4. If G[{u, v, w}] is the complement of a path,255

then the remaining two vertices cannot be in Xi+2 ∪Xi+3. Hence the remaining two vertices256

of a C5 containing {u, v, w} can be chosen from at most 3n ·max{xi} vertices. This gives an257

upper bound of (df (u) + df (v))n
(
3n·max{xi}

2

)
on the number of such C5s.258

Now we compare the number of induced C5s containing uv in G and in G′. We use259

xmax and xmin to denote the upper and lower bound respectively from (4), use df to denote260

the upper bound on df (u) and df (v) from (7), and also use bounds from (5) and (6). The261

number of C5s containing uv divided by n3 is262

in G : ≤ x0/2 + f + 2d2f + 9dfx
2
max ≤ 0.0065;263

in G′ : ≥ (xmin − 2df )x2
min − fxmax ≥ 0.0067.264

265

This contradicts the extremality of G.266

Next, we want to show that X0 = ∅. For this, suppose that there exists an x ∈ X0. We267

will add x to one of the Xi, i ∈ [5] such that df (x) is minimal. By symmetry, we may assume268

that x is added to X1. Note that adding a single vertex to X1 does not change any of the269

density bounds we used above by more than o(1).270

Claim 6. For every x ∈ X0, if x is added to X1 then df (x) ≥ 0.0808.271

Proof. Let xw be a funky pair, where w ∈ X2. The case where w ∈ X3 can be argued the272

same way by considering the complement of G. Let G′ be obtained from G by adding the273

edge xw. Since G is extremal, we have C(G′) ≤ C(G). The following analysis is similar to274

the proof of Claim 5, however, we can say a bit more since every funky pair contains x.275

First we count induced C5s containing xw in G. The number of induced C5s containing276

xw and other vertices from X0 is easily bounded from above by x0n
3/2.277

Let F be an induced C5 in G containing xw and avoiding X0 \ {x}. Since all funky pairs278

contain x, F − x is an induced path p0p1p2p3 without funky pairs. Either pj ∈ X2 for all279

j ∈ {0, 1, 2, 3} or there is an i ∈ {1, 2, 3, 4, 5} such that pj ∈ Xi+j for all j ∈ {0, 1, 2, 3}. The280

first case is depicted in Figure 3(a). Consider now the second case. If i ∈ {2, 3, 4}, then281

xp0p1p2p3 does not satisfy the definition of F . Hence i ∈ {1, 5} and the possible C5s are282

depicted in Figure 3(b) and (c). In each of the three cases, F contains exactly two funky283

pairs, xw and xy. The location of y entirely determines the location of F − x. Hence the284

number of induced C5s containing xw is at most df (x)x2
maxn

3.285

In G′, there are at least
(
x3x4x5−df (x)·max{x3x4, x3x5, x4x5}

)
n3 induced C5s containing286

xw. We obtain287

C(G)/n3 ≤ df (x)x2
max + x0/2 and C(G′)/n3 ≥ (xmin − df (x))x2

min.288
289

Since C(G′) ≤ C(G), we have290

(xmin − df (x))x2
min ≤ df (x)x2

max + x0/2,291

which together with (4) and (5) gives df (x) ≥ 0.0808.292
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X1 X2

X3

X4

X5

x w
y

(a)

X1 X2

X3

X4

X5

x w

y

(b)

X1 X2

X3

X4

X5

x w

y

(c)

Figure 3: Possible C5s with funky pair xw. They all have exactly one other funky pair xy.
The dotted lines represent non-edges.

Claim 7. Every vertex of the extremal graph G is in at least (1/26+o(1))
(
n
4

)
≈ 0.001602564n4

293

induced C5s.294

Proof. For every vertex u ∈ V (G), denote by Cu
5 the number of C5s in G containing u. For295

any two vertices u, v ∈ V (G), we show that Cu
5 − Cv

5 < n3, which implies Claim 7. Denote296

by Cuv
5 the number of C5s in G containing both u and v. A trivial bound is Cuv

5 ≤
(
n−2
3

)
.297

Let G′ be obtained from G by deleting v and duplicating u to u′, i.e., for every vertex x298

we add the edge xu′ iff xu is an edge. As G is extremal we have299

0 ≥ C(G′)− C(G) ≥ Cu
5 − Cv

5 − Cuv
5 ≥ Cu

5 − Cv
5 −

(
n− 2

3

)
.300

301

302

Claim 8. The set X0 is empty.303

Proof. Assume that there is an x ∈ X0. We count Cx
5 , the number of induced C5s containing304

x. Our goal is to show that Cx
5 is smaller than the value in Claim 7, which is a contradiction.305

Let ain be the number of neighbors of x in Xi and bin be the number of non-neighbors of x306

in Xi for i ∈ {0, 1, 2, 3, 4, 5}.307

The number of C5s where the other four vertices are in X1 ∪X2 ∪X3 ∪X4 ∪X5 is upper308

bounded by309 (
a1b2b3a4 + a2b3b4a5 + a3b4b5a1 + a4b5b1a2 + a5b1b2a3 +

1

4

5∑
i=1

a2i b
2
i

)
n4.310

Moreover, we also need to include the C5s containing vertices from X0 in our bound, which311

we do very generously by increasing all variables by a0 or b0.312

Since xi = ai + bi, we can use (4) for every i ∈ [5] as constraints. We also use Claim 6 to313

obtain constraints since it is possible to express df (x) using ais and bis if x is added to Xj314

for all i, j ∈ [5].315
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By combining the previous objective and constraints, we obtain the following program316

(P ), whose objective gives an upper bound on the number of C5s containing x divided by317

n4.318

(P )



maximize
∑5

i=1(ai + a0)(bi+1 + b0)(bi+2 + b0)(ai+3 + a0) + 1
4

∑5
i=1 a

2
i b

2
i

subject to
∑5

i=0(ai + bi) = 1,

0.19816 ≤ ai + bi ≤ 0.20184 for i ∈ {1, 2, 3, 4, 5},
a0 + b0 ≤ 0.00263,

b2 + b5 + a3 + a4 ≥ 0.0808,

b1 + b3 + a4 + a5 ≥ 0.0808,

b2 + b4 + a1 + a5 ≥ 0.0808,

b3 + b5 + a1 + a2 ≥ 0.0808,

b4 + b1 + a2 + a3 ≥ 0.0808,

ai, bi ≥ 0 for i ∈ {0, 1, 2, 3, 4, 5}.

319

Instead of solving (P ) we solve a slight relaxation (P ′) with increased upper bounds on320

ai +bi, which allows us to drop a0 and b0. Since the objective function is maximizing, we can321

claim that ai + bi is always as large as possible, which decreases the number of the degrees322

of freedom.323

(P ′)



maximize f =
∑5

i=1 aibi+1bi+2ai+3 + 1
4

∑5
i=1 a

2
i b

2
i

subject to ai + bi = 0.21 for i ∈ {1, 2, 3, 4, 5},
b2 + b5 + a3 + a4 ≥ 0.0808,

b1 + b3 + a4 + a5 ≥ 0.0808,

b2 + b4 + a1 + a5 ≥ 0.0808,

b3 + b5 + a1 + a2 ≥ 0.0808,

b4 + b1 + a2 + a3 ≥ 0.0808,

ai, bi ≥ 0 for i ∈ {1, 2, 3, 4, 5}.

324

Note that the resulting program (P ′) has only 5 degrees of freedom. We find an upper325

bound on the solution of (P ′) by a brute force method. We discretize the space of possible326

solutions, and bound the gradient of the target function to control the behavior between the327

grid points.328

For solving (P ′), we fix a constant s which will correspond to the number of steps. For329

every ai we check s+1 equally spaced values between 0 and 0.21 that include the boundaries.330

By this we have a grid of s5 boxes where every feasible solution of (P ′), and hence also of331

(P ), is in one of the boxes.332

Next we need to find the partial derivatives of f . Since f is symmetric, we only check333

the partial derivative with respect to a1.334

∂f

∂a1
= b2b3a4 + a3b4b5 +

1

2
a1b

2
1.335
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We want to find an upper bound on ∂f
∂a1

. Hence we assume a1 + b1 = a3 + b3 = a4 + b4 =336

b2 = b5 = 0.21 and we maximize337

b2b3a4 + a3b4b5 = 0.21 ((0.21− a3)a4 + a3(0.21− a4)) = 0.21 (0.21a4 + 0.21a3 − 2a3a4) .338

This is maximized if a3 = 0, a4 = 0.21 or a3 = 0.21, a4 = 0 and gives the value 0.213. Hence339

1

2
a1b

2
1 =

4

2
a1 ·

b1
2
· b1

2
≤ 2(a1 + b1)

3

33
=

2 · 0.213

27
.340

The resulting upper bound is341

∂f

∂a1
≤ 0.213 +

2 · 0.213

27
< 0.001.342

Hence in a box with side length t the value of f cannot be bigger than the value at a corner343

plus 5t/2 · 0.001. The factor 5t/2 comes from the fact that the closest corner is in distance344

at most t/2 in each of the 5 coordinates.345

If we set s = 100, we compute that the maximum over all grid points of (P ′′) is less than346

0.00157. This can be checked by a computer program mesh-opt.cpp which computes the347

values at all grid points. With t < 0.21/s = 0.0021, we have 5t/2 · 0.001 < 0.00001. We348

conclude that x is in less than 0.00158n4 induced C5s which contradicts Claim 7.349

Let us note that if we had chosen s = 200, we could have concluded that x is less than350

0.00147n4.351

We have just established the “outside” structure of G. Observe that in this outside352

structure, an induced C5 can appear only if it either intersects each of the classes in exactly353

one vertex, or if it lies completely inside one of the classes. This implies that354

C(n) = (x1 · x2 · x3 · x4 · x5)n
5 + C(x1n) + C(x2n) + C(x3n) + C(x4n) + C(x5n).355

By averaging over all subgraphs of G of order n−1, we can easily see that C(n) ≤ n
n−5C(n−1)356

for all n, so357

` := lim
n→∞

C(n)(
n
5

)358

exists. Therefore,359

` + o(1) = 5! · x1 · x2 · x3 · x4 · x5 + `(x5
1 + x5

2 + x5
3 + x5

4 + x5
5),360

which implies that xi = 1
5

+ o(1), and ` = 1
26

, given the constraints on the xi.361

In order to prove Theorem 2, it remains to show that in fact |Xi| − |Xj| ≤ 1 for all362

i, j ∈ {1, . . . , 5}.363

Claim 9. For n large enough, we have |Xi| − |Xj| ≤ 1 for all i, j ∈ {1, . . . , 5}.364

12



Proof. By symmetry, assume for contradiction that |X1|− |X2| ≥ 2. Let v ∈ X1 where Cv
5 is365

minimized over the vertices in X1 and let w ∈ X2 where Cw
5 is maximized over the vertices366

in X2. As G is extremal, Cv
5 + Cvw

5 −Cw
5 ≥ 0; otherwise, we can increase the number of C5s367

by replacing v by a copy of w.368

Let yi := |Xi| = xin. By the monotonicity of C(n)

(n
5)

, we have369

1

26
+ o(1) ≥ C(y2)(

y2
5

) ≥ C(y1)(
y1
5

) ≥ 1

26
− o(1).370

Therefore, using y1 − y2 ≥ 2, we have371

Cv
5 + Cvw

5 − Cw
5 ≤

C(y1)

y1
+ y2y3y4y5 + y3y4y5 −

C(y2)

y2
− y1y3y4y5372

=
y2C(y1)− y1C(y2)

y1y2
+ (y2 − y1 + 1)y3y4y5373

≤
(

1

26
+ o(1)

)
1

y1y2

(
y2

(
y1
5

)
− y1

(
y2
5

))
+ (y2 − y1 + 1)y3y4y5374

≤
(

1

26 · 5!
+ o(1)

)(
y41 − y42

)
+ (y2 − y1 + 1)y3y4y5375

=

(
1

26 · 5!
+ o(1)

)
(y1 − y2)

(
y31 + y21y2 + y1y

2
2 + y32

)
+ (y2 − y1 + 1)y3y4y5376

= (y1 − y2)

((
1

26 · 5!
+ o(1)

)
4n3

125
− n3

125

)
+

(1 + o(1))n3

125
377

≤
(

2

26 · 5!
+ o(1)

)
4n3

125
− (1 + o(1))n3

125
< 0,378

379

a contradiction.380

With this claim, the proof of Theorem 2 is complete.381

4 Proof of Theorem 1382

Theorem 1 is a consequence of Theorem 2. The main proof idea is to take a minimal383

counterexample G and show that some blow-up of G contradicts Theorem 2.384

Proof of Theorem 1. Theorem 1 is easily seen to be true for k = 1. Suppose for a contradic-385

tion that there is a graph G on n = 5k vertices with C(G) ≥ C(Ck×
5 ) that is not isomorphic386

to Ck×
5 , where k ≥ 2 is minimal. Let n0 be the n0 from the statement of Theorem 2.387

We say that a graph F of size 5m can be 5-partitioned, if V (F ) can be partitioned into388

five sets X1, X2, X3, X4, X5 with |Xi| = m for all i ∈ [5] and for every 1 ≤ i < j ≤ 5, every389

xi ∈ Xi and xj ∈ Xj are adjacent if and only if |i − j| ∈ {1, 4}. Notice that this is the390

13



structure described by Theorem 2. Hence if 5m ≥ n0, and F is extremal then F can be391

5-partitioned.392

If G can be 5-partitioned, then G is isomorphic to Ck×
5 by the minimality of k, a contra-393

diction. Therefore, G cannot be 5-partitioned.394

Let H be an extremal graph on 5` > n0 vertices. Blowing up every vertex of Ck×
5 by a395

factor of 5`, and inserting H in every part, gives an extremal graph G1 on 5k+` vertices by `396

applications of Theorem 2. On the other hand, the graph G2 obtained by blowing up every397

vertex of G by a factor of 5`, and inserting H in every part, contains at least as many C5s398

as G1,399

C(G1) = 5k · C(H) + C(Ck×
5 ) · (5`)5, C(G2) = 5k · C(H) + C(G) · (5`)5,400

401

so C(G1) ≤ C(G2). Hence G2 must also be extremal. Therefore G2 can be 5-partitioned into402

five sets X1, X2, X3, X4, X5 with |Xi| = 5k+`−1. In particular, two vertices in G2 are in the403

same set Xi if and only if their adjacency pattern agrees on more than half of the remaining404

vertices. But this implies that for every copy H ′ of H inserted into the blow-up of G, all405

vertices of H ′ are in the same Xi, and thus the 5-partition of V (G2) gives a 5-partition of406

V (G), a contradiction.407
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,
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II, pages 207–232. Springer, 2013.458
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