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Abstract. We prove that 1−o(1) fraction of all k-SAT functions on n Boolean variables are unate
(i.e., monotone after first negating some variables), for any fixed positive integer k and as n → ∞.
This resolves a conjecture by Bollobás, Brightwell, and Leader from 2003.

This paper is the second half of a two-part work solving the problem. The first part, by Dong,
Mani, and Zhao, reduces the conjecture to a Turán problem on partially directed hypergraphs. In
this paper we solve this Turán problem.

1. Introduction

A k-SAT function is a Boolean function f : {0, 1}n → {0, 1} on n variables x1, . . . , xn that has at
least one representation as a k-SAT (specifically k-CNF) formula. Such a function is called unate
if it has a formula where, for each i, xi and its negation xi do not both appear in the formula. In
other words, a function/formula is unate if it is monotone after first negating some variables (here
monotone means that only positive literals xi appear and no negated literals xi appear).

Our main result below proves a conjecture by Bollobás, Brightwell, and Leader [5].

Theorem 1.1. Let k be a fixed positive integer. As n → ∞, the number of k-SAT functions on n

Boolean variables is (1 + o(1))2n+(
n
k), and 1− o(1) proportion of all k-SAT functions on n Boolean

variables are unate.

An easy argument shows that the number of unate k-SAT functions on n Boolean variables is
at least (1 − o(1))2n+(

n
k). Basically, for each i, we can choose whether to negate xi, and then for

each k-element subset of the n available literals, whether to include it as a clause. There is a small
overcount due to unused variables, but it is easy to analyze (see [5]).

Bollobás, Brightwell, and Leader [5] proved a weaker version of their conjecture for the k = 2 case,
namely that the number of 2-SAT functions on n Boolean variables is 2(1+o(1))(n2). Some special
cases of Theorem 1.1 were previously known: k = 2 by Allen [1] (also see [8] for an alternate proof)
and k = 3 by Ilinca and Kahn [9].

We call a k-SAT formula minimal (the term non-redundant was used in [8]) if deleting any clause
changes the function. Every k-SAT function admits some minimal k-SAT formula representation.
Some functions, such as unate functions, admit a unique minimal representation, while others may
admit one or multiple such representations.

We establish the following result, which implies Theorem 1.1.

Theorem 1.2. Let k be a fixed positive integer. As n → ∞, the number of minimal k-SAT formulae
on n Boolean variables is (1+o(1))2n+(

n
k), and a 1−o(1) proportion of all minimal k-SAT formulae

are unate.
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As suggested by Bollobás, Brightwell, and Leader [5], these results open doors to a theory of
random k-SAT functions. For example, the theorems imply that a typical k-SAT function admits a
unique minimal k-SAT formula, and furthermore the formula has (1/2+o(1))

(
n
k

)
clauses. Note that

our model is very different from that of random k-SAT formulae where clauses are added at random
(e.g., the recent breakthrough on the satisfiability conjecture [6]). Rather, Theorem 1.2 concerns a
random k-SAT formulae conditioned on minimality. In this light, our results are analogous to the
theory of Erdős–Rényi random graphs G(n, p) in the dense setting with p = 1/2, which corresponds
to counting. It would be interesting to further study the behavior of sparser random k-SAT formulae
where each clause is introduced with some probability pn decaying with n, and conditioned on the
minimality of the formula. This leads to a rich source of problems on thresholds and typical
structures and potentially interesting phenomena.

In a different direction, we can also ask what happens when the width k of k-SAT is allowed to
grow with n. Since our proof techniques are quantitative, it allows k to grow rather slowly with n (we
have not yet worked out the precise dependence). A bold conjecture by Bollobás and Brightwell [4]
states that for all k ≤ (1/2− ϵ)n with any fixed ϵ > 0, the number of k-SAT functions on n Boolean
variables is 2(1+o(1))(nk). This conjecture appears to be outside the scope of current methods. We
leave the following related question as an open problem: how quickly can k = k(n) grow with n so
that a typical k-SAT function on n Boolean variables is unate? Curiously, a completely different
behavior emerges for k > n/2, as observed in [4], and this regime also has a lot of interesting open
problems.

This paper is the second half of a two-part work establishing the above results. The first part [7]
(by Dong, Mani, and Zhao) reduces the problem, for each k, to a Turán problem on partially directed
hypergraphs.1 In this paper we solve this Turán problem completely for every k.

The reduction in [7] applies the hypergraph container method [2, 3, 11], a major recent develop-
ment in combinatorics. Our solution to the Turán problem is partly inspired by the method of flag
algebras, introduced by Razborov [10], which reduces graph density inequalities to sums of squares.

2. Partially directed hypergraphs

A partially directed k-graph (abbreviated as k-PDG) is formed by starting with a k-uniform
hypergraph (i.e., whose edges are k-element subsets of vertices), and then for each edge, either (i)
leaving it as an undirected edge or (ii) converting it to a directed edge by choosing a special vertex
in the edge (we say that the edge points to or is directed toward this special vertex). We notate a
directed edge by putting a ∨ on top of the special vertex. An example of a 2-PDG (that we call T⃗2)
is illustrated below:

T⃗2 := edges = {12, 13

∧

, 23}.

Given a pair of k-PDGs, H⃗ and G⃗, we say that H⃗ is a subgraph of G⃗ if one can obtain H⃗ from G⃗
by a combination of (1) removing vertices, (2) removing edges, and (3) removing the orientation of
some edges. As examples, the left 2-PDG below contains T⃗2 as a subgraph, and the right does not
contain T⃗2 as a subgraph.

We say that a k-PDG G⃗ is H⃗-free if G⃗ does not contain H⃗ as a subgraph.

1The first paper [7] also solves the Turán problem for k = 4 using a different method from this work. A separate
brute-force computer search by Mani and Yu yielded the k = 5 case, as documented in the appendix of the arXiv
version 3 of [7] at arXiv:2107.09233v3.

https://arxiv.org/abs/2107.09233v3
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An important k-PDG for us is denoted by T⃗k, formed (for each k ≥ 2) by starting with T⃗2 and
then adding k − 2 common vertices to all three edges, e.g.,

T⃗3 = edges = {123, 124

∧

, 134},

and

T⃗4 = edges = {1234, 1235

∧

, 1245}.

We prove the following statement, which, by the reduction in [7], implies Theorems 1.1 and 1.2.

Theorem 2.1. Let k ≥ 2 be a positive integer. There exists some θ > log2 3 such that every n-vertex
T⃗k-free k-PDG with α

(
n
k

)
undirected edges and β

(
n
k

)
directed edges satisfies

α+ θβ ≤ 1 + on→∞(1).

Remark 2.2 (A sketch of the reduction). Let us sketch this reduction and defer to [7] for details.
The reader is welcomed to skip this remark.

We wish to prove Theorem 1.2 and count minimal k-SAT formulae. We relax the minimality
condition and actually upper bound the number of k-SAT formulae that avoid some short certificate
of non-minimality. There is a useful analogy between the latter problem and counting triangle-free
graphs on n vertices. The hypergraph container method allows us to reduce such an asymptotic
enumeration problem to a Turán problem (along with supersaturation, which is automatic in the
dense setting).

For counting minimal k-SAT formulae, containers are themselves k-SAT formulae (but not ne-
cessarily minimal). We say that a formula is simple if every k-element subset of variables supports
at most one clause (e.g., x1x2x3 and x1x2x3 do not both appear as clauses). We say that a
formula is semisimple if every k-element subset of variables supports either at most one clause,
or exactly two clauses differing by negation at exactly one variable (e.g., {x1x2x3, x1x2x3}, but not
{x1x2x3, x1x2x3}).

We wish to upper bound the number of simple minimal k-SAT formulae (it turns out there are
negligibly many non-simple ones). The container theorem produces a small collection of container
formulae, such that each simple k-SAT formula is contained in some container. These containers
satisfy additional properties. For example, each container is, up to removing o(nk) clauses, a
semisimple formula. We can convert a semisimple k-SAT formula (arising from a container) to a
k-PDG by converting each clause to an edge, and whenever two clauses are supported on the same
set of variables, we direct the edge towards the unique differing variable (e.g., {x1x2x3, x1x2x3}
becomes 123

∧

). The T⃗k-free condition for k-PDGs corresponds to a certain short certificate of non-
minimality in the semisimple formula (we actually need to consider a 2-blow-up in this step, but let
us skip that discussion here).

Consider a container G. Among all k-element subsets of variables (out of
(
n
k

)
total), suppose

α
(
n
k

)
of them support exactly one clause in G, and β

(
n
k

)
of them support exactly two clauses in

G. To choose a simple subformula, we have two choices for each of the first type (i.e., whether to
include or not), and three choices for each of the second type (i.e., keep one of the two clauses,
or discard both). Then the number of simple subformulae of G is 2α(

n
k)3β(

n
k)2o(n

k). The container
theorem guarantees us that the number of containers is 2o(n

k). Thus, we find that the number of
simple minimal formulae is at most 2α(

n
k)3β(

n
k)2o(n

k), and we wish to obtain an upper bound of
2(1+o(1))(nk), i.e., we want α+(log2 3)β ≤ 1+ o(1). This is the reason for the appearance of log2 3 in
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Theorem 2.1. This sketches the proof that the number of minimal k-SAT formulae is 2(1+o(1))(nk).
To get the more precise count of (1 + o(1))2n+(

n
k), one needs an additional stability argument to

handle the case when α is close to 1. The stability argument was introduced in [9] for 3-SAT, and
extended in [7] to general k-SAT.

3. Solution of the Turán problem

We only consider k ≥ 4 from now on, as [7] already gives simple proofs of Theorem 2.1 for k = 2
and k = 3. Here is the key lemma.

Lemma 3.1. Let k ≥ 4 be a positive integer. There exist θ > log2 3 and a, b ∈ R (depending on k)
such that the following holds. Suppose F⃗ is a T⃗k-free k-PDG on k+1 vertices. Let x1, . . . , xk−1, y, z

be a permutation of vertices of F⃗ chosen uniformly at random. Denote x := x1 . . . xk−1. Then, we
have that

P(xy) + kθP(xy∧) + a2P(xy, xz)− 2abP(xy, xz∧) + b2P(xy∧, xz∧) ≤ 1,

where xy denotes the event that x1 . . . xk−1y forms an undirected edge in F⃗ , xy∧denotes the event
that x1 . . . xk−1y

∧is a directed edge in F⃗ , and xy denotes the event that there is no edge with vertices
x1, . . . , xk−1, y in F⃗ .

Remark 3.2. The proof gives θ = 1 + 1√
2
≥ 1.707 > 1.585 > log2 3.

Proof of Theorem 2.1 for k ≥ 4 using Lemma 3.1. Let H⃗ be an n-vertex T⃗k-free k-PDG with α
(
n
k

)
undirected edges and β

(
n
k

)
directed edges.

Let x1, . . . , xk−1, y, z be vertices of H⃗ chosen without replacement uniformly at random. Applying
Lemma 3.1 (by first conditioning on the set of k+1 randomly selected vertices) and using notation
of the lemma,

P(xy) + kθP(xy∧) + a2P(xy, xz)− 2abP(xy, xz∧) + b2P(xy∧, xz∧) ≤ 1.

Note that P(xy) = α and kP(xy∧) = β. It remains to show that

a2P(xy, xz)− 2abP(xy, xz∧) + b2P(xy∧, xz∧) ≥ −o(1).

We will show that this inequality holds for every fixed choice of x. Conditioned on x, we see that y
and z are uniformly chosen vertices without replacement in V (F⃗ ) \ {x1, . . . , xk}. When n is large,
this is not much different than with replacement, so that y and z are conditionally independent
given x. In particular, P(xy, xz|x) = P(xy|x)2+o(1), and P(xy, xz∧|x) = P(xy|x)P(xy∧|x)+o(1), and
P(xy∧, xz∧|x) = P(xy∧|x)2 + o(1). Then we can prove the above displayed inequality, conditioned on
any x, by observing that

a2P(xy, xz|x)− 2abP(xy, xz∧|x) + b2P(xy∧, xz∧|x)
= a2P(xy|x)2 − 2abP(xy|x)P(xy∧|x) + b2P(xy∧|x)2 − o(1)

=
(
aP(xy|x)− bP(xy∧|x)

)2 − o(1) ≥ −o(1). □

Finally, it remains to prove Lemma 3.1.

Proof of Lemma 3.1. Let H⃗ be a T⃗k-free k-PDG on k + 1. Construct a digraph D on the same
vertex set:

(1) For every directed edge in H⃗ missing vertex i and directed towards vertex j, add the directed
edge i → j in D.

(2) For every undirected edge in H⃗ missing vertex i, add the loop i → i in D.
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Notice that every vertex in D has out-degree at most 1. Moreover, since H⃗ does not contain T⃗k as
a subgraph, D is free of the following forbidden pattern:

• Forbidden pattern: i1 → i2 → ∗ and i3 → ∗ for three distinct vertices i1, i2, i3, where ∗ can
be any vertex (the two ∗’s do not have to be the same).

It is easy to deduce the following exhaustive classification of all digraphs D on k+1 vertices with
out-degree at most 1 at every vertex, and without the above forbidden pattern:

(A) i → j → i for distinct i, j. No other edges.
(B) i → j → j for distinct i, j. No other edges.
(C) i1 → i2 → i3 for distinct i1, i2, i3. No other edges.
(D) No vertex has both positive in-degree and positive out-degree.
Write i → ∅ to denote that i has out-degree 0 in D. The inequality in Lemma 3.1 then translates

to

P(z → z) + kθ · P(z → y)

+ a2P(y → ∅, z → ∅)− 2abP(y → z, z → ∅) + b2P(y → z, z → y) ≤ 1. (3.1)

Let u and d denote the number of undirected and directed edges in H⃗, respectively. We calculate
the terms in inequality (3.1):

P(z → z) =
u

k + 1
, P(z → y) =

d

k(k + 1)
,

P(y → ∅, z → ∅) =
(k + 1− u− d)(k − u− d)

(k + 1)k
,

P(y → z, z → ∅) =


0 in cases (A) and (B),

1
(k+1)k in case (C),

d
(k+1)k in case (D),

P(y → z, z → y) =

{
2

(k+1)k in case (A),
0 in case (B), (C) and (D).

Then (3.1) reduces to simpler inequalities in each of the four cases:
(A) When our digraph is of the form i → j → i for distinct i, j with no other edges, (3.1)

simplifies to
2θ

k + 1
+

(k − 1)(k − 2)

(k + 1)k
a2 +

2

(k + 1)k
b2 ≤ 1. (3.2)

(B) Since θ ≥ 1, the associated inequality in this case is implied by (A); we note the inequality
below, but do not need to consider this case separately:

1

k + 1
+

θ

k + 1
+

(k − 1)(k − 2)

(k + 1)k
a2 ≤ 1.

(C) The inequality in this case is also implied by (A), so we also need not consider it separately:

2θ

k + 1
+

(k − 1)(k − 2)

k(k + 1)
a2 − 2

k(k + 1)
ab ≤ 1.

(D) In this case, if d = 0 then u ≤ k+1, and if d ≥ 1 then u+ d ≤ k. The inequality reduces to

u

k + 1
+

θd

k + 1
+

(k + 1− u− d)(k − u− d)

(k + 1)k
a2 − 2d

(k + 1)k
ab ≤ 1. (3.3)
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Thus it remains to show that we can choose parameters θ > log2 3 and a, b ∈ R to make the
inequalities implied by (A) and (D) true. We choose

θ = 1 +
1√
2
> 1.707, satisfying 2θ2 − 4θ + 1 = 0, and a =

1√
2
, b =

k(θ − 1)− 1√
2

.

We can verify (3.2), establishing the desired inequality for case (A) (and thus cases (B) and (C))
via a direct substitution:

2θ

k + 1
+

(k − 1)(k − 2)

(k + 1)k
a2 +

2

(k + 1)k
b2 − 1

=
2θ

k + 1
+

(k − 1)(k − 2)

2(k + 1)k
+

(k(θ − 1)− 1)2

(k + 1)k
− 1

=
4kθ + (k − 1)(k − 2) + 2(k(θ − 1)− 1)2 − 2(k + 1)k

2(k + 1)k

=
4− k + k2(2θ2 − 4θ + 1)

2(k + 1)k
=

4− k

2(k + 1)k
≤ 0.

To verify (3.3) for (D), observe that the left-hand side of (3.3) is non-decreasing in u. Indeed,
replacing u by u+ 1 increases the expression by at least

1

k + 1
− (k + 1)k − k(k − 1)

(k + 1)k
a2 =

1

k + 1
− 2

k + 1
a2 = 0.

Consequently, it remains to verify case (D) when u is as large as possible, meaning u+d ∈ {k, k + 1},
which makes the second term in (3.3) is zero. The left-hand side of (3.3) becomes

u

k + 1
+

θd

k + 1
− 2d

(k + 1)k
ab.

If d = 0, then u = k + 1, and the inequality clearly holds. Otherwise, d + u = k. Since the above
expression is linear in u (or equivalently, linear in d), the maximum is attained at one of endpoints
(u, d) = (k, 0) or (0, k). The only nontrivial situation to check is (u, d) = (0, k), in which case the
above expression is

kθ

k + 1
− 2

k + 1
ab =

kθ

k + 1
− k(θ − 1)− 1

k + 1
= 1.

Therefore, (3.1) always holds. □
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