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Abstract15

An irreversible k-threshold process (also a k-neighbor bootstrap percolation) is a dy-16

namic process on a graph where vertices change color from white to black if they have17

at least k black neighbors. An irreversible k-conversion set of a graph G is a subset18

S of vertices of G such that the irreversible k-threshold process starting with S black19

eventually changes all vertices of G to black. We show that deciding the existence of an20

irreversible 2-conversion set of a given size is NP-complete, even for graphs of maximum21

degree 4, which answers a question of Dreyer and Roberts. Conversely, we show that for22

graphs of maximum degree 3, the minimum size of an irreversible 2-conversion set can be23

computed in polynomial time. Moreover, we find an optimal irreversible 3-conversion set24

for the toroidal grid, simplifying constructions of Pike and Zou.25

Keywords: irreversible k-conversion process; spread of infection; bootstrap percolation;26

NP-complete problem; matroid parity problem; toroidal grid27

1 Introduction28

Mathematical modelling of the spread of infectious diseases was recently studied by Roberts [23]29

and by Dreyer and Roberts [13]. They used the following model.30

Let G = (V,E) be a graph with vertices colored white and black. An irreversible k-31

threshold process is a process where vertices change color from white to black. More precisely,32

a white vertex becomes black at time t+ 1 if at least k of its neighbors are black at time t.33
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An irreversible k-conversion set S is a subset of V such that the irreversible k-threshold34

process starting with vertices of S set to black and all other white will result in a graph G35

with all vertices black after finite number of steps.36

More general models of spread of infectious diseases and the complexity of the related37

problems were studied by Boros and Gurwich [9].38

A natural question to ask is what is the minimum size of an irreversible k-conversion set39

in a graph G.40

Problem IkCS(G, s):
Input: a graph G and a positive integer s
Output: YES if there exists an irreversible k-conversion set of size s in G

NO otherwise

41

Dreyer and Roberts [13] proved that IkCS is NP-complete for every fixed k ≥ 3 by an easy42

reduction from the independent set problem. For k = 1 the problem is trivially polynomial43

since one black vertex per connected component is necessary and sufficient. Dreyer and44

Roberts [13] asked what is the complexity of the IkCS problem if k = 2. As the first result of45

this paper we resolve this open question.46

Theorem 1. The problem I2CS is NP-complete even for graphs of maximum degree 4.47

A subset W of vertices of a graph G = (V,E) is a vertex feedback set if V \W is acyclic.48

For 3-regular graphs, the I2CS problem is equivalent to finding a vertex feedback set, which49

can be solved in polynomial time [25]. We extend this result to graphs of maximum degree 3.50

Theorem 2. The problem I2CS is polynomially solvable for graphs of maximum degree 3.51

Boros and Gurwich [9] proved that if every vertex has its own threshold, then determining52

the minimum size of the conversion set in graphs of maximum degree 3 is NP-complete. Note53

that the problem I2CS(G, s) is trivially polynomial if the maximum degree of G is at most 254

as a path of length l requires d l+1
2 e black vertices and a cycle of length l requires d l2e vertices.55

We also give a construction of an optimal irreversible 3-conversion set for a toroidal grid56

T (m,n), which is the Cartesian product of the cycles Cm and Cn. Flocchini et al. [14] and57

Luccio [20] gave lower and upper bounds differing by a linear O(m + n) term; see also [13].58

Pike and Zou [22] gave an optimal construction. We present a simpler optimal construction.59

Theorem 3. Let T be a toroidal grid of size m× n, where m,n ≥ 3. If n = 4 or m = 4 then60

T has an irreversible 3-conversion set of size at most 3mn+4
8 . Otherwise, T has an irreversible61

3-conversion set of size at most mn+4
3 .62

Theorems 1 and 3 appeared in our early preprint [17]. When preparing the final version63

of this paper, we found that Centeno et al. [10] have published a different proof that the64

problem I2CS is NP-complete. The graph in their construction has maximum degree 11.65

Balogh and Pete [6] reported tight asymptotic bounds on the minimum size of an irre-66

versible k-conversion set in the d-dimensional integer grid. Balister, Bollobás, Johnson and67

Walters [3] obtained more precise bounds for the case d+ 1 ≤ k ≤ 2d.68

An irreversible k-conversion process is equivalently also called a (k-neighbor) bootstrap69

percolation. Bootstrap percolation was introduced by Chalupa, Leath and Reich [11] as70

a model for interactions in magnetic materials. Bootstrap percolation theory is typically71
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Figure 1: A one-way gadget.

concerned with d-dimensional lattices (and in recent years, other classes of graphs as well)72

where each vertex is “infected” independently at random with some fixed probability. See [1]73

for an early review of the subject or [12] for a recent survey. See [4, 26] for the most recent74

results for d-dimensional integer grids.75

Several authors [7, 21] studied the computational complexity of the minimum number of76

steps of the bootstrap percolation needed to percolate the whole graph.77

Many other variants of bootstrap percolation have been studied in the literature. Exam-78

ples include hypergraph bootstrap percolation [5] or weak H-saturation of graphs [2, 8].79

2 Irreversible 2-conversion set is NP-complete80

In this section we give a proof of Theorem 1.81

The problem is trivially in NP. A verification that S ⊆ V is an irreversible 2-conversion82

set can be done by iterating the threshold process. It is enough to check only the first |V |83

steps. Hence the verification can be done in a polynomial time.84

In the rest of the proof we show that I2CS(G, s) is NP-hard by a polynomial-time reduction85

from 3-SAT. We introduce a variable gadget, a clause gadget and a gadget that checks if all86

clause gadgets are satisfied.87

Since a white vertex needs two black neighbors to become black, we have the following88

observation.89

Observation 4. Every irreversible 2-conversion set contains all vertices of degree 1.90

According to this observation, in the figures of the gadgets we draw vertices of degree one91

black.92

Let F be an instance of 3-SAT. We denote the number of variables by n and the number93

of clauses by m. We construct a graph GF and give a number s such that F is satisfiable if94

and only if GF has an irreversible 2-conversion set of size s.95

First we introduce a one-way gadget; see Figure 1. The gadget contains two vertices u96

and v which are called start and end of the one-way gadget. Vertices w1, w2, w3 and w4 are97

called internal vertices of the gadget.98

Observation 5. Let u and v be start and end of the one-way gadget. If internal vertices are99

white at the beginning then the following holds:100

1. If v is black then u gets a black neighbor from the gadget in three steps.101
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Figure 2: A variable gadget g(Xi) connected to a vertex ui of a distributing path.

2. The vertex w4 can become black only after v becomes black.102

We refer to the one-way gadget by a directed edge in the following figures. Later, we set103

s so that S cannot contain any internal vertices of one-ways. Thus, in the rest of the proof104

we assume that all internal vertices are white at the beginning.105

2.1 Variable gadget106

A gadget g(Xi) for a variable Xi, where 1 ≤ i ≤ n, consists of a triangle xiyizi and two107

antennas; see Figure 2. The length of the antenna connected to xi and yi is equal to the108

number of occurrences of Xi and ¬Xi, respectively, in the clauses of F . We call the white109

vertices of the xi antenna positive outputs and the vertices of the yi antenna negative outputs.110

One-way gadgets with starts in the outputs have ends in clause gadgets. The vertex zi is111

adjacent to a vertex ui lying on a distributing path, which we define later.112

We show that exactly one of xi and yi is black at the beginning. This represents the value113

of the variable Xi. The vertex xi corresponds to the true and yi to the false evaluation of Xi.114

The purpose of the connection between ui and zi is to convert all vertices of the gadget to115

black if F is satisfiable.116

Observation 6. Let S be an irreversible 2-conversion set. The gadget g(Xi) has the following117

properties.118

(a) If xi is black then all positive outputs will become black in the process. Similarly for yi119

and negative outputs.120

(b) If two of xi, yi, zi are black then all vertices of the gadget will become black in the process.121

(c) S must contain at least one of the vertices xi, yi, zi.122

(d) If S contains exactly one vertex of the gadget (except the vertices of degree 1) then it123

must be xi or yi.124

(e) If S contains exactly one vertex of the gadget then zi gets black only if ui gets black.125

Proof. The first two properties are easy to check and hence we skip them.126

4



viai

Figure 3: A clause gadget g(Ci) connected to a vertex vi of a collecting path.

First we check the property (c). Every vertex of the triangle xiyizi has only one neighbor127

outside the triangle. Hence if all three vertices are white, they remain white forever since128

each of them has at most one black neighbor. Therefore S must contain at least one of them.129

Now we check the property (d). If S is allowed to contain only one of {xi, yi, zi} then130

all positive and negative outputs are white at the beginning. Moreover, the positive outputs131

may become black only if xi gets black. Similarly for negative outputs and yi.132

Suppose for contradiction that zi ∈ S. Then both xi and yi have only one black neighbor133

(zi) at the beginning. During the process the other black neighbor has to be some output134

vertex which is not possible. Hence S must contain xi or yi.135

Finally, we check the property (e). By (d) we know that zi is white at the beginning.136

Assume without loss of generality that yi is also white while xi is black. The vertex zi can137

get black if yi or ui gets black. So assume for contradiction that yi gets black before zi. The138

only possibility is that the vertex from the antenna adjacent to yi gets black. But it is not139

possible since output vertices are white at the beginning and they are connected to the rest140

of the graph by one-ways.141

Note that if xi or yi is in S then there is still a chance that the process converts all vertices142

of the gadget to black, as the vertex ui may become black during the process.143

Let L be a set of all degree 1 vertices in GF . We set the parameter s to |L| + n. Thus144

every variable gadget has exactly one of xi and yi black at the beginning and all other vertices145

of GF of degree at least 2 are white. We compute |L| after we describe all the remaining146

gadgets.147

2.2 Clause gadget148

The gadget g(Ci) for a clause Ci = (Lo ∨ Lp ∨ Lq), where 1 ≤ i ≤ m and Lo, Lp, and Lq are149

literals, is depicted in Figure 3. The gadget consists of a path on three vertices corresponding150

to the three literals in the clause. We call the path the spine of the clause gadget. Each vertex151

of the spine has one neighbor of degree 1 and is connected to the gadget of the corresponding152

variable by a one-way. The vertex of a clause corresponding to a literal Xi is connected to153

a positive output of g(Xi) and the vertex corresponding to a literal ¬Xi is connected to a154

negative output of g(Xi). Finally, one vertex of the spine denoted by ai is connected to a155

vertex vi of a collecting path, which is defined later.156

Observation 7. If one vertex of the spine is black, then all vertices of the clause gadget get157

black in the process.158
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Figure 4: A collecting path v1, . . . , vm and a distributing path u1, . . . , un

2.3 Collecting and distributing gadget159

A collecting path is a path on m vertices v1, . . . , vm where each vi is connected to a clause160

gadget. Moreover, the vertex v1 is also connected to a vertex of degree 1. A distributing161

path is a path on n vertices u1, . . . , un. Each ui is connected to a vertex of degree 1 and to162

the vertex zi of the variable gadget g(Xi). Finally, vm is connected to u1; see Figure 4. See163

Figure 5 for an example of the whole graph GF .164

Observation 8. If the vertices of the distributing and collecting paths are white at the begin-165

ning they will become all black in the process only if all the clause gadgets get black during166

the process.167

Proof. If all spines of clause gadgets are black then it is easy to observe that the vertices of168

the collecting path get black in at most m steps from v1 to vm. Once vm is black all the169

vertices of the distributing path get black in at most n steps from u1 to un. It remains to170

check that vi cannot get black before a neighboring vertex ai gets black.171

We start by checking the vertices of the distributing path. By Observation 6(e), the vertex172

zn cannot get black before un. Thus un cannot get black before un−1 because un−1 is one173

of the two remaining neighbors which can be black before un. Similarly, for 0 < i < n,174

the vertices zi and ui+1 cannot get black before ui. Thus ui cannot get black before ui−1.175

Similarly, u0 cannot get black before vm.176

Analogously, no vertex vi, 2 ≤ i ≤ m, of the collecting path can get black before vi−1 and177

ai are both black. For i = 1 we get that a1 must get black before v1.178

The graph GF = (V,E) corresponding to the 3-SAT instance F constructed from these179

gadgets has a linear size in the size of F . The size of L is 15m + n + 1. Thus s is set to180

n+ |L| = 15m+ 2n+ 1.181

Lemma 9. If F is satisfiable then there exists an irreversible 2-conversion set S of size n+|L|182

in GF .183
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Figure 5: A graph GF for the formula F = (X1 ∨ ¬X1 ∨ ¬X2).

Proof. The set S consists of |L| leaves and from every variable gadget g(Xi) we choose either184

xi or yi if Xi is evaluated true or false, respectively. Since F is satisfiable then after a finite185

number of steps every gadget for a clause has at least one black vertex. Then in at most two186

steps all clause gadgets are completely black. Next the collecting path gets black in at most187

m steps and the distributing path gets black in next n steps. Now, for 0 ≤ i ≤ n, the vertex188

zi has two black neighbors and it gets black. The remaining white vertex of the pair xi, yi189

gets black in the next step. Finally, also the remaining antennas for every variable get black.190

Hence all vertices of GF get black in the process.191

Lemma 10. If F is not satisfiable then there is no irreversible 2-conversion set of size n+|L|.192

Proof. Assume for contradiction that there exists an irreversible 2-conversion set S of size193

n + |L|. By Observation 4, L ⊆ S. Moreover, due to Observation 6, S must contain one194

of {xi, yi} for each i ∈ [n]. Hence there are no other black vertices. We derive the truth195

assignment of the variables in the following way. We set Xi true if xi ∈ S and false if yi ∈ S.196

Let C = (Lo ∨Lp ∨Lq) be a clause of F . The gadget corresponding to C gets black after197

a finite number of steps of the process. By Observation 8, g(C) got black because of one of198

g(Xo), g(Xp) or g(Xq). Hence C is evaluated as true in F . Therefore all clauses of F are199

evaluated as true which is a contradiction with the assumption that F is not satisfiable.200

The proof of Theorem 1 is now finished.201

3 Graphs with maximum degree 3202

In this section we give a proof of Theorem 2. We follow the approach of Ueno, Kajitani and203

Gotoh [25].204

Let G be a graph with maximum degree 3. Without loss of generality, we assume that G is205

connected, since a minimum irreversible 2-conversion set can be computed for each component206

separately. First we reduce the problem to graphs with minimum degree 2. Let H5 be the207

graph with five vertices and seven edges consisting of the cycle v1v2v3v4v5 and the edges v2v4208

and v3v5. Let G2 be the graph obtained from G by attaching a copy of H5 to each vertex209

v of G of degree 1 by identifying v with v1; see Figure 6. Observe that G2 is a graph with210

maximum degree 3 and minimum degree at least 2.211

For any graph H, let C2(H) be the minimum size of an irreversible 2-conversion set in H.212
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Figure 6: A reduction of the I2CS problem to graphs with all degrees at least 2.
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Figure 7: The case of two adjacent vertices of degree 2.

Lemma 11. Let k be the number of vertices of degree 1 in G. Then C2(G2) = C2(G) + k.213

Proof. By Observation 4, every irreversible 2-conversion set in G contains all vertices of degree214

1. Since every irreversible 2-conversion set in G2 intersects all cycles, it contains at least two215

vertices in each copy of H5. On the other hand, {v3, v4} is an irreversible 2-conversion set of216

H5. It follows that by attaching a copy of H5 to a vertex of degree 1, the minimum size of217

an irreversible 2-conversion set grows by 1.218

If G2 is 3-regular, we may directly apply the result of Ueno, Kajitani and Gotoh [25].219

Now we take care of the case when G2 has exactly one or two vertices of degree 2. First we220

consider the special case when the two vertices of degree 2 are connected by an edge. We221

subdivide this edge by a new vertex x and add one more vertex y joined to x, forming a graph222

G1. See Figure 7.223

Lemma 12. Suppose that u and v are the only vertices of degree 2 in G2, and that uv is224

an edge of G2. Let G1 be the graph (V (G2) ∪ {x, y}, (E(G2) \ {uv}) ∪ {ux, vx, xy}). Then225

C2(G1) = C2(G2) + 1.226

Proof. If S is an irreversible 2-conversion set in G2, then S contains at least one of the vertices227

u, v. We claim that S ∪ {y} is an irreversible 2-conversion set in G1. This is clear if both228

u and v are in S. If exactly one of the vertices u, v is in S, say, u ∈ S and v /∈ S, then x229

turns black in the first step. Therefore, it is sufficient to show that S∪{x, y} is an irreversible230

2-conversion set in G1. But this follows since in this case, the irreversible 2-conversion process231

on the subset V (G2) is identical to the process on G2 starting with S black.232

Conversely, let S′ be an irreversible 2-conversion set in G1. Then necessarily y ∈ S′. We233

may assume that x /∈ S′, otherwise we may replace x by u or v, or remove x from S′ if both234

u and v are in S′. We claim that S′ \ {y} is an irreversible 2-conversion set in G2. Clearly, at235

least one of the vertices u, v, say, u, is in S′. If also v ∈ S′, the claim follows immediately. If236

v /∈ S′, then during the irreversible 2-conversion process on G1, the vertex v turns black only237
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after its neighbor in G2 other than u turns black. Therefore, the irreversible 2-conversion238

process on G2 starting with S′ \ {y} black will be induced by the process on G1 starting with239

S′ black.240

Modifying G1 like in Lemma 11, that is, by attaching a copy of H5 to y, we obtain241

a graph G′2 with two nonadjacent vertices of degree 2 and all other vertices of degree 3,242

satisfying C2(G
′
2) = C2(G1) + 1 = C2(G2) + 2.243

Now we consider the case of two nonadjacent vertices of degree 2.244

Lemma 13. Suppose that u and v are the only vertices of degree 2 in G2 and that u and v are245

not adjacent. Then the graph G3 obtained from G2 by adding the edge uv satisfies C2(G3) =246

C2(G2). In particular, every irreversible 2-conversion set in G3 is also an irreversible 2-247

conversion set in G2.248

Proof. The inequality C2(G2) ≥ C2(G3) is trivial. For the other inequality, suppose that S is249

an irreversible 2-conversion set in G3. We show that then S is also an irreversible 2-conversion250

set in G2. Every component of G3 − S is a tree. In the beginning, the vertices of S are black251

and the other vertices are white. In each step, the irreversible 2-threshold process converts252

all isolated vertices and all leaves of the white subgraph of G3 to black vertices. If w is an253

isolated vertex in G3 − S, w has still at least two black neighbors in G2, so it is converted to254

a black vertex in the first step.255

Let T be a tree component T of G3 − S with at least two vertices. If uv is an edge of T ,256

the two components of T − uv will still be converted to black vertices in G2, with u and v257

being the last vertices to be converted. If u ∈ T and v /∈ T , then all vertices of T will still be258

converted to black vertices, with u being the last vertex to be converted.259

We note that we could use Lemma 13 also in the case when uv is an edge, if we allowed260

multigraphs. However, we have decided not to use multigraphs in this paper.261

The case of exactly one vertex of degree 2 can be easily solved using Lemma 13 by taking262

two disjoint copies of G2.263

Corollary 14. Suppose that v is the only vertex of degree 2 in G2. Then the graph G3264

obtained from G2 by adding a disjoint graph G′2 isomorphic to G2 and joining the vertex v′265

of degree 2 in G′2 with v by an edge is 3-regular and satisfies C2(G3) = 2C2(G2).266

We are left with the case when G2 has at least k ≥ 3 vertices of degree 2. In this case, we267

construct a 3-regular graph G3 by attaching a caterpillar T with k leaves and k − 2 vertices268

of degree 3 forming the spine; see Figure 8. Every leaf of T is identified with one vertex of269

degree 2 in G2. Let V2 be the vertex set of G2 and let V3 be the vertex set of G3. The graph270

G3 − V2 is a path induced by the k − 2 branching nodes of T .271

Let µ(G) be the cyclomatic number of G. That is, µ(G) = e(G) − v(G) + κ(G), where272

e(G), v(G) and κ(G) are the numbers of edges, vertices and components of G, respectively.273

Define a function f : 2V3 → Z from the set of subsets of vertices of G3 as f(X) :=274

µ(G3) − µ(G3 − X). Roughly speaking, f measures the number of cycles broken by X in275

G3. Let f2 : 2V2 → Z be the restriction of f to subsets of V2. Ueno, Kajitani and Gotoh [25]276

proved that (V3, f) is a linear 2-polymatroid, using a linear representation of the dual matroid277

of the graphic matroid of G3. More precisely, each vertex v of G3 can be represented as a278

2-dimensional subspace h(v) of a certain vector space (over any field, and of dimension not279

exceeding the number of vertices of G3) so that f(X) is equal to the dimension of the span280
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Figure 8: Extending G2 to a 3-regular graph G3 by attaching a caterpillar.

of
⋃
{h(v); v ∈ X}. The function f is called the rank function of the 2-polymatroid. Since f2281

is a restriction of f , it follows that (V2, f2) is also a linear 2-polymatroid.282

A set M is a matching in a 2-polymatroid with rank function f if f(M) = 2|M |. A283

set S is spanning in a 2-polymatroid (V, f) if f(S) = f(V ). Let ν(V, f) be the maximum284

size of a matching in (V, f) and let ρ(V, f) be the minimum size of a spanning set of (V, f).285

Lovász [18, 19] proved the following generalization of Gallai’s identity.286

Lemma 15 ([18],[19, Lemma 11.1.1.]). For every 2-polymatroid (V, f), we have ν(V, f) +287

ρ(V, f) = f(V ).288

Lovász [18] proved that a maximum matching in a linear 2-polymatroid can be found in289

polynomial time. It follows that also ρ(V, f) can be computed in polynomial time, for any290

linear 2-polymatroid (V, f).291

The theorem now follows from the following fact, generalizing [25, Theorem 3].292

Lemma 16. A set S ⊆ V2 is a spanning set in (V2, f2) if and only if it is an irreversible293

2-conversion set in G2.294

To prove the lemma, we use the following simple observation.295

Observation 17. Let S be an irreversible 2-conversion set in a graph G. Let v be a vertex296

of G of degree 2 such that v /∈ S. Then S is an irreversible 2-conversion set in G− v.297

Proof of Lemma 16. Let S ⊆ V2 be an irreversible 2-conversion set in G2. We claim that S298

is also an irreversible 2-conversion set in G3. If not, then G3 − S contains a cycle C of white299

vertices that will not be converted to black vertices during the irreversible 2-threshold process300

starting with S black. Since G3 − V2 is a tree, C contains a vertex of V2; a contradiction.301

Therefore, S is a feedback vertex set inG3, equivalently, G3−S is acyclic, and this is equivalent302

to the fact that f(S) = f(V3). Since G3 − V2 is acyclic, we have f2(S) = f(S) = f(V3) =303

f(V2) = f2(V2), and so S is spanning in (V2, f2).304

Now let S ⊆ V2 be a spanning set in (V2, f2). By the previous arguments, this is equivalent305

to the fact that S is an irreversible 2-conversion set in G3. Let w1w2 . . . wk−2 be the path306

G3−V2. Let e be an edge joining wk−2 with a vertex of V2. By Lemma 13, S is an irreversible307

2-conversion set in G3 − e. By Observation 17, S is an irreversible 2-conversion set in (G3 −308

e) − wk−2 = G3 − wk−2. Similarly, by a repeated application of Observation 17, S is an309

irreversible 2-conversion set in G3 − wk−2 − wk−3 − · · · − w1 = G2.310
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G2

w1 w2

Figure 9: A 3-regular graph G3 with an irreversible 2-conversion set of size 5. Every such
set has to contain at least one of the vertices w1, w2; therefore, the connected subgraph
G2 = G3 − w1 − w2 has no irreversible 2-conversion set of size 5.

3.1 Running time of the algorithm311

Lovász and Plummer [19] estimated the running time of Lovász’s algorithm [18] to be O(n17).312

Since every 2-dimensional subspace can be represented by a pair of linearly independent313

vectors, the matching problem for 2-polymatroids is equivalent to the linear matroid parity314

problem, whose input is a linear matroid with a partition of its edges into pairs, and the goal315

is to find an independent set with maximum number of pairs. For matroids with n elements316

and rank r, Gabow and Stallmann [15, 16] gave an algorithm for the linear matroid parity317

problem running in time O(nrω), where O(nω) is the complexity of multiplication of two318

square n × n matrices. Moreover, for graphic matroids, Gabow and Stallmann [15, 16] gave319

a very fast algorithm running in time O(nr log6 r). They noted that the same algorithm can320

be used to solve the linear matroid parity problem for cographic matroids, that is, the duals321

of graphic matroids. This follows from the simple fact that a maximum matching M and322

a basis B containing M determine a unique maximum matching in the dual matroid in the323

complement of B. Takaoka, Tayu and Ueno [24] used Gabow’s and Stallmann’s algorithm to324

show that the vertex feedback set problem for graphs of maximum degree 3 can be solved325

in time O(n2 log6 n). However, we are not able to make a similar conclusion for the I2CS326

problem, and can guarantee only O(n1+ω) running time using the more general algorithm by327

Gabow and Stallmann.328

Although the matroid (V3, f) constructed by Ueno, Kajitani and Gotoh [25] is cographic,329

our submatroid (V2, f2) is not cographic in general. Moreover, ρ(V3, f) can be smaller than330

ρ(V2, f2); see Figure 9. Therefore, we cannot directly use the value ν(V3, f) computed by the331

faster algorithm by Gabow and Stallmann.332

Problem 1. Can the I2CS problem on graphs of maximum degree 3 be efficiently reduced to333

the cographic matroid parity problem?334

4 Irreversible 3-conversion set in toroidal grids335

In this section we show a construction of an irreversible 3-conversion set S that proves The-336

orem 3. We denote the toroidal grid of size n ×m by T (n,m). When the dimensions of the337
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(D) 3k + 2, 3l + 2 (E) 3k + 2, 3l + 4 (F) 3k + 4, 3l + 4

(C) 3k, 3l + 4(B) 3k, 3l + 2(A) 3k, 3l

Figure 10: The cases for T (m,n).

grid are clear from the context or not important, we simply write T instead of T (m,n). We338

assume that the entries of the grid are squares and two of them are neighboring if they share339

an edge. First we discuss the general case where m 6= 4 and n 6= 4.340

We define a coordinate system on T such that the left bottom corner is [0, 0]. A pattern341

is a small and usually rectangular piece of a grid where squares are black and white. Placing342

a pattern P at position [i, j] in T means that the left bottom square of P is at [i, j] in T . If343

a vertex of T has color defined by several patterns then it is white only if it is white in all344

the patterns. We describe a rectangle of a grid by the coordinates of the bottom left corners345

of its bottom left and top right squares. Tiling a rectangle R by a pattern P means placing346

several non-overlapping copies of P to R so that every square of R is covered.347

Let m = 3k+a and n = 3l+b, where a, b ∈ {0, 2, 4}. By g we denote the greatest common348

divisor of k and l.349

For 0 ≤ i ≤ g − 2 we place a pattern at [0, 3i]. Next we tile the rest of the rectangle350

[0, 0][3k − 1, 3l − 1] by a pattern . The remaining part of the grid can be decomposed into351

three rectangles of dimensions 3k × b, a× 3l and a× b (some of them may be empty).352

We distinguish several cases depending on a and b. They are depicted in Figure 10 and353

their description follows.354

(A) a = 0, b = 0 We do not add anything now.355

(B) a = 0, b = 2 We tile the rectangle 3k × 2 with .356

(C) a = 0, b = 4 We tile the rectangle 3k × 4 with .357

(D) a = 2, b = 2 We tile the rectangle 3k×2 with , the rectangle 2×3l with and place358

at [3k, 3l].359

12



Figure 11: Merging three white cycles into one.

(E) a = 2, b = 4 We tile the rectangle 3k× 4 with , the rectangle 2× 3l with and place360

at [3k, 3l].361

(F) a = 4, b = 4 We tile the rectangle 3k×4 with , the rectangle 4×3l with and place362

at [3k, 3l].363

The construction is finished for cases (D), (E) and (F). Cases (A), (B) and (C) require an364

extra black square. We place it at [0,0] or [1,1]. It is colored grey in Figure 10.365

Let S be the set of black squares in our construction. In the cases (A), (B) and (C) the366

size of S is mn
3 + 1 = mn+3

3 . In the cases (D) and (F) the size of S is mn+2
3 and in the last367

case (E) the size of S is mn+4
3 .368

Now we check the correctness of the construction. We start with the case (A) where369

m = 3k and n = 3l.370

By a white cycle we denote a connected set of white squares W ⊆ T where every square371

in W has at least two neighbors in W . Note that T cannot contain any white cycle if the372

squares of an irreversible 3-conversion set are black.373

Observation 18. Let T (3k, 3l) be filled with . Then it contains g disjoint white cycles.374

Let the whole grid be filled by . By Observation 18, there are g white cycles after the375

filling. The idea of our construction is to merge the cycles into one long cycle by changing376

to in the first column and the first g − 1 rows; see Figure 11. Finally, we add one more377

black vertex to break the resulting cycle.378

Observe that the small patterns used in (B) – (F) just extend the size of the toroidal grid379

but do not change the structure of white cycles from the 3k×3l rectangle. Thus the argument380

for the case (A) can be easily extended to all the other cases.381

This finishes the construction for the general case.382

Now we assume without loss of generality that n = 4. Let m = 2k + a, where a ∈ {1, 2}.383

We tile the rectangle [0, 0][2k − 1, 3] by a pattern . If a = 1 we place at [2k − 1, 0] and if384

a = 2 we place at [2k, 0]. The resulting grids are depicted in Figure 12.385
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