Proper Rainbow Saturation Numbers for Cycles

Anastasia Halfpap* Bernard Lidický ${ }^{\dagger}$ Tomáš Masařík ${ }^{\ddagger}$

March 26, 2024

Abstract

We say that an edge-coloring of a graph G is proper if every pair of incident edges receive distinct colors, and is rainbow if no two edges of G receive the same color. Furthermore, given a fixed graph F, we say that G is rainbow F-saturated if G admits a proper edge-coloring which does not contain any rainbow subgraph isomorphic to F, but the addition of any edge to G makes such an edge-coloring impossible. The maximum number of edges in a rainbow F-saturated graph is the rainbow Turán number, whose study was initiated in 2007 by Keevash, Mubayi, Sudakov, and Verstraëte. Recently, Bushaw, Johnston, and Rombach introduced study of a corresponding saturation problem, asking for the minimum number of edges in a rainbow F-saturated graph. We term this minimum the proper rainbow saturation number of F, denoted $\operatorname{sat}^{*}(n, F)$. We asymptotically determine sat* $\left(n, C_{4}\right)$, answering a question of Bushaw, Johnston, and Rombach. We also exhibit constructions which establish upper bounds for sat* $\left(n, C_{5}\right)$ and $\operatorname{sat}^{*}\left(n, C_{6}\right)$.

1 Introduction

A central problem in extremal graph theory is to understand the set of n-vertex graphs G which do not contain some forbidden subgraph F. Formally, given graphs G, F, we say that G contains a copy of F (or F-copy) if G contains a subgraph (not necessarily induced) isomorphic to F; if G does not contain a copy of F, we say that G is F-free. Note that if G is F-free, then all subgraphs of G are also F-free; thus, it is natural to restrict our attention to edge-maximal F-free n-vertex graphs, as these contain all F-free n-vertex graphs. We use $V(G), E(G)$ to denote the vertex and edge sets of G, and for $x, y \in V(G)$ such that $x y \notin E(G)$, we denote by $G+x y$ the graph on vertex set $V(G)$ with edge set $E(G) \cup\{x y\}$. A graph G is F-saturated if G is F-free but, for any $e \notin E(G)$, the graph $G+e$ contains a copy of F.

Further restricting our focus, we may ask which F-saturated n-vertex graphs are somehow extremal. That is, in the set of n-vertex F-saturated graphs, which elements optimize some

[^0]graph parameter? This question yields two natural avenues of research. The Turán number ex (n, F) is the maximum number of edges among all n-vertex, F-saturated graphs. Famously first considered by Mantel [8] in the case $F=K_{3}$, and for general cliques by Turán [13], the study of ex (n, F) remains a vibrant area of study in its own right, as well as giving rise to a variety of natural generalizations and variations. On the other hand, the saturation number $\operatorname{sat}(n, F)$ is the minimum number of edges among all n-vertex, F-saturated graphs. The study of saturation numbers is also well-established (see, for instance, [6]) and, like Turán problems, it is natural to generalize saturation problems to a variety of contexts.

This paper concerns saturation problems in an edge-colored setting. An edge-coloring of a graph G is a function $c: E(G) \rightarrow \mathbb{N}$. We say that $c(e)$ is the color of e, and that c is a proper edge-coloring if for any two incident edges e, f, we have $c(e) \neq c(f)$. An edge-colored graph is rainbow if all of its edges receive different colors. Given fixed graphs G, F, and a proper edge-coloring c of G, we say that G is rainbow-F-free under c if G does not contain any copy of F which is rainbow with respect to c. Moreover, we say that G is (properly) rainbow F-saturated if G satisfies the following conditions.

1. There exists a proper edge-coloring c of G such that G is rainbow- F-free under c;
2. For any edge $e \notin E(G)$, any proper edge-coloring of $G+e$ contains a rainbow F-copy.

Motivated by a problem in additive number theory, Keevash, Mubayi, Sudakov, and Verstraëte [9] introduced the rainbow Turán number $\mathrm{ex}^{*}(n, F)$ in 2007, which is the maximum number of edges in an n-vertex, rainbow F-saturated graph. Following the analogy between $\operatorname{ex}(n, F)$ and $\operatorname{ex}^{*}(n, F)$, it is natural to also consider the rainbow counterpart to sat (n, F). Bushaw, Johnston, and Rombach [5] recently initiated a study of this rainbow version of the saturation number, denoted $\operatorname{sat}^{*}(n, F)$, the minimum number of edges in an n-vertex rainbow F-saturated graph. We call sat* (n, F) the proper rainbow saturation number of F, since all edge-colorings in this setting are proper. While slightly lengthy, this terminology distinguishes sat ${ }^{*}(n, F)$ from an already-studied function which has been termed the rainbow saturation number in the literature (see, e.g., [2], [3], [7]), and which does not assume a setting of proper edge-colorings.

Given that consideration of $\operatorname{sat}^{*}(n, F)$ is extremely new, few results have been established in the area, and the general behavior of $\operatorname{sat}^{*}(n, F)$ remains unclear. For instance, while it is simple to observe that $\operatorname{ex}(n, F) \leq \mathrm{ex}^{*}(n, F)$ for all F, it is not obvious whether we have $\operatorname{sat}(n, F) \leq \operatorname{sat}^{*}(n, F)$ for all F. The following theorem illustrates that we sometimes have $\operatorname{sat}(n, F)<\operatorname{sat}^{*}(n, F)$, and in fact $\operatorname{sat}^{*}(n, F)$ may differ from $\operatorname{sat}(n, F)$ by a multiplicative factor. Here and throughout, we denote by P_{ℓ} the path on ℓ vertices (that is, on $\ell-1$ edges).

Theorem 1.1 ([5, Theorem 3.5]). For each $n \geq 16$, we have

$$
\left\lfloor\frac{4 n}{5}\right\rfloor \leq \operatorname{sat}^{*}\left(P_{4}, n\right) \leq \frac{4}{5} n-\frac{17}{10} c
$$

where $0 \leq c \leq 4$ and $c \equiv-n \bmod 5$.
For contrast, $\operatorname{sat}\left(n, P_{4}\right)$ is approximately $\frac{n}{2}$.

Theorem 1.2 ([10, Proposition 5]).

$$
\operatorname{sat}\left(n, P_{4}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+3}{2} & \text { if } n \text { is odd }\end{cases}
$$

Apart from $\operatorname{sat}^{*}\left(P_{4}, n\right)$, we do not have tight bounds on any proper rainbow saturation number, except for trivial cases where every proper coloring of F is rainbow and thus $\operatorname{sat}(n, F)=\operatorname{sat}^{*}(n, F)$. The goal of this paper is to contribute to the understanding of the proper rainbow saturation numbers of cycles, in particular by determining sat* $\left(n, C_{4}\right)$ asymptotically. The previous best known bounds on $\operatorname{sat}^{*}\left(n, C_{4}\right)$ are due to Bushaw, Johnston, and Rombach [5].

Theorem 1.3 ([5, Theorem 3.6]). For $n \geq 4$, we have

$$
n \leq \operatorname{sat}^{*}\left(n, C_{4}\right) \leq 2 n-2
$$

For comparison, the ordinary saturation number of C_{4} is known exactly.
Theorem 1.4 ([11]). $\operatorname{sat}\left(n, C_{4}\right)=\left\lfloor\frac{3 n-5}{2}\right\rfloor$.
We contribute the following bounds on $\operatorname{sat}^{*}\left(n, C_{4}\right)$, which asymptotically determine its value and show that $\operatorname{sat}^{*}\left(n, C_{4}\right)$ is separated from $\operatorname{sat}\left(n, C_{4}\right)$ by a constant multiplicative factor.

Theorem 1.5. For $n \geq 7$,

$$
\operatorname{sat}^{*}\left(n, C_{4}\right) \leq \frac{11}{6} n+O(1)
$$

Theorem 1.6. Let $\frac{11}{45}>\varepsilon>0$ be given. There exists $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$,

$$
\operatorname{sat}^{*}\left(n, C_{4}\right)>\left(\frac{11}{6}-\varepsilon\right) n
$$

For cycles of length greater than 4, little is known. Unlike other saturation numbers, it is not even known whether sat* (n, F) is always linear in n, although Bushaw, Johnston, and Rombach [5] describe a class of graphs with linear proper rainbow saturation number.

Theorem 1.7 ([5, Theorem 4.2]). Suppose that F contains no induced even cycle. Then there is a constant c depending only on F such that $\operatorname{sat}^{*}(n, F) \leq c n$.

Theorem 1.7 can be used to derive some upper bound on proper rainbow saturation numbers for odd cycles, but the constant c given may be very large. There are no published bounds on $\operatorname{sat}^{*}\left(n, C_{2 \ell}\right)$ for $\ell>2$. We contribute constructions that improve this state of affairs for C_{5} and C_{6}. For C_{5}, we obtain a single bound regardless of the parity of n.

Theorem 1.8. For $n \geq 9$, $\operatorname{sat}^{*}\left(n, C_{5}\right) \leq\left\lfloor\frac{5 n}{2}\right\rfloor-4$.
For C_{6}, our bound varies slightly with the congruence class of n modulo 3 . To avoid separate cases, we allow a constant error term which absorbs this discrepancy.

Theorem 1.9. sat* $\left(n, C_{6}\right) \leq \frac{7}{3} n+O(1)$.
Using the elementary observation that, for $n>2$, a rainbow C_{ℓ}-saturated graph contains no acyclic component (since the addition of an edge either within an acyclic component yields a component containing at most one C_{ℓ} copy, which can be properly colored to avoid a rainbow C_{ℓ}-copy, while an edge between distinct components creates no new cycles at all), we have the immediate lower bound $\operatorname{sat}^{*}\left(n, C_{\ell}\right) \geq n$ for all ℓ and all $n>2$. Thus, the bounds given in Theorems 1.8 and 1.9 seem reasonable, although we do not attempt to find matching lower bounds.

The remainder of the paper is organized as follows. In Section 2, we present a construction establishing Theorem 1.5 and prove Theorem 1.6. In Section 3, we present constructions establishing Theorems 1.8 and 1.9.

Notation. We denote degree of a vertex v in a graph G by $d_{G}(v)$ and the minimum degree of a vertex v in a graph G by $\delta(G)$. If G is clear from context we omit the subscript and simply write $d(v)$ for the degree of v in G. Given vertices u, v we denote distance by $d(u, v)$. That is, $d(u, v)$ is the minimum number of edges on a path from u to v. We use $N[v]$ to denote the closed neighbourhood of a vertex v and we let $N(v):=N[v] \backslash\{v\}$. For $S \subseteq V(G)$, we use $N(S)$ (resp. $N[S]$) as a shortcut for $\bigcup_{v \in S} N(v)$ (resp. $\bigcup_{v \in S} N[v]$). Given a graph G and $S \subset V(G)$, we use $G[S]$ to denote the subgraph of G induced on S, that is, the graph with vertex set S and edge set $E(G[S])=\{u v \in E(G): u, v \in S\}$.

2 Bounds for C_{4}

We begin by improving the upper bound on $\operatorname{sat}^{*}\left(n, C_{4}\right)$, with a construction showing that $\operatorname{sat}^{*}\left(n, C_{4}\right) \leq \frac{11 n}{6}+O(1)$. Before stating the construction, we establish a variety of facts about properly rainbow C_{4}-saturated graphs, which will be useful throughout. We begin with a proposition collecting a few elementary observations.

Proposition 2.1. Let G be a rainbow C_{4}-saturated graph. Then the following hold.

1. G contains at most one vertex of degree 1 ;
2. For any vertices $u, v \in V(G), d(u, v) \leq 3$;
3. For any vertices $u, v \in V(G),|N(u) \cap N(v)|<4$.

Next, we prove the following key lemma, which will be required to demonstrate that our construction is properly rainbow C_{4}-saturated.

Lemma 2.2. Let G be a graph and $v \in V(G)$. If there exists a proper edge-coloring of G which is rainbow C_{4}-free, then the subgraph of G induced on $N(v)$ does not contain the following subgraphs (not necessarily induced); see Figure 1:

1. A copy of K_{3} with pendant edges from two vertices;
2. C_{4};
3. A copy of C_{k} with a pendant edge, for any $k \geq 5$;
4. The double star $D_{2,2}$, or any subdivision thereof.

Figure 1: Subgraphs not appearing in $N(v)$

Proof. We show that if any of the above subgraphs appear in the neighborhood of v, then it is impossible to properly edge-color G while avoiding a rainbow C_{4}-copy.

We distinguish several cases based on $N(v)$.

1. $N(v)$ contains a copy of K_{3} with pendant edges from two vertices. We label the vertices of this K_{3} as v_{1}, v_{2}, v_{3}, and the degree 1 vertices of the pendant edges as v_{4}, v_{5}. We draw the configuration in Figure 2; without loss of generality, $v v_{i}$ has color i.
To avoid a rainbow C_{4}-copy using vertices v, v_{1}, v_{2}, v_{4}, either $c\left(v_{1} v_{2}\right)=4$ or $c\left(v_{2} v_{4}\right)=1$. Similarly, to avoid a rainbow C_{4}-copy using vertices v, v_{3}, v_{2}, v_{4}, either $c\left(v_{2} v_{3}\right)=4$ or $c\left(v_{2} v_{4}\right)=3$. Since $c\left(v_{2} v_{4}\right)$ cannot simultaneously be equal to 1 and 3 , it follows that one of $c\left(v_{1} v_{2}\right), c\left(v_{2}, v_{3}\right)$ equals 4. Analogously, to avoid a rainbow C_{4}-copy using v_{5}, one of $c\left(v_{1} v_{3}\right), c\left(v_{2}, v_{3}\right)$ must equal 5 . Thus, two edges of the triangle on v_{1}, v_{2}, v_{3} form a P_{3} colored with 4 and 5 which are not in $\{1,2,3\}$. This cherry, along with v, immediately forms a rainbow C_{4}-copy.
2. $N(v)$ contains a copy of C_{4}, on vertices $v_{1}, v_{2}, v_{3}, v_{4}$. Without loss of generality, $c\left(v v_{i}\right)=i$; see Figure 3.
To avoid a rainbow C_{4}-copy using vertices v, v_{1}, v_{2}, v_{3}, either $c\left(v_{1} v_{2}\right)=3$ or $c\left(v_{2} v_{3}\right)=1$. The situation is at this point symmetric, so without loss of generality, $c\left(v_{2} v_{3}\right)=1$. Now, we will have a rainbow C_{4}-copy using v, v_{2}, v_{3}, v_{4} unless $c\left(v_{3} v_{4}\right)=2$. Similarly, we are

Figure 2: K_{3} and pendant edges in $N(v)$
forced to choose $c\left(v_{1} v_{4}\right)=3$ and $c\left(v_{1} v_{2}\right)=4$. But now $v_{1}, v_{2}, v_{3}, v_{4}$ forms a rainbow C_{4}-copy.

Figure 3: A copy of C_{4} in $N(v)$
3. Let $k \geq 5$ and suppose that $N(v)$ contains a copy of C_{k} with a pendant edge. We label the vertices of C_{k} as v_{1}, \ldots, v_{k}, and the endpoint of the pendant edge which is not contained in the cycle as v_{k+1}. Without loss of generality, v_{k+1} is adjacent to v_{k}, and each edge $v v_{i}$ receives color i. For reference, we depict this in Figure 4.
Observe that to avoid a rainbow C_{4}-copy using v, v_{1}, v_{k}, and v_{k+1}, either $c\left(v_{k} v_{k+1}\right)=1$ or $c\left(v_{1} v_{k}\right)=k+1$. Analogously, either $c\left(v_{k} v_{k+1}\right)=k-1$ or $c\left(v_{k-1} v_{k}\right)=k+1$. Without loss of generality, assume $c\left(v_{k} v_{k+1}\right)=k-1$ and $c\left(v_{1} v_{k}\right)=k+1$. Now, to avoid a rainbow C_{4}-copy using v, v_{k}, v_{1}, v_{2}, we must have $c\left(v_{1} v_{2}\right)=k$. Proceeding inductively, for each $i \in\{2, \ldots k-1\}$, we must have $c\left(v_{i} v_{i+1}\right)=i-1$ to avoid a rainbow C_{4}-copy using $v, v_{i-1}, v_{i}, v_{i+1}$. However, now v, v_{1}, v_{k-1}, v_{k} form a C_{4}-copy with edge colors $c\left(v v_{1}\right)=1, c\left(v_{1} v_{k}\right)=k+1, c\left(v_{k} v_{k-1}\right)=k-2$, and $c\left(v_{k-1} v\right)=k-1$. Since $k>3$, we must have that 1 is distinct from $k-2, k-1, k+1$, so this C_{4}-copy is rainbow, a contradiction.
4. $N(v)$ contains $D_{2,2}$ or its subdivision. Thus, $N(v)$ contains a path of length k, for some $k \geq 2$, say on vertices v_{1}, \ldots, v_{k}, as well as vertices v_{k+1}, v_{k+2} adjacent to v_{1} and v_{k+3}, v_{k+4} adjacent to v_{k}. Without loss of generality, $c\left(v v_{i}\right)=i$ for all i. For reference, we depict this in Figure 5.
To avoid a rainbow C_{4}-copy, either $c\left(v_{k+1} v_{1}\right)=2$ or $c\left(v_{1} v_{2}\right)=k+1$. Similarly, either $c\left(v_{k+2} v_{1}\right)=2$ or $c\left(v_{1} v_{2}\right)=k+2$. Thus, we must have $c\left(v_{1} v_{2}\right) \in\{k+1, k+2\}$. Analogously, we must have $c\left(v_{k-1} v_{k}\right) \in\{k+3, k+4\}$. If $k=2$, we have arrived at a contradiction already. If $k>2$, then observe that to avoid a rainbow C_{4}-copy using v, v_{1}, v_{2}, v_{3}, since $c\left(v_{1} v_{2}\right) \neq 3$, we must have $c\left(v_{2} v_{3}\right)=1$. Continuing in this fashion, for each $i \in\{2, \ldots, k-1\}$, we must have $c\left(v_{i} v_{i+1}\right)=i-1$. However, we have already seen that $c\left(v_{k-1} v_{k}\right) \neq k-2$. Thus, it is impossible to color any subdivision of $D_{2,2}$ in $N(v)$ to avoid a rainbow C_{4}-copy.

With the above lemma established, we can quickly prove that the following construction is properly rainbow C_{4}-saturated.

Figure 4: A copy of C_{k} with a pendant edge in $N(v)$

Figure 5: A subdivision of $D_{2,2}$ in $N(v)$

Construction 1. Suppose $n \equiv i \bmod 6$ with $n \geq 7$. For convenience, if n is divisible by 6 , we shall set $i=6$, not $i=0$. Let G_{n} be the graph consisting of a universal vertex u whose

Theorem 1.5. For $n \geq 7$,

$$
\operatorname{sat}^{*}\left(n, C_{4}\right) \leq \frac{11}{6} n+O(1)
$$

Proof. Observe that Construction 1 has $\frac{11}{6} n+O(1)$ edges. Observe also that in Construction 1, every copy of C_{4} intersects precisely one component of the graph induced on $N(u)$. Thus, to verify that a coloring of Construction 1 is rainbow- C_{4}-free, it suffices to verify that each component C of the graph induced on $N(u)$ can be colored so that $\{u\} \cup V(C)$ is rainbow- C_{4}-free. In Figure 6, given a copy of $S_{1,2,2}$ in $N(u)$ and colors for those edges incident to u, we exhibit a proper coloring of $S_{1,2,2}$ so that the graph induced on $\{u\} \cup V\left(S_{1,2,2}\right)$ is rainbow- C_{4}-free. We can similarly, for any $i \in\{1, \ldots, 6\}$, color a copy of $S_{1,\left[\frac{6+i-2}{2}\right\rceil,\left\lfloor\frac{6+i-2}{2}\right\rfloor}$ in $N(u)$ so as to avoid a rainbow C_{4}-copy. Thus, Construction 1 admits a rainbow- C_{4}-free proper edge coloring.

Figure 6: A copy of $S_{1,2,2}$ in $N(u)$, colored to avoid a rainbow C_{4}-copy

We now show that Construction 1 is rainbow C_{4}-saturated. Since u is a universal vertex, any edge added to the construction is contained within $N(u)$. Label the components of the graph induced on $N(u)$ as $C_{1}, C_{2}, \ldots, C_{k}$. If an edge is added between C_{i} and C_{j}, then, since C_{i} and C_{j} each contain a vertex of degree 3 , this added edge will either create a subdivision of $D_{2,2}$ within $N(u)$ or create a vertex $v \in N(u)$ with $|N(u) \cap N(v)|=4$. By Lemma 2.2 and Proposition 2.1, either outcome implies that the resulting graph does not admit a rainbow-C_{4}-free proper edge coloring. If an edge is added between non-adjacent vertices of a single component C_{i}, then we can quickly verify that this addition will create either a triangle with pendant edges from two vertices, a copy of C_{4}, or a copy of C_{k} with a pendant edge for some $k \geq 5$. In any case, by Lemma 2.2, the addition of an edge to $N(u)$ must yield a graph not admitting a rainbow- C_{4}-free proper edge coloring.

We now work to show that Construction 1 is asymptotically best possible. To do so, we require some general understanding of the structure of rainbow C_{4}-saturated graphs. We begin with the following lemma, which shows that any rainbow C_{4}-saturated graph on sufficiently many vertices contains a dominating set which is either small or dense.

Lemma 2.3. Fix $0<\alpha<1 / 9$. There exists $n_{0} \in \mathbb{N}$ such that for any n-vertex, rainbow C_{4}-saturated graph G with $n \geq n_{0}, G$ contains a dominating set D such that either

1. $|D| \leq \alpha n$,
or
2. $G[D]$ has average degree at least 4 .

Proof. Fix $n_{0} \geq \frac{6}{\alpha}\binom{11 / \alpha^{2}}{2}$, and let G be a rainbow C_{4}-saturated graph on $n \geq n_{0}$ vertices. By Proposition 2.1 Case 2, any two vertices $x, y \in V(G)$ must have $d(x, y) \leq 3$. Also note that if $\delta(G) \geq 4$, then $V(G)$ trivially forms a dominating set satisfying condition 2 . So we may assume that there exists $v \in V(G)$ with $d(v) \leq 3$, and for any $u \in V(G) \backslash\{v\}$, we have $d(u, v) \leq 3$. Denote by L_{i} the set of vertices at distance exactly i from v. Observe that both $L_{1} \cup L_{2}$ and $L_{1} \cup L_{3}$ are dominating sets, so we are done if one of $L_{1} \cup L_{2}, L_{1} \cup L_{3}$ satisfies one of conditions 1,2 .

First, note that $L_{1} \cup L_{2}$ will satisfy condition 1 if $\left|L_{2}\right| \leq \alpha n-3$. In particular, if each neighbor of v has degree at most $\frac{\alpha}{3} n-1$, then $L_{1} \cup L_{2}$ satisfies condition 1 . Thus, we may assume that v is adjacent to a vertex of degree at least $\frac{\alpha}{3} n$. In fact, by analogous reasoning,
for a fixed constant k, we may assume that any vertex u with $d(u) \leq k$ has a neighbor of degree at least $\frac{\alpha}{k} n$. Setting $k=\frac{11}{\alpha}$, each vertex of degree at most $\frac{11}{\alpha}$ has a neighbor of degree at least $\frac{\alpha^{2}}{11} n$.

Now, consider L_{3}. We may assume $\left|L_{3}\right| \geq \alpha n-3$, else $L_{1} \cup L_{3}$ satisfies condition 1. This bound on $\left|L_{3}\right|$ implies that if $G\left[L_{3}\right]$ has average degree at least 5 , then $G\left[L_{1} \cup L_{3}\right]$ has average degree at least 4 and thus $L_{1} \cup L_{3}$ satisfies condition 2 . So we may assume that $G\left[L_{3}\right]$ has average degree smaller than 5 . We shall use this assumption to find a small dominating set. First, note that if $u \in L_{3}$, then $N(u) \subset L_{2} \cup L_{3}$. Moreover, by Proposition 2.1, common neighborhoods in G are of size at most 3 . Thus, since L_{2} is spanned by at most three neighborhoods, we have $\left|N(u) \cap L_{2}\right| \leq 9$. In particular, if $u \in L_{3}$ has $d(u) \geq \frac{11}{\alpha}$, then u has at least $\frac{11}{\alpha}-9 \geq \frac{10}{\alpha}$ neighbors in L_{3} (since $\alpha<1 / 9$). Thus, if more than $\frac{\alpha}{2}\left|L_{3}\right|$ vertices in L_{3} have degree at least $\frac{11}{\alpha}$, then $G\left[L_{3}\right]$ has average degree at least $\frac{10}{\alpha} \cdot \frac{\alpha}{2}=5$. So L_{3} contains fewer than $\frac{\alpha}{2}\left|L_{3}\right|<\frac{\alpha}{2} n$ vertices of degree at least $\frac{11}{\alpha}$. We define

$$
H:=\left\{u \in L_{3}: d(u) \geq \frac{11}{\alpha}\right\},
$$

noting that H may be empty. Now, for $u \in L_{3} \backslash H, u$ must have a neighbor of degree at least $\frac{\alpha^{2}}{11} n$. Let

$$
S:=\left\{x \in V(G): d(x) \geq \frac{\alpha^{2}}{11} n \text { and } N(x) \cap\left(L_{3} \backslash H\right) \neq \emptyset\right\} .
$$

We shall construct a dominating set using S. The manner in which we do so depends upon $|S|$.

1. $|S| \leq \frac{\alpha}{2} n-3$

In this case, note that S dominates $L_{3} \backslash H$, so $S \cup H \cup L_{1}$ is a dominating set in G. Since $\left|L_{1}\right| \leq 3$ and $|H| \leq \frac{\alpha}{2} n$, we have $\left|S \cup H \cup L_{1}\right| \leq \alpha n$, satisfying condition 1 .
2. $|S| \geq \frac{\alpha}{2} n-3$

In this case, by choice of n_{0}, we have $|S| \geq \frac{11}{\alpha^{2}}$. Choose $S^{\prime} \subset S$ with $\left|S^{\prime}\right|=\frac{11}{\alpha^{2}}$. Since every vertex in S^{\prime} has degree at least $\frac{\alpha^{2}}{11} n$, we have

$$
\left|\bigcup_{x \in S^{\prime}} N(x)\right| \geq \frac{11}{\alpha^{2}} \cdot \frac{\alpha^{2}}{11} n-\sum_{x \neq y \in S^{\prime}}|N(x) \cap N(y)|
$$

by inclusion-exclusion. Since $\left|S^{\prime}\right|=\frac{11}{\alpha^{2}}$ and $|N(x) \cap N(y)| \leq 3$ for any $x, y \in V(G)$ (by Proposition 2.1 Case 3), we have

$$
\left|\bigcup_{x \in S^{\prime}} N(x)\right| \geq n-3\binom{11 / \alpha^{2}}{2}
$$

Thus, we can create a dominating set in G by adding at most $3\binom{11 / \alpha^{2}}{2}$ vertices to S^{\prime}. By choice of n_{0}, the resulting dominating set is of size at most αn, satisfying condition 1 .

Using Lemma 2.3, we can now show that the upper bound given in Theorem 1.5 is asymptotically best possible.

Theorem 1.6. Let $\frac{11}{45}>\varepsilon>0$ be given. There exists $n_{0} \in \mathbb{N}$ such that, for all $n \geq n_{0}$,

$$
\operatorname{sat}^{*}\left(n, C_{4}\right)>\left(\frac{11}{6}-\varepsilon\right) n
$$

Proof. Given $\varepsilon>0$, we choose n_{0} as given by applying Lemma 2.3 with $\alpha=\frac{5 \varepsilon}{11}$. Let G be a rainbow C_{4}-saturated graph on vertex set V, with $|V|=n \geq n_{0}$, and let D be a dominating set as guaranteed by Lemma 2.3. Thus, either $|D|<\frac{5 \varepsilon}{11} n$ or $G[D]$ has average degree at least 4. We shall estimate $|E(G)|$ by considering $G[V \backslash D]$. For a component C of $G[V \backslash D]$, let $f(C)$ be the number of edges incident to C. Observe that any component C is incident to at least $|V(C)|-1$ edges within $G[V \backslash D]$ and at least $|V(C)|$ edges which are incident to a vertex of D. We shall call a component C of $G[V \backslash D]$ sparse if $f(C)=2|V(C)|-1$, and dense if $f(C) \geq 2|V(C)|$. We let \mathcal{C} be the set of components of $G[V \backslash D]$, and partition $\mathcal{C}=\mathcal{C}_{d} \cup \mathcal{C}_{s}$, where $\mathcal{C}_{d}, \mathcal{C}_{s}$ are the sets of dense and sparse components, respectively, of $G[V \backslash D]$. We thus have

$$
\begin{align*}
|E(G)| & =|E(G[D])|+\sum_{C \in \mathcal{C}} f(C) \geq|E(G[D])|+\sum_{C \in \mathcal{C}_{d}} 2|V(C)|+\sum_{C \in \mathcal{C}_{s}} 2|V(C)|-1 \\
& \geq|E(G[D])|+2|V \backslash D|-\left|\mathcal{C}_{s}\right| \tag{1}
\end{align*}
$$

We now bound $\left|\mathcal{C}_{s}\right|$ by showing that sparse components are usually not too small. Our eventual goal is to bound the number of components $C \in \mathcal{C}_{s}$ with $|V(C)|<6$. We begin by making some elementary observations about the elements of \mathcal{C}_{s}, which will be repeatedly useful. Note that if $C \in \mathcal{C}_{s}$, then there are precisely $|V(C)|$ edges between $V(C)$ and D; thus, each member of $V(C)$ has exactly one neighbor in D. Also note that if $C \in \mathcal{C}_{s}$, then $|E(C)|=|V(C)|-1$, and thus C is a tree. Also, by Proposition 2.1 Case 1, G contains at most one vertex of degree 1 , so for all but at most one component $C \in \mathcal{C}_{s}, C$ contains at least one edge. In particular, all but one $C \in \mathcal{C}_{s}$ must contain at least two vertices which have degree 1 in $G[V \backslash D]$, and, by the previous observation, these vertices have degree exactly 2 in G.

Define

$$
L:=\left\{v \in \bigcup_{C \in \mathcal{C}_{s}} V(C): d_{G}(v)=2\right\} .
$$

We begin by showing that D contains a small set whose neighborhoods either contain L or contain all sparse components of $G[V \backslash D]$ of size less than 6 .
Claim 1. There exists a set $S \subseteq D$ with $|S| \leq 35$ such that either

$$
\text { 1. } L \subseteq N(S) \text {, }
$$

or

$$
\text { 2. for every } C \in \mathcal{C}_{s} \text { with } V(C) \nsubseteq N(S),|C \cap N(S)| \geq 5 \text {. }
$$

Proof of Claim 1. We describe a procedure for building such a set S. Fix $v_{1}, v_{2} \in D$ such that there exist $w_{1} \in N\left(v_{1}\right) \backslash D, w_{2} \in N\left(v_{2}\right) \backslash D$ with $w_{1}, w_{2} \in L$. (If such a pair v_{1}, v_{2} does not exist, then, since $L \subseteq \cup_{C \in \mathcal{C}_{s}} V(C)$, either \mathcal{C}_{s} is empty and we return $S=\emptyset$ or there is a single vertex $v \in D$ such that $L \subseteq N(v)$ and we return $S=\{v\}$.) We set $S_{1} \subseteq D$ as:

$$
S_{1}:=\left(\left\{v_{1}, v_{2}\right\} \cup\left(N\left(v_{1}\right) \cap N\left(v_{2}\right)\right) \cup N\left(N\left(\left\{w_{1}, w_{2}\right\}\right) \backslash D\right)\right) \cap D .
$$

We claim that every component $C \in \mathcal{C}_{s}$ is either contained in $N\left(S_{1}\right)$, or else intersects one of $N\left(v_{1}\right), N\left(v_{2}\right)$. Indeed, suppose $C \in \mathcal{C}_{s}$ and $x \in V(C)$ such that $x \notin N\left(S_{1}\right)$. That is, the unique element $u \in N(x) \cap D$ has $u \notin S_{1}$. We must show that C intersects $N\left(\left\{v_{1}, v_{2}\right\}\right)$. Indeed, suppose that it does not. Then $w_{1}, w_{2} \notin V(C)$ as well as x has no neighbor in $N\left(\left\{v_{1}, v_{2}\right\}\right) \backslash D$, and in particular, $x w_{1}, x w_{2} \notin E(G)$. Note that, since $w_{1}, w_{2} \notin V(C)$, the addition of either $x w_{1}$ or $x w_{2}$ to $E(G)$ creates no copy of C_{4} in $G[V \backslash D]$. Moreover, since $N\left(\left\{w_{1}, w_{2}\right\}\right) \cap(N(u) \backslash D)=\emptyset$, the addition of either edge cannot create a copy of C_{4} using three vertices from $V \backslash D$ and u. Similarly, since x has no neighbor in $N\left(\left\{v_{1}, v_{2}\right\}\right) \backslash D$, the addition of either edge cannot create a copy of C_{4} using three vertices from $V \backslash D$ and either v_{1} or v_{2}. Thus, the only possible copy of C_{4} created by adding $x w_{i}$ uses two vertices from D, and these must be u and v_{i}, the only neighbour in D of x and w_{i}, respectively. Since $u \notin N\left(v_{1}\right) \cap N\left(v_{2}\right)$, we can therefore add one of $x w_{1}, x w_{2}$ without creating a copy of C_{4}, a contradiction.

Since $\left|N\left(v_{1}\right) \cap N\left(v_{2}\right)\right| \leq 3$ by Proposition 2.1 Case 3 , and since w_{1}, w_{2} each have exactly one neighbor in $V \backslash D$, we have $\left|S_{1}\right| \leq 7$. As we have argued, any component $C \in \mathcal{C}_{s}$ which is not contained in $N\left(S_{1}\right)$ must intersect $N\left(S_{1}\right)$ once, either in $N\left(v_{1}\right)$ or $N\left(v_{2}\right)$.

Now, we wish to repeat this argument by selecting $v_{3}, v_{4} \notin S_{1}$ such that $N\left(v_{3}\right) \backslash D$ and $N\left(v_{4}\right) \backslash D$ contain vertices $w_{3}, w_{4} \in L$, respectively. If it is not possible to do so, then either $L \subseteq N\left(S_{1}\right)$, or there exists precisely one vertex $v \in D \backslash S_{1}$ such that $N\left(S_{1} \cup\{v\}\right) \supseteq L$. In these cases, we either return $S=S_{1}$ or $S=S_{1} \cup\{v\}$. If we can find v_{3}, v_{4} as desired, we set $S_{2} \subseteq D$ as:

$$
S_{2}:=\left(S_{1} \cup\left\{v_{3}, v_{4}\right\} \cup\left(N\left(v_{3}\right) \cap N\left(v_{4}\right)\right) \cup N\left(N\left(\left\{w_{3}, w_{4}\right\}\right) \backslash D\right)\right) \cap D
$$

Repeating the above argument, any $C \in \mathcal{C}_{s}$ which is not contained in $N\left(S_{2}\right)$ must contain a vertex from either $N\left(v_{3}\right) \backslash D$ or $N\left(v_{4}\right) \backslash D$, and thus intersects $N\left(S_{2}\right)$ at least twice. (We again use the fact that, since C is sparse, each vertex of C has exactly one neighbor in D; thus, if C intersects $N\left(v_{i}\right)$ and $N\left(v_{j}\right)$, it must do so in two distinct vertices.) Note also that $\left|S_{2}\right| \leq 14$. Proceeding in this fashion, we either return a set S of size at most $7 \cdot 4+1=29$ with $L \subseteq N(S)$, or we return S_{5} containing disjoint pairs $\left\{v_{2 i-1}, v_{2 i}\right\}(k \in$ $\{1, \ldots, 5\})$ with the property that any $C \in \mathcal{C}_{s}$ which is not contained in $N\left(S_{5}\right)$ intersects one of $N\left(v_{2 i-1}\right) \backslash D, N\left(v_{2 i}\right) \backslash D$ for each $i \in\{1, \ldots, 5\}$. Here, we note that $\left|S_{5}\right| \leq 35$, and set $S=S_{5}$.

We shall call the elements of S the core vertices of D, and say that the sets $N(v) \backslash D$ with $v \in S$ are the core neighborhoods. As we shall argue, to understand the sizes of components $C \in \mathcal{C}_{s}$, it essentially suffices to understand the sizes of components in the subgraphs of
G induced on the core neighborhoods. Towards such an argument, we also require the following claim, which states that for any $v \in D$, few members of $L \cap N(v)$ are in very small components of $G[V \backslash D]$.
Claim 2. Fix $v \in D$ and let \mathcal{C}_{v} be the set of components of $G[N(v) \backslash D]$ which intersect L. Then at most two components $C \in \mathcal{C}_{v}$ have $|V(C)|<3$. Moreover, let \mathcal{C}_{v}^{\prime} be the set of components in \mathcal{C}_{v} which are also components of $G[V \backslash D]$. Then no component $C \in \mathcal{C}_{v}^{\prime}$ has $3 \leq|V(C)|<6$.
Proof of Claim 2. First, we show that there cannot be two components $C_{1}, C_{2} \in \mathcal{C}_{v}$ of size 1. Indeed, suppose $w_{1}, w_{2} \in L$ are isolated vertices in $G[N(v) \backslash D]$. We show that we can add the edge $w_{1} w_{2}$ to G without forcing a rainbow C_{4}-copy, a contradiction since G is rainbow C_{4}-saturated. We have two cases.

1. $\left|N\left(w_{1}\right) \cap N\left(w_{2}\right)\right|=2$

In this case, observe that the addition of $w_{1} w_{2}$ to G creates no new C_{4}-copies; thus, we may add $w_{1} w_{2}$ freely.
2. $\left|N\left(w_{1}\right) \cap N\left(w_{2}\right)\right|=1$

In this case, let u_{1}, u_{2} be the neighbors of w_{1}, w_{2}, respectively, in $G \backslash D$. Now, observe that the addition of $w_{1} w_{2}$ will create no copy of C_{4} if $u_{1} u_{2} \notin E(G)$, and will create precisely one copy of C_{4} if $u_{1} u_{2} \in E(G)$, namely $w_{1} w_{2} u_{2} u_{1} w_{1}$. Thus, we suppose that $u_{1} u_{2} \in E(G)$. Consider a rainbow C_{4}-free edge-coloring of G. We begin by maintaining this edge-coloring of G while adding the edge $w_{1} w_{2}$, and seek to select $c\left(w_{1} w_{2}\right)$ so that the resulting edge-coloring of $G+w_{1} w_{2}$ is proper and $w_{1} w_{2} u_{2} u_{1} w_{1}$ is not rainbow.
Note first that if $w_{1} u_{1} u_{2} w_{2}$ is not a rainbow copy of P_{3}, then we may choose $c\left(w_{1} w_{2}\right)$ freely. Thus, we may assume that $w_{2} u_{2} u_{1} w_{1}$ is a rainbow copy of P_{3}, say with $c\left(w_{1} u_{1}\right)=$ $1, c\left(u_{1} u_{2}\right)=2$, and $c\left(u_{2} w_{2}\right)=3$. Thus, we wish to choose $c\left(w_{1} w_{2}\right)=2$. If we cannot do so, then without loss of generality, $c\left(w_{1} v\right)=2$. We now show that if $c\left(w_{1} v\right)=2$, then we can change $c\left(w_{1} v\right)$ without creating a rainbow C_{4}-copy, allowing the selection $c\left(w_{1} w_{2}\right)=2$. Clearly, if $w_{1} v$ is not in any C_{4}-copy, then we may freely recolor $w_{1} v$. If $w_{1} v$ is in a C_{4} copy, then note that this C_{4} copy must span v, w_{1}, u_{1} and a neighbor of w_{1}, u_{1}, say x. We illustrate the configuration in Figure 7, in addition to known adjacencies and colors between v, w_{1}, w_{2}, u_{1}, and u_{2}.
Note that $c\left(u_{1} x\right) \neq 2$, so since $v w_{1} u_{1} x v$ is not rainbow, we must have $c(v x)=1$. Thus, $v w_{1} u_{1} x v$ is in fact the unique copy of C_{4} containing $v w_{1}$, and will not be made rainbow by altering $c\left(v w_{1}\right)$. Therefore, if $c\left(v w_{1}\right)=2$, then we alter the coloring of G by setting $c\left(v w_{1}\right)$ to a new color, and we are able to add $w_{1} w_{2}$ with $c\left(w_{1} w_{2}\right)=2$.

Next, we show that there cannot be two components $C_{1}, C_{2} \in \mathcal{C}_{v}$ of size 2 . Indeed, suppose that two such components exist, and say $V\left(C_{1}\right)=\left\{w_{1}, u_{1}\right\}$ and $V\left(C_{2}\right)=\left\{w_{2}, u_{2}\right\}$, where $w_{1}, w_{2} \in L$. Note that although u_{1}, u_{2} may have high degree in G, each has exactly one neighbor in $N(v)$.

Observe that neither $v w_{1}$ nor $w_{1} u_{1}$ is contained in any C_{4}-copy in G. Indeed, since $d\left(w_{1}\right)=2$, a C_{4}-copy in G containing w_{1} would necessarily include both v and u_{1}, with a

Figure 7: A copy of C_{4} using $w_{1} v$
fourth vertex in $N(v) \cap N\left(u_{1}\right)$. However, since $N(v) \cap N\left(u_{1}\right)=\left\{w_{1}\right\}$, it is impossible to select this fourth vertex. Analogously, neither $v w_{2}$ nor $w_{2} u_{2}$ is contained in any C_{4}-copy in G.

Now, we claim that we can add the edge $w_{1} w_{2}$ to G without forcing a rainbow C_{4}-copy. Note that the addition of $w_{1} w_{2}$ creates precisely two C_{4}-copies: $v w_{1} w_{2} u_{2} v$ and $v w_{2} w_{1} u_{1} v$. We shall color $G+w_{1} w_{2}$ as follows. Begin with a rainbow C_{4}-free proper edge-coloring of G. Since $v w_{1}, v w_{2}, w_{1} u_{1}$, and $w_{2} u_{2}$ are not contained in any C_{4}-copies in G, we can modify this edge-coloring of G as follows: choose colors a, b which do not appear in the chosen edge-coloring of G. We re-color $v w_{1}$ and $w_{2} u_{2}$ with color a and $v w_{2}, w_{1} u_{1}$ with color b. This modification cannot create a rainbow C_{4}-copy in G, since the re-colored edges do not appear in any C_{4}-copies in G; moreover, the new edge-coloring of G remains proper by the selection of a, b. Now, we add $w_{1} w_{2}$ to G, choosing $c\left(w_{1}, w_{2}\right) \notin\{a, b\}$. Note that neither $v w_{1} w_{2} u_{2} v$ nor $v w_{2} w_{1} u_{1} v$ is rainbow under the chosen coloring.

Finally, we show that there are no components in \mathcal{C}_{v}^{\prime} on 3,4 , or 5 vertices. Observe, for $C \in \mathcal{C}_{v}^{\prime}$, the only copies of C_{4} which intersect $V(C)$ are contained in $G[V(C) \cup\{v\}]$. Thus, we may add edges between vertices in $V(C)$ and change the colors of edges in $E(C)$ in any fashion we like, so long as the resulting changes do not result in a rainbow C_{4}-copy in $G[V(C) \cup\{v\}]$. We consider all possible components $C \in \mathcal{C}_{v}^{\prime}$ with $|V(C)| \in\{3,4,5\}$, and show that we may add an edge e to each and color $C+e$ to avoid a rainbow C_{4}-copy in $G[V(C) \cup\{v\}]$. In each case, we shall assume that $V(C)=\left\{v_{1}, \ldots, v_{i}\right\}$, and that $c\left(v v_{i}\right)=i$.

1. $|V(C)|=3$.

In this case, C is the unique 3 -vertex tree, P_{3}. Say v_{1}, v_{3} are the leaves of C. We may add the edge $v_{1} v_{3}$ and color $C+v_{1} v_{3}$ to avoid a rainbow C_{4}-copy. We depict this addition and an admissible coloring in Figure 8.
2. $|V(C)|=4$, and $C=P_{4}$

In this case, we label the vertices of C in a natural linear order, so v_{1}, v_{4} are the endpoints of the path. We may add, for example, $v_{1} v_{3}$, and color $C+v_{1} v_{3}$ to avoid a rainbow C_{4}-copy. We depict this addition and an admissible coloring in Figure 9.

Figure 8: C and $C+v_{1} v_{3}$, colored to avoid a rainbow C_{4}-copy

Figure 9: C and $C+v_{1} v_{3}$, colored to avoid a rainbow C_{4}-copy
3. $|V(C)|=4$ and $C=S_{3}$

In this case, C is a star, say with center v_{1} and leaves v_{2}, v_{3}, v_{4}. We may add any edge between leaves, say $v_{3} v_{4}$, and color $C+v_{3} v_{4}$ to avoid a rainbow C_{4}-copy. We depict this addition and an admissible coloring in Figure 10.

Figure 10: C and $C+v_{3} v_{4}$, colored to avoid a rainbow C_{4}-copy
4. $|V(C)|=5$, and C has diameter 4

In this case, C is the 5 -vertex path P_{5}. Say v_{1}, v_{5} are the leaves of C. We may add the edge $v_{1} v_{5}$ and color $C+v_{1} v_{5}$ to avoid a rainbow C_{4}-copy. We depict this addition and an admissible coloring in Figure 11.

Figure 11: C and $C+v_{1} v_{5}$, colored to avoid a rainbow C_{4}-copy
5. $|V(C)|=5$, and C has diameter 3

In this case, C is the unique 5 -vertex tree which contains one vertex of degree 3 . Say v_{3} is the vertex of degree 3 , and v_{4}, v_{5} are the leaves of C which are adjacent to v_{3}. We may add the edge $v_{4} v_{5}$ and color $C+v_{4} v_{5}$ to avoid a rainbow C_{4}-copy. We depict this addition and an admissible coloring in Figure 12.
6. $|V(C)|=5$, and C has diameter 2

Observe that this case is impossible, as C is the star S_{4}, say with central vertex v_{1}; we have $\left|N(v) \cap N\left(v_{1}\right)\right|=4$, which is forbidden in a rainbow C_{4}-saturated graph by proposition 2.1 Case 3.

Now, we combine Claims 1 and 2 to bound $\left|\mathcal{C}_{s}\right|$. Our goal is to bound the number of components in \mathcal{C}_{s} on fewer than 6 vertices. We have two cases, based upon the outcome of Claim 1. In each, we show that a component $C \in \mathcal{C}_{s}$ with $|V(C)|<6$ must either have $|V(C)|=1$ (which can happen at most once) or correspond to a component $C^{\prime} \in \mathcal{C}_{v}$ with $\left|C^{\prime}\right| \leq 2$ induced by some core neighborhood. Since Claim 2 implies that each core neighborhood induces at most two such components, and $|S| \leq 35$, this will imply that at most 71 components $C \in \mathcal{C}_{s}$ have $|V(C)|<6$.

1. Claim 1 returns S such that $L \subseteq N(S)$.

Suppose that $C \in \mathcal{C}_{s}$ has $2 \leq|V(C)|<6$. We consider $V(C) \cap L$, which is contained in $N(S)$. If $V(C) \cap L$ intersects two core neighborhoods, say in $w_{1} \in N(v) \backslash D$ and $w_{2} \in N(u) \backslash D$, then either the component of w_{1} in $G[N(v) \backslash D]$ has size smaller than 3, or the component of w_{2} in $G[N(u) \backslash D]$ does. If $V(C) \cap L$ is contained in one core neighborhood, say $N(v) \backslash D$, then observe that either $C \in \mathcal{C}_{v}^{\prime}$ or $V(C)$ induces at least

Figure 12: C and $C+v_{4} v_{5}$, colored to avoid a rainbow C_{4}-copy
two components of \mathcal{C}_{v}. Indeed, if $V(C)$ induces exactly one component $C^{\prime} \in \mathcal{C}_{v}$, then since C is a tree and C^{\prime} is a connected subgraph of C which contains all the leaves of C, we must have $C^{\prime}=C$. Thus, either $C \in \mathcal{C}_{v}^{\prime}$, in which case Claim 2 implies that C is a component of size 2 contained in a core neighborhood, or $V(C)$ induces at least two components in $N(v) \backslash D$, one of which must contain at most 2 vertices.
2. Claim 1 returns S such every $C \in \mathcal{C}_{s}$ with $V(C) \nsubseteq N(S)$ intersects $N(S)$ at least 5 times.
In this case, the condition on S guarantees that every $C \in \mathcal{C}_{s}$ with $V(C) \nsubseteq N(S)$ has $|V(C)| \geq 6$. We thus consider components $C \in \mathcal{C}_{s}$ with $V(C) \subseteq N(S)$. For such a component C, we have $V(C) \cap L \subseteq S$, and similarly to Case 1 , if $|V(C)|<6$, then C must induce a component of size at most 2 in some core neighborhood.

Thus, in either case, we conclude that \mathcal{C}_{s} contains at most 71 components on fewer than 6 vertices. As a simple lower bound, we thus have

$$
\left|\mathcal{C}_{s}\right| \leq \frac{\left(\sum_{C \in \mathcal{C}_{s}}|V(C)|\right)-71}{6}+71 \leq \frac{|V \backslash D|-71}{6}+71=\frac{|V \backslash D|}{6}+\frac{355}{6} .
$$

Thus, using Equation (1), we have

$$
|E(G)| \geq|E(G[D])|+2|V \backslash D|-\left|\mathcal{C}_{s}\right| \geq|E(G[D])|+\frac{11}{6}|V \backslash D|-\frac{355}{6}
$$

Recall that by application of Lemma 2.3, we have D either small or of high average degree. If $|D| \leq \frac{5}{11} \varepsilon$, then we have

$$
|E(G)| \geq \frac{11}{6}\left(1-\frac{5}{11} \varepsilon\right) n-\frac{355}{6}=\frac{11}{6} n-\left(\frac{5 \varepsilon}{6} n+\frac{355}{6}\right)>\left(\frac{11}{6}-\varepsilon\right) n
$$

On the other hand, if $G[D]$ has average degree 4 , then

$$
|E(G)| \geq 2|D|+\frac{11}{6}|V \backslash D|-\frac{355}{6}>\frac{11}{6} n-\frac{355}{6}>\left(\frac{11}{6}-\varepsilon\right) n .
$$

3 Upper bounds for longer cycles

We now exhibit some constructions which provide upper bounds on sat* $\left(n, C_{5}\right)$ and sat* $\left(n, C_{6}\right)$. Each of these contains a small dominating set of vertices D, with the complement of D essentially inducing a disjoint union of cliques.

Construction 2. For $n \geq 8$, let $G\left(n, C_{5}\right)$ be the n-vertex graph defined as follows. Designate two vertices u, v, which will be universal. Moreover, add a maximum matching in $V(G) \backslash$ $\{u, v\}$.

Observe that $G\left(n, C_{5}\right)$ contains $2 n-3$ edges which are incident to a universal vertex, and $\left\lfloor\frac{n-2}{2}\right\rfloor$ edges which are not. Thus, $\left|E\left(G_{n}\right)\right|=\left\lfloor\frac{5 n}{2}\right\rfloor-4$.

Theorem 1.8. For $n \geq 9$, $\operatorname{sat}^{*}\left(n, C_{5}\right) \leq\left\lfloor\frac{5 n}{2}\right\rfloor-4$.
Proof. It suffices to show that for $n \geq 9, G\left(n, C_{5}\right)$ is rainbow C_{5}-saturated. We begin by labelling vertices. Let u, v be the universal vertices of $G\left(n, C_{5}\right)$. We label the $\left\lfloor\frac{n-2}{2}\right\rfloor$ edges of $G\left(n, C_{5}\right)$ which are not incident to u or v as $e_{i}\left(i \in\left\{1, \ldots\left\lfloor\frac{n-2}{2}\right\rfloor\right\}\right)$, and for each e_{i}, we label the endpoints of e_{i} as x_{i}, y_{i}. If n is odd, G contains one vertex which is adjacent only to u and v, which we label z.

We first exhibit a proper edge-coloring of $G\left(n, C_{5}\right)$ which is rainbow C_{5}-free. For each pair x_{i}, y_{i}, we choose $c\left(u x_{i}\right)=c\left(v y_{i}\right)=2 i-1$ and $c\left(u y_{i}\right)=c\left(v x_{i}\right)=2 i$. If z exists, we choose $c(u z)=n-2$ and $c(v z)=n-1$. We may choose $c(u v)$ and $c\left(x_{i} y_{i}\right)$ freely; for simplicity, we assign a single color 0 to $u v$ and each $x_{i} y_{i}$. This coloring is depicted in Figure 13.

To see that the described edge-coloring of $G\left(n, C_{5}\right)$ is rainbow C_{5}-free, observe first that every C_{5}-copy in $G\left(n, C_{5}\right)$ contains a copy of P_{4} with endpoints u and v. Observe that in the described edge-coloring, no P_{4}-copy between u and v is rainbow.

We now show that $G\left(n, C_{5}\right)$ is rainbow C_{5}-saturated. Let G^{\prime} be a supergraph of $G\left(n, C_{5}\right)$ (possibly with $G^{\prime}=G\left(n, C_{5}\right)$). Observe that if a proper edge-coloring of G^{\prime} contains a rainbow P_{4}-copy with endpoints u, v, then under this edge-coloring, G^{\prime} contains a rainbow C_{5}-copy. Indeed, suppose such a rainbow P_{4}-copy exists, say $u x_{i} y_{i} v$, with edge colors $c(u x)=$ $1, c(x y)=2, c(y v)=3$. Now, since $n \geq 9, S:=|(N(u) \cap N(v)) \backslash\{x, y\}| \geq 5$. For any vertex $w \in S$, either uxyvwu is a rainbow C_{5}-copy or else one of $c(u w), c(v w)$ is in $\{1,2,3\}$. Since the edge-coloring under consideration is proper, we cannot have $c(u w)=1$ or $c(v w)=3$, and so one of four outcomes must hold: either $c(u w) \in\{2,3\}$ or $c(v w) \in\{1,2\}$. Each of these four outcomes holds for at most one vertex $w \in S$. Thus, as $|S| \geq 5$, under the given edge-coloring, G^{\prime} contains at least one rainbow C_{5}-copy.

By this observation, it suffices to show that if any edge e is added to $G\left(n, C_{5}\right)$, then every proper edge-coloring of $G\left(n, C_{5}\right)+e$ contains a rainbow P_{4}-copy with endpoints u, v. We now establish this fact. Suppose for a contradiction that there exists a proper edge-coloring of $G\left(n, C_{5}\right)+e$ so that no copy of P_{4} with endpoints u, v is rainbow. For every $i \in\left\{1, \ldots\left\lfloor\frac{n-2}{2}\right\rfloor\right\}$,

Figure 13: An edge-coloring of $G\left(n, C_{5}\right)$ containing no rainbow C_{5}-copy
we have that $u x_{i} y_{i} v$ and $u y_{i} x_{i} v$ are P_{4}-copies with endpoints u, v, and so to ensure that neither is rainbow, we must have $c\left(u x_{i}\right)=c\left(v y_{i}\right)$ and $c\left(u y_{i}\right)=c\left(v x_{i}\right)$. Now, consider the endpoints of e. Without loss of generality, e is incident to x_{1}. We shall (re)label the other endpoint of e as w; note that, since $e \notin E\left(G\left(n, C_{5}\right)\right)$, we must have $w \notin\left\{u, v, y_{1}\right\}$. Now, consider the path $u x_{1} w v$. We know that $c\left(u x_{1}\right) \neq c(w v)$, since $c\left(y_{1} v\right)=c\left(u x_{1}\right)$ and $y_{1} \neq w$. Thus, if $u x_{1} w v$ is not a rainbow P_{4}-copy, then either $c\left(u x_{1}\right)=c\left(x_{1} w\right)$ or $c\left(x_{1} w\right)=c(w v)$. However, either of these equalities implies that the edge-coloring under consideration is not proper, a contradiction.

Next, we present a construction which gives an upper bound on sat* $\left(n, C_{6}\right)$. An obvious analog to Construction 2 would be to take a small set of universal vertices and tile their common neighborhood with copies of K_{3}. However, for large enough n, such a graph cannot be edge-colored to avoid a rainbow C_{6}-copy. Instead of a pair of universal vertices, our construction features a small dominating set. In order to achieve saturation, we also must introduce a more complicated structure among a small subset of the vertices which are not in this dominating set.

Construction 3. For $n \equiv 2 \bmod 3$ and $n \geq 14$, let $G\left(n, C_{6}\right)$ be the n-vertex graph defined as follows. We designate eight vertices $\left\{v_{1}, v_{2}, \ldots, v_{8}\right\}$, which we shall term the core vertices. The core vertices induce a copy of K_{8} with the matching $\left\{v_{1} v_{3}, v_{2} v_{8}, v_{4} v_{6}, v_{5} v_{7}\right\}$ removed. We partition $V(G) \backslash\left\{v_{1}, \ldots, v_{8}\right\}$ into $\frac{n-8}{3}$ sets of size 3. We label these sets as $T_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}$. For each $i \in\left\{1, \ldots, \frac{n-8}{3}\right\}$, we add all edges between vertices in T_{i}, as well as the edges $v_{1} x_{i}, v_{1} y_{i}, v_{2} z_{i}, v_{3} y_{i}$.

When $n \equiv i \bmod 3$ with $i \neq 2$ we let $G\left(n, C_{6}\right)$ be the graph obtained from Construction 3
by forming $G\left(n-2+i, C_{6}\right)$ and then adding $2-i$ additional vertices, adjacent to v_{1}, v_{3}, and (if $2-i=2$) to one another. Note that in any congruence case, $E\left(G\left(n, C_{6}\right)\right)=\frac{7}{3} n+O(1)$.

We start by describing an edge-coloring under which $G\left(n, C_{6}\right)$ is rainbow- C_{6}-free. Color the core using the edge-coloring exhibited in Figure 14(a), which can be viewed as a decomposition of the core into six perfect matchings. For $i \in\left\{1, \ldots, \frac{n-8}{3}\right\}$, we choose $c\left(v_{1} x_{i}\right)=3+3 i$, $c\left(v_{1} y_{i}\right)=4+3 i, c\left(v_{2} z_{i}\right)=3+3 i, c\left(v_{3} y_{i}\right)=3+3 i$, and $c\left(y_{i} z_{i}\right)=0, c\left(x_{i} z_{i}\right)=4+3 i$, $c\left(x_{i} y_{i}\right)=5+3 i$. Finally, if $n \not \equiv 2 \bmod 3$, we must consider the additional vertices adjacent to v_{1} and v_{3}. If there is one such additional vertex, then edges incident to this vertex may be colored in any way which maintains a proper edge-coloring. It there are two, say s, t, we choose $c\left(v_{1} s\right)=c\left(v_{3} t\right)$ and $c\left(v_{1} t\right)=c\left(v_{3} s\right)$, which ensures that neither $v_{1} s t v_{3}$ nor $v_{1} t s v_{3}$ is a rainbow P_{4}-copy. We depict representative sets of non-core vertices T_{i}, with the described edge-coloring, in Figure 14(b).

Figure 14: (a) An admissible edge-coloring of the core. (b) Non-core triangles and their connections to the core.

Recall, our goal is to demonstrate the following bound.
Theorem 1.9. $\operatorname{sat}^{*}\left(n, C_{6}\right) \leq \frac{7}{3} n+O(1)$.
It would suffice to show that $G\left(n, C_{6}\right)$ is properly rainbow C_{6}-saturated. It is possible to check this by hand; however, the verification is somewhat lengthy and requires a fair amount of case analysis. Thus, we elect to verify the desired properties using computer assistance.

We used SageMath [12] to create SAT formulas that were solved by PicoSAT [4] and Glucose [1]. A Jupyter Notebook with our calculations is available on arXiv. We use the straightforward approach where each edge $e \in E$ and possible color $c \in C$ gives a boolean variable x_{e}^{c} indicating if the edge e is colored by the color c. The SAT formula for checking
the existence of a proper C-coloring avoiding a rainbow C_{6}-copy is the following.

It is sufficient to do the calculation on a graph H consisting of the core and two triangles T_{1} and T_{2}. We show that H can be colored by 10,11 or 12 colors while avoiding a rainbow C_{6}-copy, but it cannot be colored using 13 or more colors. In order to show 13 or more colors are not possible, we need to add two more types of clauses to the formula, forcing that all colors are used.

$$
\underbrace{\bigwedge_{c \in C}\left(\bigvee_{e \in E} x_{e}^{c}\right)}_{\text {every color is used }} \wedge \underbrace{\bigwedge_{e \in E} \bigwedge_{c_{1} \neq c_{2} \in C}\left(\neg x_{e}^{c_{1}} \vee \neg x_{e}^{c_{1}}\right)}_{\text {every edge has at most one color }}
$$

The resulting formula needs a fixed number of colors. We first show that the core can be colored by 6 or 7 colors but not by any larger number. It suffices to consider number of colors up to 15 via the following arguments. Fix a proper-edge coloring without a rainbow 6 -cycle. Iterating over 6 -cycles H remove one of the edges whose color is not unique in H. This eventually results in a 6-cycle-free graph. The largest 6 -cycle-free subgraph of the core has 15 edges which can be showed by an integer program. Adding one triangle to the core can increase the number of colors by at most 7 . By testing up to 14 colors we get that core and one triangle can use at most 9 colors. Hence core and two triangles can use at most 12 colors. Finally, we can upper bound the number of colors by 13 when showing that adding any missing edge to H results in a rainbow C_{6} in any proper coloring.

To deal with $n \equiv i \bmod 3$ with $i \neq 2$, we use a graph F consisting of a core, one triangle T_{1} and an extra vertex of degree 2 adjacent to v_{1} and v_{3}. It is not possible to add any edge to F where a proper edge-coloring does not create a rainbow 6 -cycle.

The entire calculation can be done in one day.

4 Conclusion

While we determined the asymptotics for sat* $\left(n, C_{4}\right)$ and constructed upper bounds for sat $^{*}\left(n, C_{5}\right)$ and sat* $\left(n, C_{6}\right)$, finding exact bounds is still open.

Problem 4.1. Determine $\operatorname{sat}^{*}\left(n, C_{k}\right)$ for all k.
When using SAT solver in the previous section, we encountered the following problem. A positive answer would simplify the computation.

Problem 4.2. Let G and H be finite graphs. Let K be the set of all k where exists a proper k-edge-coloring of G using all k colors and avoiding a rainbow copy of H. Is K an interval?

Acknowledgement

This research was supported by NSF DSM-2152490 grant. Tomáš Masařík was supported by Polish National Science Centre SONATA-17 grant number 2021/43/D/ST6/03312.

References

[1] G. Audemard and L. Simon. Glucose. https://github.com/audemard/glucose, 2024.
[2] M. Barrus, M. Ferrara, J. Vandenbussche, and P. Wenger. Colored saturation parameters for rainbow subgraphs. Journal of Graph Theory, 86:375-386, Mar. 2017. doi:10.1002/jgt. 22132.
[3] N. Behague, T. Johnston, S. Letzter, N. Morrison, and S. Ogden. The rainbow saturation number is linear, 2022. arXiv:2211.08589.
[4] A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4(2-4):75-97, May 2008. doi:10.3233/sat190039.
[5] N. Bushaw, D. Johnston, and P. Rombach. Rainbow saturation. Graphs and Combinatorics, 38(5), Sept. 2022. doi:10.1007/s00373-022-02566-z.
[6] B. L. Currie, J. R. Faudree, R. J. Faudree, and J. R. Schmitt. A survey of minimum saturated graphs. The Electronic Journal of Combinatorics, pages DS19:1-DS19:98, Oct. 2021. doi:10.37236/41.
[7] A. Girao, D. Lewis, and K. Popielarz. Rainbow saturation of graphs. Journal of Graph Theory, 94:421-444, Oct. 2017. doi:10.1002/jgt. 22532.
[8] H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and W. Wythoff. Problem 28. Wiskundige Opgaven met de Oplossingen, 10:60-61, 1910.
[9] P. Keevash, D. Mubayi, B. Sudakov, and J. Verstraëte. Rainbow Turán problems. Combinatorics, Probability, and Computing, 16(1):109-126, 2007. doi:10.1017/ S0963548306007760.
[10] L. Kászonyi and Z. Tuza. Saturated graphs with minimal number of edges. Journal of Graph Theory, 10:203-210, June 1986. doi:10.1002/jgt. 3190100209.
[11] L. Ollman. $K_{2,2^{-}}$-saturated graphs with a minimal number of edges. Proceedings of the 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 367-392, 1972.
[12] The Sage Developers. SageMath, the Sage Mathematics Software System, 2024. DOI 10.5281/zenodo.6259615. URL: https://www.sagemath.org.
[13] P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Matematikai és Fizikai Lapok, 48:436-452, 1941.

[^0]: *Department of Mathematics, Iowa State University, Ames, IA, USA. E-mail ahalfpap@iastate.edu
 ${ }^{\dagger}$ Department of Mathematics, Iowa State University, Ames, IA, USA. E-mail lidicky@iastate. edu
 ${ }^{\ddagger}$ Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warszawa, Poland. E-mail masarik@mimuw.edu.pl

