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some topics covered by this thesis.

Great thanks also belong to my co-workers from other universities for spending
their time working with me on problems solved in this thesis. Namely to Jan
Ekstein, Rok Erman, Frédéric Havet, Přemysl Holub, Ken-ichi Kawarabayashi,
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Chapter 1

Introduction

Graph coloring is a popular topic of discrete mathematics. It has roots in the
Four color problem which was the central problem of graph coloring in the last
century. The Four color problem asks if it is possible to color every planar map
by four colors. Although it is claimed to the Four color theorem has its roots in
practice there is no evidence that the question was raised by map-makers [50]. It
seems that mathematicians just asked themselves.

Despite the theoretical origin the graph coloring has found many applications
in practice like scheduling, frequency assignment problems, segmentation etc. A
popular application in recent years is Sudoku.

Many variants and generalizations of the graph coloring have been proposed since
the Four color theorem. In this thesis, we present new results on graph coloring,
list coloring and packing coloring.

The next chapter contains a quick review of definitions used in this thesis. It
is not a completely exhaustive list but it is covering the essential ones. Chap-
ter 3 describes basic graph coloring methods which are demonstrated on simple
theorems. It should help readers to follow proofs in the subsequent chapters.

The first chapter with new results is dedicated to ordinary coloring and critical
graphs. We present theorems enumerating all 6-critical graphs on the Klein bottle
and all 6-critical graphs with crossing number at most four. The chapter is based
on papers 6-critical graphs on the Klein bottle by Kawarabayashi, Král’, Kynčl
and Lidický [31] (published in SIAM Journal on Discrete Mathematics) and 5-
colouring graphs with 4 crossings by Erman, Havet, Lidický and Pangrác [17]
(published in SIAM Journal on Discrete Mathematics).

In Chapter 5 we study list coloring which is a generalization of coloring where
every vertex has its own list of colors. We focus on 3-choosability of planar graphs
and give two different conditions implying that a planar graph is 3-choosable. The
chapter is based on papers On 3-choosability of plane graphs without 3-, 7- and
8-cycles [11] (published in Discrete Mathematics) and 3-choosability of triangle-
free planar graphs with constraints on 4-cycles [12] (published in SIAM Journal
on Discrete Mathematics) by Dvořák, Lidický and Škrekovski.

The last chapter deals with a recent concept called packing coloring. The concept
is inspired by frequency assignment where some frequencies must be used more

9



sparsely than the others. We improve bounds for the square grid and hexagonal
grid. The chapter is based on a paper The packing chromatic number of infinite
product graphs by Fiala, Klavžar and Lidický [19] (published in European Journal
of Combinatorics) and a manuscript The packing chromatic number of the square
lattice is at least 12 Ekstein, Fiala, Holub and Lidický [13].
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Chapter 2

Definitions

In this chapter we review definitions used in the following chapters. For more
examples and details see books by Matoušek and Nešetřil [35], Bollobás [4] or
Diestel [8].

2.1 Basics

We denote the set of natural numbers by N, the set of integers by Z, the set
of rational numbers by Q and the set of reals by R. We abbreviate the set
{1, 2, . . . n} by [n]. For a set S we denote the set of all subsets of size k by

(
S
k

)
2.2 Graphs

Graphs are the main objects studied in this thesis. A graph G is a pair (V,E),
where V is a set of vertices of G and E is a set of edges of G. We consider only
graphs where E ⊆ {{u, v} : u ∈ V, v ∈ V, u 6= v}. We also use notation V (G)
for vertices of G and E(G) for the set of edges of G. These graphs are some-
times called simple graphs. We do not use and hence do not define hypergraphs,
multigraphs or oriented graphs.

A subgraph of a graph G = (V,E) is a graph H = (VH , EH) where VH ⊆ V and
EH ⊆ E. If G 6= H then H is called a proper subgraph. If EH = E∩(V

2

)
then H is

called an induced subgraph. A graph induced by S ⊆ V is an induced subgraph
W of G such that V (W ) = S.

We call vertices u and v of a graph G adjacent if {u, v} ∈ E(G). A vertex v is
incident with an edge e if v ∈ e.
The set of all vertices adjacent to a vertex v is the neighborhood of v and it is
denoted by N(v). Size of the neighborhood is the degree of v, denoted by deg(v).
A vertex v of degree k is a k-vertex. Analogously, we use terms (≥ k)-vertex,
(≤ k)-vertex. The maximum degree among all vertices of a graph G is denoted
by ∆(G) or simply by ∆ if G is clear from the context.

A complement of a graph G = (V,E), denoted by G, is a graph (V,
(
V
2

) \ E).
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Let G = (V,E) be a graph and let S be a subset of V . We call S a clique if
(
S
2

)
is a subset of E. The size of the largest clique is called the clique number and
it is denoted by ω(G) or just by ω if G is clear from the context. We call S an
independent set if S is a clique in G. The size of the largest independent set,
denoted by α(G) or just α, is called the independence number. We also use the
notion of a stable set for an independent set.

Let us give a brief list of common graphs. A path on n vertices, denoted by Pn,
is a graph G = (V,E) with vertices V = {v1, v2, . . . , vn} and edges E = {vivi+1 :
1 ≤ i < n}, see Figure 2.1. Vertices v1 and vn are called the ends of the path.
A path of length n (or an n-path) is a path on n + 1 vertices. A cycle on n ≥ 3
vertices, denoted by Cn, is a graph constructed from Pn by adding an extra edge
joining ends of Pn, see Figure 2.1. A complete graph on n vertices, denoted by
Kn, is a clique of size n, see Figure 2.1. Note that C3 and K3 are the same.

A graph G = (V,E) is bipartite if V = V1 ∪ V2 where both V1 and V2 are inde-
pendent sets. The sets V1 and V2 are the classes of the bipartition. Note that a
path is always bipartite, a cycle is bipartite if and only if it is on even number
of vertices and a clique is bipartite if and only if it has at most two vertices. A
complete bipartite graph, denoted by Km,n, is a bipartite graph with classes of
bipartition of sizes m and n and the maximum number of edges, see Figure 2.1.

v1 v2 v3 v4 v5

P5 C5

K5 K2,3 W6

Figure 2.1: Examples of small graphs

A join of two graphs G1 and G2 is the graph obtained by adding all edges between
vertices of G1 and G2. A wheel Wn on n vertices is the join of K1 and Cn−1, see
Figure 2.1. A k-wheel is Wk+1.

Two graphs G1 and G2 are isomorphic if there exists a bijective mapping called
isomorphism % : G1 → G2 sending V (G1) to V (G2) and E(G1) to E(G2).

A three is a graph without cycles as induced subgraphs. Let G1 and G2 be
graphs. A cartesian product of graphs G1 and G2, denoted by G1 �G2 is a
graph G wiht vertex set V (G) := {(u, v) : u ∈ V (G1), v ∈ V (G2)} and edge set
E(G) := {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) or v1v2 ∈ E(G2)}. For example P2 �P2

is isomorphic to C4.
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A graph G = (V,E) is connected if for every two vertices u and u of V it contains
a path with ends u and v as a subgraph. A connected component of G is maximal
induced connected subgraph of G.

Let C be a cycle in a graph G. An edge e = uv ∈ E(G) is a chord of C if both
u, v ∈ V (C) but e 6∈ E(C).

2.3 Graph drawing

It is often desired that a graph is not just an abstract structure but has also some
drawing where vertices are represented by points and edges by simple curves.
More precisely, a drawing G̃ of a graph G = (V,E) on a surface S consists of a
mapping D from V ∪ E into S such that

(i) D(u) 6= D(v) whenever u 6= v for every u, v ∈ V ;

(ii) for any edge e = uv, the image of D(e) = ẽ is the image of a continuous
injective mapping φe from [0, 1] to S which is simple (i.e. does not intersect
itself) such that φe(0) = D(u), φe(1) = D(v) and φe(]0, 1[) ∩ Ṽ = ∅;

(iii) every point in S is in at most two images of edges, unless it is an image of
some vertex;

(iv) for two distinct edges e1 and e2 of E, the edges ẽ1 and ẽ2 intersect in a finite
number of points.

We usually do not distinguish vertex and edge sets of a graph from their images
in a drawing as it does not lead to any confusion and simplifies presentation.

Let G be drawn (embedded) without crossings. Connected regions of S after
removal of edges and vertices of G are called faces of G. We denote the set of
faces by F (G). A facial walk is walk around the boundary of a face. It may
happen that vertices or edges have mutiple occurrences along the walk. A face
is a k-face if the walk encounters k vertices including repetitions. If G is drawn
without crossings then it is also the number of encountered edges, again with
repetitions.

Note that our definition allows edges to intersect in their interior points. We call
such vertex, which belongs to images of two distinct edges and is not image of any
vertex, crossing. Formally, it is a point of φe1(]0, 1[) ∩ φe2(]0, 1[) for some edges
e1 and e2. A portion of an edge e is a subarc of φe[0, 1] between two consecutive
endpoints or crossings on e. A portion from a to b is called an (a, b)-portion.

The minimum number of crossings among all drawings of G is the crossing number
of G, denoted by cr(G). A subset of vertices C is a crossing cover if cr(G − C)
is zero.

A graph is planar if it has a drawing in the plane without crossings. A plane
graph is a planar graph together with a drawing without crossings. In a drawing
in the plane there is exactly one unbounded face. It is called the outer face.

The following well known proposition is an easy consequence of Euler’s Formula.
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Proposition 2.1. If G = (V,E) is planar, then |E| ≤ 3|V | − 6.

If all faces of a drawing of a graph G are homeomorphic to an open disk we call
it a 2-cell embedding.

2.4 Graph coloring

Graph coloring is a popular topic in combinatorics. There are numerous variants
of colorings and various related problems. We only briefly review concepts used
in this thesis. An interested reader might want to look in books by Chartrand
and Zhang [6], Wilson [50] or Jensen and Toft [29] to discover more about graph
coloring.

Let G be a graph and C be a set of colors. A coloring is a mapping ϕ : V (G)→ C
such that for every uv ∈ E(G) holds ϕ(u) 6= ϕ(v). Sometimes, it is called a proper
coloring. Usually, we are interested only in proper colorings and minimizing the
number of colors used. If a graph G can be colored using k colors we say that G
is k-colorable. The smallest k for which G is k-colorable is called the chromatic
number and it is denoted by χ(G). A graph G is k-critical if χ(G) = k but every
proper subgraph of G is (k − 1)-colorable. See Figure 2.2(a) for an example of a
3-colored graph.

1

2

3

1
2

(a)

1

2

3

1
4

(b)

{1, 2}

{1, 2}

{2, 3}

{3, 4}
{4, 5}

2

1

3

4
5

(c)

Figure 2.2: Examples of (a) a coloring, (b) a packing coloring and (c) a list
coloring.
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2.4.1 List coloring

List coloring is a generalization of coloring where each vertex has its own list of
available colors. The concept of list colorings and choosability was introduced by
Vizing [47] and independently by Erdős et al. [16].

A list assignment of G is a function L that assigns each vertex v ∈ V (G) a
list L(v) of colors. An L-coloring is a mapping ϕ : V (G) → ⋃

v L(v) such that
ϕ(v) ∈ L(v) for every v ∈ V (G) and ϕ(u) 6= ϕ(v) whenever u and v are adjacent
vertices of G. If G admits an L-coloring then it is L-colorable. A graph G is
k-choosable if, for every list assignment L with |L(v)| ≥ k for all v ∈ V (G), there
exists an L-coloring of G. The choosability of a graph G denoted by ch(G) is
the smallest k such that G is k-choosable. See Figure 2.2(c) for an example of a
graph with a list L assignment and a possible L-coloring.

2.4.2 Packing coloring

The packing coloring is a recent concept coming from frequency assignment. It
is based on the fact that waves with lower frequency have longer reach.

A graph coloring can be viewed as a partitioning of the vertex set of a graph G
into disjoint classes X1, . . . , Xk (representing one color each) such that Xi is an
independent set.

In this model, we also ask for a partition of the vertex set of a graph G into
disjoint classes X1, . . . , Xk but the classes are bit more restricted. Each color
class Xi should be an i-packing, that is, a set of vertices with the property that
any distinct pair u, v ∈ Xi satisfies dist(u, v) > i. Here dist(u, v) denotes the
usual shortest path distance between u and v.

See Figure 2.2(b) for an example of a graph with packing chromatic number four.

Such partition is called a packing k-coloring, even though it is allowed that some
sets Xi may be empty. The smallest integer k for which there exists a packing
k-coloring of G is called the packing chromatic number of G and it is denoted
by χρ(G). This concept was introduced by Goddard et al. [25] under the name
broadcast chromatic number. The term packing chromatic number was later (even
if the corresponding paper was published earlier) proposed by Brešar et al. [5].

Sloper [41] followed with a closely related concept, the eccentric coloring. An
eccentric coloring of a graph is a packing coloring in which a vertex v is colored
with a color not exceeding the eccentricity of v.

15



Chapter 3

Graph coloring techniques

In this chapter we describe a few basic methods of graph coloring. They are used
in the following chapters and it might help the reader to see them in action on
simple problems first.

3.1 The Four color theorem

The Four color theorem states that every planar graph can be colored by four
colors. It is the most famous result of graph coloring and also the motivation for
the whole area of graph coloring. It can be used to derive numerous other results.

As an example we show that outerplanar graphs are 3-colorable. A graph is
outerplanar if it has an embedding in the plane such that all its vertices are
incident with the outer face.

Theorem 3.1. Let G be an outerplanar graph. Then χ(G) ≤ 3.

Proof. Let G′ be obtained from G by adding a new v vertex adjacent to every
vertex of G. Such vertex adjacent to all other vertices is called an apex. Observe
that G′ is planar as v might be added to the face incident with all vertices of G,
see Figure 3.1.

vG

G′

Figure 3.1: Adding an apex vertex v.

Now we use the four color theorem and obtain a coloring ϕ : V (G′)→ {1, 2, 3, 4}.
Assume without loss of generality that ϕ(v) = 4. As v is adjacent to all other
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vertices ϕ restricted to V (G) uses only colors {1, 2, 3}. Hence ϕ is the desired
coloring of G using three colors.

3.2 Degeneracy

Degeneracy is a popular way of attacking not only coloring problems. A graph
G is k-degenerated if every subgraph of G contains a vertex of degree at most k.
In particular, G itself contains a vertex of degree at most k.

An example of k-degenerated graphs are planar graphs, which are 5-degenerated,
trees, which are 1-degenerated or outerplanar graphs, which are 2-degenerated.

Using degeneracy we show that outer planar graphs are 3-choosable.

Theorem 3.2. Let G be an outerplanar graph. Then ch(G) ≤ 3.

Proof. Suppose, by way of contradiction, that G is an outerplanar graph and L
is a list assignment assigning at least three colors to each vertex of G and G is
not L colorable. Moreover, suppose that G is minimal such graph in number of
vertices.

As outerplanar graphs are 2-degenerated, G contains a 2-vertex v. Let H be an
induced subgraph on V (G)\v. There exists an L-coloring ϕ : u→ L(u) for every
vertex u ∈ V (H) since G was a minimal counterexample.

Let v1, v2 ∈ V (G) be the two distinct neighbors of v. We extend ϕ to v by
assigning ϕ(v) := L(v) \ {ϕ(v1), ϕ(v1)}. Such assignment exists as |L(v)| ≥ 3.
The extended ϕ contradicts that G is no L-colorable.

3.3 Kempe chains

Kempe chains were discovered as an attempt to prove the Four color theorem.
Let G be a properly colored graph and let H be some maximal connected 2-
colored subgraph. The key observation is that it is possible to exchange colors
of vertices of H and the resulting coloring of G is again proper. More formally,
let G be a graph, ϕ its proper coloring and c1 and c2 two colors. Let H be a
maximal (in inclusion) connected subgraph of G such that for every v ∈ V (H)
holds ϕ(v) ∈ {c1, c2}. Define a coloring % for every vertex v ∈ V (G) in the
following way:

%(v) :=


c1 if v ∈ V (H) and ϕ(v) = c2 ,

c2 if v ∈ V (H) and ϕ(v) = c1 ,

ϕ(v) otherwise.

Due to maximality of H, % is a proper coloring. We call H a Kempe chain. See
Figure 3.2 for an example.

A classical example for Kempe chains is that planar graphs are 5-colorable. First,
we prove a simple lemma which will help even in other examples.
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K K

Figure 3.2: Using Kempe K of red and blue vertices.

Lemma 3.3. Let G be a graph and v its vertex of degree at most four. If the
graph induced on V (G) \ s is 5-colorable then so is G.

Proof. Let H be an induced subgraph of G on vertices V (G) \ {v}. As H is
5-colorable there exists a proper coloring ϕ : V (H)→ C where C is a set of five
colors.

Let c ∈ C \ ⋃u∈N(v) ϕ(u). Note that c exists as v has at most four neighbors.

Extending ϕ by defining ϕ(v) := c yields a proper coloring of G.

Theorem 3.4. Let G be a planar graph. Then χ(G) ≤ 5.

Proof. Suppose for contradiction that there exists a counterexample and G is the
smallest one in the number of vertices.

Let G̃ be an embedding of G in the plane and let v be a (≤ 5)-vertex of G. Recall
that v exists as planar graphs are 5-degenerated. Moreover, Lemma 3.3 implies
that v is a 5-vertex.

Let H be an induced subgraph of G on V (G) \ {v}. As H is smaller than G,
there exists a proper coloring ϕ : V (H)→ C where C = {1, 2, 3, 4, 5}.
Our goal is to modify ϕ and extend it to a proper coloring of G. Let Cv be the
set of colors assigned to neighbors of v, formally Cv = {c : ∃u ∈ N(v) ϕ(u) = c}.
If there exists c ∈ C \Cv then assigning ϕ(v) := c extends ϕ to a proper coloring
of G. Hence all five neighbors of v have different colors. Assume without loss of
generality that v1, v2, v3, v4 and v5 are the neighbors of v in the clockwise order
from v in G̃. Assume also that ϕ(vi) = i for i ∈ {1, 2, 3, 4, 5}. See Figure 3.3.

Finally, Kempe chains come into the scene. Let K be a Kempe chain of colors
2 and 5 containing vertex v2. If K does not contain v5 we exchange colors on
K and the resulting coloring % can be extended to a coloring of G by assigning
%(v) := 2. Note that %(v2) = 5 and %(vi) = ϕ(vi) for i ∈ {1, 3, 4, 5}. Hence % is a
proper coloring of G.

So we assume that K contains both v2 and v5. Switching colors on K does
not help in this case as the neighborhood of v would still contain all five colors.
The existence of K implies that there exists a path of vertices colored 2 and 5
connecting v2 and v5. Together with planarity it implies that there does not exist
a path of vertices colored 1 and 4 connecting v1 and v4. See Figure 3.3. Hence
we take a Kempe chain L on colores 1 and 4 containing v1 and flip colors on L.
The resulting coloring % can be extended to a proper coloring of G by assigning
%(v) := 1.
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v

v1

v5

v4 v3

v2

K
L

Figure 3.3: Configuration around v in Theorem 3.4.

3.4 Identification

Sometimes it might be helpful if two vertices are colored the same. Identification
is a way of achieving this. It might also be called a contraction.

We demonstrate the technique on an alternative proof of Theorem 3.4.

Proof. Suppose for contradiction that there exists a counterexample and G is the
smallest one in the number of vertices. Let C = {1, 2, 3, 4, 5} be colors.

Recall that planar graphs are 5-degenerated. Hence G contains a vertex v of
degree at most five. Lemma 3.3 implies that v is a 5-vertex.

v1

v2v

G

x

G′

Figure 3.4: Removing vertex v and identifying v1 and v2.

Observe that N(v) does not induce a clique as K5 is not a planar graph. Hence
there exist nonadjacent v1, v2 ∈ N(v). Let G′ be obtained from G by removing
vertices v, v1 and v2 and by adding a new vertex x adjacent to N(v1) ∪ N(v2) \
{v, v1, v2}, see Figure 3.4. Note that G′ is planar as it can alternatively be ob-
tained from G by contracting edges v1v and v2v and maybe removing some other
edges and contracting and removing edges preserves planarity.

Let ϕ : V (G′)→ C be a coloring of G′. It exists as G has the minimum number
of vertices. Let C ′ =

⋃
u∈N(v)∪{x}\{v1,v2} ϕ(u). Note that |C ′| ≤ 4 as the union is

over four vertices. Let c ∈ C \ C ′. Let % : V (G)→ C be defined in the following
way:
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%(u) :=


ϕ(x) if u ∈ {v1, v2} ,
c if u = v ,

ϕ(u) otherwise.

Observe that % is a proper coloring of G contradicting that G is not 5-colorable.

3.5 Discharging

Discharging is a very powerful technique for proving various theorems about pla-
nar graphs. It was successfully applied on various problems. Even the Four color
theorem was proved by using discharging. A discharging proof might be very
ugly but you will get the result. Especially theorems with some local constraints
are likely to be proved using discharging.

Discharging proofs are usually by contradiction. We start with a minimum coun-
terexample G. First, we study some reducible configurations which cannot occur
in a minimum counterexample. Then initial charges are assigned to vertices and
faces of G. A crucial property of the charges should be that a planar graph has
sum of all the charges negative. Then we apply some rules for shifting the charges
between vertices and faces such that the sum of all charges is preserved. Finally,
we verify that the final charges of every face and every vertex are nonnegative.
Hence G is not a planar graph, which is a contradiction.

Sometimes, the set of reducible configurations is called a set of unavoidable con-
figurations as every graph satisfying the assumptions of a proven theorem must
contain a reducible configuration.

We demonstrate the technique on yet another proof of Theorem 3.4.

Proof. Let G be a counterexample with the minimum number of vertices. We may
assume that G is connected as otherwise we may color each connected component
separately.

First we argue thatG does not contain any separating triangle. Let T be a triangle
and let G1 and G2 be induced subgraphs of G such that V (G) = V (G1)∪V (G2),
E(G) = E(G1) ∪ E(G2), V (T ) = V (G1) ∩ V (G2), |V (G1)| > 3 and |V (G2)| > 3.
By the minimality of G let ϕi be a 5-coloring of Gi for i ∈ {1, 2}. By permuting
the colors we may assume that ϕ1 = ϕ2 on vertices of T . Finally, we define a
5-coloring ϕ of G:

ϕ(u) :=

{
ϕ1(u) if u ∈ V (G1) ,

ϕ2(u) if u ∈ V (G2).

Reducible configurations

Simple reducible configurations are vertices of degree at most four. They are
reducible due to Lemma 3.3.
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x1

u

x2

v

T1T2

Figure 3.5: A reducible configuration from Section 3.5.

Next reducible configuration we use is a 5-vertex v incident with two triangles
T1, T2 sharing an edge containing v, see Figure 3.5. To reduce this configuration
we use the identification trick from Section 3.4. Let u be the other vertex shared
by the triangles and xi be the third vertex of Ti for i ∈ {1, 2}. Note that x1 is
not adjacent to x2 as otherwise x1x2v would be a separating triangle. Let G′ be
obtained from G by removing v and identification of x1 and x2 into a new vertex
x. As G has the minimum number of vertices there exists a proper 5-coloring
ϕ′ : V (G′)→ C. It may be transformed into a 5-coloring ϕ of G in the same way
as in the proof in Section 3.4.

Initial charges

Let G̃ be an embedding of G in the plane and let f be a face of G̃. By `(f) we
define the length of a facial cycle around f where bridge edges are counted twice.
We define the initial charges ch for a vertex v and a face f in the following way:

ch(v) := deg(v)− 6 and ch(f) := 2`(f)− 6.

Let us verify that the sum of all charges is negative by Euler’s formula:

∑
v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =
∑

v∈V (G)

(deg(v)− 6) +
∑

f∈F (G)

(2`(f)− 6)

= (2|E(G)| − 6|V (G)|) + (4|E(G)| − 6|F (G)|)
= 6(|E(G)| − |V (G)| − |F (G)|)
= −12.

Discharging rules

We use only one discharging rule to redistribute the initial charge to increase
charges of 5-vertices.

Rule 1. A (≥4)-face sends charge 1
2

to every adjacent 5-vertex.

Final charges

We use ch∗(x) to denote the final charge of a vertex or face x. Now we must show
that ch∗(x) ≥ 0 for every vertex and face x.

Let v be a vertex of G̃. If deg(v) ≥ 6 then ch(v) = ch∗(v) ≥ 0. If deg(v) = 5,
then v is adjacent to at most two triangular faces. Otherwise we have a reducible
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configuration. Hence v is adjacent to at least three (≥ 4)-faces that are each
sending charge 1

2
to v according to Rule 1. Thus ch∗(v) = ch(v) + 3

2
≥ 1

2
.

Let f be a face of G̃. If f is a triangle then ch(f) = ch∗(f) = 0. Otherwise,
Rule 1 may be applied to every vertex of f . Hence ch∗(v) = ch(f) + `(f)/2 =
3
2
`(f)− 6 ≥ 0.

As the resulting charges are nonnegative for every vertex and every face, we get
a contradiction with the assumption that G is planar.

3.6 Computer search

Using computer might save a lot of tedious case analysis when dealing with a large
amount of cases. The disadvantage of computer assisted proofs is that computer
programs depend on many sources of possible mistakes. Mistakes might come
from source codes, compilers, operating systems and even hardware. A common
way of handling this is to write two different programs in two different languages,
let them run in different environments and verify that they were computing the
same thing. Of course, it does not mean that the result is correct but lowers the
probability of a mistake.

Apart from checking many cases, computer programs might be used to search
through small configurations and it might give a hint what could be true.

As an example we use a simple result that the packing chromatic number of a
two-way infinite path is four.

Theorem 3.5. Let P∞ be a two-way infinite path. Then χρ(P∞) = 3.

Proof. First, we need to show that χρ(P∞) > 2. We may write a program for
generating all colorings of P4 by two colors and checking if they are proper packing
colorings. After checking all 16 configurations, the program will output that P4

cannot be packing colored by two colors. It implies that χρ(P∞) > 2.

A computer program might also be used for proving χρ(P∞) ≤ 3. First possibility
is to use a greedy kind of an algorithm for coloring a long path, say P30. A human
may easily find a repeating pattern in the result and prove that such pattern might
be used for coloring the infinite path. Program may be used also for generating
the pattern by trying to color a cycle. In this case C4 is sufficient. Even the
correct length of the cycle and hence the period of the pattern might be found
by a computer. Just for completeness we present also a repeating pattern for
coloring P∞ in Figure 3.6.

3 1 2 1 3 1 2 1

Figure 3.6: Pattern for coloring a two-way infinite path.
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3.7 Thomassen’s technique

The last technique we describe in this chapter was developed by Thomassen. It
was used for proving a beautiful theorem that every planar graph is 5-choosable
which we present here.

The main idea is to use induction on a slightly stronger statement where vertices
in the outer face have less colors in their lists and peel vertices from the outer
face.

Theorem 3.6. Let G be a plane graph and let L be a list assignment. If there
are at most two adjacent vertices a and b in the outer face with lists of size at
least one such that |L(a) ∪ L(b)| ≥ 2, all other vertices in the outer face have
lists of size at least three and all the other vertices have lists of size five then G
is L-colorable.

Proof. Suppose for contradiction that G is a counterexample with the minimum
number of vertices and L is the corresponding list assignment.

Let us first note that a and b are called precolored vertices as there is no freedom
in coloring them.

If G is not connected we may color each component separately by induction.
Hence we may assume that G is connected.

Suppose that G contains a cut-vertex v. We split G into two proper induced
subgraphs G1 and G2 of G such that V (G1) ∪ V (G2) = V (G), V (G1) ∩ V (G2) =
{v} and E(G1) ∪ E(G2) = E(G). Without loss of generality let a, b ∈ V (G1).
First, we get from induction an L-coloring ϕ1 of G1. Let L′ be obtained by
restricting L to V (G2) and assigning L′(v) := ϕ1(v). Note that G2 and L′ satisfy
the assumptions of the theorem and hence we can use induction to obtain L′-
coloring ϕ2 of G2. As both of the colorings agree on v we define the final L-
coloring ϕ by combining ϕ1 and ϕ2. Hence G is 2-connected and the outer face
of G is a cycle.

a b

v
G1 G2

(a)

a b v

u

G1 G2

(b)

Figure 3.7: A cut and a chord from Theorem 3.6.

Next we show that the outer face of G does not contain any chord. The argument
is analogous to the one in the previous paragraph. Suppose that there exists a
chord uv ∈ E(G) where both u, v are in the outer face but the edge uv is not.
Then X = {u, v} is a 2-cut. Let G1 and G2 be proper induced subgraphs such
that V (G1) ∪ V (G2) = V (G), V (G1) ∩ V (G2) = X and E(G1) ∪ E(G2) = E(G).
Assume without loss of generality that a, b ∈ V (G1). First, we get from induction
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an L-coloring ϕ1 of G1. Let L′ be obtained by restricting L to V (G2) and assigning
L′(u) := ϕ1(u) and L′(v) := ϕ1(v). Note that G2 and L′ satisfy the assumptions
of the theorem and hence we can use induction to obtain L′-coloring ϕ2 of G2.
As both of the colorings agree on u and v we define the final L-coloring ϕ by
combining ϕ1 and ϕ2. Hence the outer face of G has no chords.

a bx

y

N

Figure 3.8: A 2-connected case in Theorem 3.6.

Assume without loss of generality that |L(a)| = |L(b)| = 1 and L(a) 6= L(b) as
we can restrict the lists if they are larger. Let b, a, x, y be a part of a facial walk
along the outer face of G, see Figure 3.8. Note that it may happen that b = y.
Let N = N(x)\{a, y} and let C = L(x)\L(a). Assume without loss of generality
that |C| = 2 as we can just throw away some colors in case |C| > 2. Let G′ be
an induced subgraph of G on V (G) \ {x}. We define L′ to be:

L′(u) :=

{
L(u) \ C if u ∈ N ,

L(u) otherwise.

Note that vertices of N have lists L of size five as they are not in the outer face of
G. They lost at most two colors from their lists L′ but they are in the outer face
of G′. Hence G′ and L′ satisfy the assumptions of the theorem and by induction
we obtain an L′-coloring ϕ of G′.

We extend ϕ to an L-coloring of G by assigning ϕ(x) ∈ C \ {ϕ(y)}. Note that
the assignment gives a proper coloring as vertices in N(x) \ {y} are not colored
by colors from C. The L-coloring ϕ contradicts that G is not L-colorable.
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Chapter 4

6-critical graphs

This chapter is based on papers 6-critical graphs on the Klein bottle by
Kawarabayashi, Král’, Kynčl and Lidický [31] and 5-colouring graphs with 4 cross-
ings by Erman, Havet, Lidický and Pangrác [17].

4.1 Introduction

This chapter is devoted to critical graph. Let us recall that a graph G is k-critical
if χ(G) = k but for every proper subgraph H of G holds that χ(H) < k. Critical
graphs are in some sense the smallest obstacles for coloring a graph with less
colors than k. Let G be a graph with χ(G) ≥ k. Then it contains a subgraph
H, which is k-critical. It can be easily obtained from G by removing edges and
vertices as long as the chromatic number stays at least k. If further removal of
any vertex or edge causes chromatic number to drop below k, we have a k-critical
subgraph.

The previous observation has the following algorithmic consequence. Let G be
class of graphs containing only finitely many k-critical graphs. Then it can be
decided in polynomial time if a graph G ∈ G can be colored by less than k colors
simply by checking if G contains any of the finitely many k-critical graphs.

The question of k-colorability is NP-complete in general [30]. So it is one of the
motivations for deciding if a class of graphs has finitely many k-critical graphs
and enumerating them. Also k-critical graphs come handy when one is proving
that some graph may or may not be colored by k−1 colors as the k-critical graphs
guarantee some structure.

Let us first review critical graphs on surfaces. A well-known result of Heawood [27]
asserts that the chromatic number of a graph embedded on a surface of Euler

genus g is bounded by the Heawood number H(g) =
⌊

7+
√

24g+1
2

⌋
. Dirac Map

Color Theorem [9, 10] asserts that a graph G embedded on a surface of Euler
genus g 6= 0, 2 is (H(g) − 1)-colorable unless G contains a complete graph of
order H(g) as a subgraph. Dirac’s theorem in the language of critical graphs says
the following: the only H(g)-critical graph that can be embedded on a surface of
Euler genus g 6= 0, 2 is the complete graph of order H(g).
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Figure 4.1: The list of all four 6-critical graphs that can be embedded on the
torus. Some of the edges are only indicated in the figure: the straight edges
between two parts represent that the graph is obtained as the join of the two
parts and the vertices with stars of edges leaving them are adjacent to all vertices
in the graph.

In fact, Dirac [9] showed that there are only finitely many k-critical graphs, k ≥ 8,
that can be embedded on a fixed surface. The number of 7-critical graphs that can
be embedded on a fixed surface is also finite by classical results of Gallai [23, 24]
as pointed out by Thomassen in [43]. Later, Thomassen [45] established that
the number of 6-critical graphs that can be embedded on any fixed (orientable
or non-orientable) surface is also finite (see also [39] for related results on 7-
critical graphs). This result is best possible as there are infinitely many k-critical
graphs, 3 ≤ k ≤ 5, that can be embedded on any fixed surface different from the
plane [21].

In this chapter, we focus on 6-critical graphs. First, we discuss 6-critical graphs
on the Klein bottle and then we move to 6-cirtical graphs with small crossing
number. As every plane graph is 4-colorable [2, 3, 38], there are no 6-critical
graphs in the plane. Dirac Map Color Theorem implies that the complete graph
of order six is the only 6-critical projective planar graph. Thomassen [43] gave a
complete list of 6-critical toroidal graphs: the only 6-critical graphs that can be
embedded on the torus are the complete graph K6, the join of the cycles C3 and C5

(recall that the join of two graphs G1 and G2 is the graph obtained by adding all
edges between G1 and G2), the graph obtained by applying Hajos’ construction to
two copies of K4 and then by adding K2 joined to all other vertices, and the third
distance power of the cycle C11 (which is further denoted by T11), see Figure 4.1.

Thomassen then posed a question whether the toroidal 6-critical graphs distinct
from T11 and the graph obtained by applying Hajos’s to two copies of K6 are
the only 6-critical graphs that can be embedded on the Klein bottle. It turned
out that conjecture is false and that there are nine 6-critical graphs on the Klein
bottle. We present the proof of this fact in Subsection 4.2.

Every graph with crossing number g can be embedded on a surface of Euler
genus g simply by using cross caps instead of crossings. Hence some results for
graphs on surfaces directly transfers to graphs with bounded crossing number. In
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particular, we know that there are finitely many k-critical graphs with bounded
crossing number for k ≥ 6. Note that the result cannot be improved to k ≥ 5
as there are infinitely many 5-critical graphs with just one crossing. Consider a
wheel W with an apex vertex. It is straightforward to verify that it is indeed a
5-critical graph with crossing number one.

There are no 6-critical graphs with crossing number at most two as graphs with
crossing number two are embeddable to the Klein bottle and the 6-critical with
the smallest crossing number embeddable in the Klein bottle, equal to 3, is K6.
Oporowski and Zhao [37] proved that K6 is the unique 6-critical graph with
crossing number 3. They posed a question if K6 is unique also for crossing
numbers 4 and 5. It is not unique for 6 crossings as the join of C3 and C5

has crossing number 6. The answer is positive only for 4 crossings. In Section 4.3
we give a proof that K6 is the unique 6-critical graph with four crossings and
exhibit a 6-critical graph with crossing number 5 different from K6.
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Figure 4.2: The list of all nine 6-critical graphs that can be embedded in the
Klein bottle. Some of the edges are only indicated in the figure: the straight
edges between two parts represent that the graph is obtained as the join of the
two parts and the vertices with stars of edges leaving them are adjacent to all
vertices in the graph.

4.2 6-critical graphs on the Klein bottle

This section is based on paper [31].

4.2.1 Introduction

This section is devoted to enumerating all 6-critical graphs that can be embedded
on the Klein bottle (the graphs are depicted in Figure 4.2).

Theorem 4.1. There are nine non-isomorphic 6-critical graphs that can be em-
bedded on the Klein bottle which are depicted in Figure 4.2. The graphs have
altogether a single non-2-cell embedding and 18 non-isomorphic 2-cell embeddings
on the Klein bottle, which are depicted in Figures 4.5 and 4.6.

It disproves a conjecture of Thomassen’s who conjectured that there are only four
them. The same result was independently obtained by Chenette, Postle, Streib,
Thomas and Yerger [7]. Chenette et al. investigated the structure of 6-critical
graphs on the Klein bottle, i.e., found all 6-critical graphs that could possibly be
embedded on the Klein bottle. Our approach is based on a systematic generating
of all embeddings of 6-critical graphs on the Klein bottle from the complete graph
K6. Our proof is computer-assisted (unlike the proof of Chenette et al.) but it
additionally yields the list of all non-isomorphic embeddings of 6-critical graphs
on the Klein bottle.
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As we have mentioned, our proof is computer-assisted. We outline the main
concepts we use and explain the procedure used to generate all embeddings of
6-critical graphs on the Klein bottle. In order to verify the correctness of our
programs, we have separately prepared two different programs implementing our
procedures and compared their outputs. Further details of the implementation
and the source code of our programs can be found at http://kam.mff.cuni.cz/

~bernard/klein. Here, we establish the correctness of used algorithms and refer
the reader for details on implementation to the web page.

4.2.2 6-critical graphs

In this subsection, we observe basic properties of 6-critical graphs on the Klein
bottle. Euler’s formula implies that the average degree of a graph embedded
on the Klein bottle is at most six. As Sasanuma [40] established that every 6-
regular graph that can be embedded on the Klein bottle is 5-colorable, we have
the following proposition (observe that no 6-critical graph contains a vertex of
degree four or less):

Proposition 4.2. The minimum degree of every 6-critical graph on the Klein
bottle is five.

Let G be a 6-critical graph on the Klein bottle and v a vertex of degree five in
G. Further let vi, 1 ≤ i ≤ 5, be the neighbors of v in G. If all vertices vi and vj,
1 ≤ i < j ≤ 5, are adjacent, the vertices v and vi, 1 ≤ i ≤ 5, form a clique of
order six in G. As G is 6-critical, G must then be a complete graph of order six.
Hence, we can conclude the following:

Proposition 4.3. Let G be a 6-critical graph embedded on the Klein bottle. If
G is not a complete graph of order six, then G contains a vertex v of degree five
that has two non-adjacent neighbors v′ and v′′.

We now introduce the following reduction: let G be a 6-critical graph embedded
on the Klein bottle that is not isomorphic to K6 and let v, v′ and v′′ be three
vertices as in Proposition 4.3. G|vv′v′′ is the graph obtained from G by removing
all the edges incident with v except for vv′ and vv′′ and contracting the edges
vv′ and vv′′ to a new vertex w. The obtained graph can have parallel edges but
it does not have loops as the vertices v′ and v′′ are not adjacent. Observe that
the graph G|vv′v′′ is not 5-colorable: otherwise, consider a 5-coloring of G|vv′v′′
and color the vertices v′ and v′′ with the color assigned to the vertex w. Next,
extend the 5-coloring to v—this is possible since v has five neighbors and at least
two of them (v′ and v′′) have the same color. Hence, we obtain a 5-coloring of G
contradicting our assumption that G is 6-critical. Since G|vv′v′′ has no 5-coloring,
it contains a 6-critical subgraph—this subgraph will be denoted by |G|vv′v′′| and
we say that G can be reduced to |G|vv′v′′|.
Observe that the reduction operation can again be applied to |G|vv′v′′| until a
graph that is isomorphic to K6 is obtained (the process eventually terminates
since the order of the graph is decreased in each step).

We continue with a simple observation on the graph |G|vv′v′′|.
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Proposition 4.4. Let G be a 6-critical graph embedded on the Klein bottle, v a
vertex of degree five in G and v′ and v′′ two non-adjacent neighbors of v. The
graph |G|vv′v′′| contains the vertex w obtained by contracting the path v′vv′′.
Moreover, the vertex w has a neighbor w′ in |G|vv′v′′| that is a neighbor of v′

in G but not of v′′ and it also has a neighbor w′′ that is neighbor of v′′ but not of
v′ in G.

Proof. If |G|vv′v′′| does not contain the vertex w, then |G|vv′v′′| is a subgraph of
G\{v, v′, v′′}. Since both |G|vv′v′′| and G are 6-critical graphs, this is impossible.
Hence, |G|vv′v′′| contains the vertex w.

Assume now that |G|vv′v′′| contains no vertex w′ as described in the statement
of the proposition, i.e., all neighbors of w in |G|vv′v′′| are neighbors of v′′ in G.
This implies that |G|vv′v′′| is isomorphic to a subgraph of G \ {v, v′} (view the
vertex v′′ as w) which is impossible since both G and |G|vv′v′′| are 6-critical. A
symmetric argument yields the existence of a vertex w′′.

The strategy of our proof is to generate all 6-critical graphs by reversing the
reduction operation. More precisely, we choose a vertex w of a 6-critical graph
G and partition the neighbors of w into two non-empty sets W1 and W2. We
next replace the vertex w with a path w1ww2 and join the vertex wi, i = 1, 2, to
all vertices in the set Wi. Let G[w,W1,W2] be the resulting graph. We say that
G[w,W1,W2] was obtained by expanding the graph G. By Proposition 4.4, the
following holds (choose w as in the statement of the proposition):

Proposition 4.5. Let G be a 6-critical graph embedded on the Klein bottle and
let v be a vertex of degree five of G with two non-adjacent neighbors v′ and v′′.
The graph G′ = |G|vv′v′′| contains a vertex w such that G′[w,W1,W2] ⊆ G for
some partition W1 and W2 of the neighbors of the vertex w.

4.2.3 Minimal graphs

Our plan is to generate all 6-critical graphs from the complete graph K6 by
expansions and insertions of new graphs into faces. In this subsection, we describe
the graphs we have to insert into the faces to be sure that we have generated all
6-critical graphs.

A plane graph G with the outer face bounded by a cycle C of length k is said to
be k-minimal if for every edge e ∈ E(G) \C, there exists a proper precoloring ϕe
of C with five colors that cannot be extended to G and that can be extended to
a proper 5-coloring of G \ e (the graph G with the edge e removed). Note that
the precolorings ϕe can differ for various choices of e.

The cycle Ck of length k is k-minimal (the definition vacuously holds); we say
that Ck is a trivial k-minimal graph. For k = 3, it is easy to observe that C3 is
the only 3-minimal graph since the colors of the vertices of C3 must differ and
every planar graph is 5-colorable. Similarly, C4 and the graph obtained from C4

by adding a chord are the only 4-minimal graphs. As for k = 5, Thomassen [43]
showed that if G is a plane graph with the outer face bounded by a cycle C of
length five and C is chordless, then a precoloring of C with five colors can be
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Figure 4.3: The list of all 6-minimal graphs.

extended to G unless G is the 5-wheel and the vertices of C are precolored with all
five colors. Hence, C5, C5 with one chord, C5 with two chords and the 5-wheel are
the only 5-minimal graphs. The analogous classification result of Thomassen [43]
implies that the only 6-minimal graphs (up to an isomorphism) are those depicted
in Figure 4.3.

The following lemma justifies the use of k-minimal graphs in our considerations:

Lemma 4.6. Let G be a 6-critical graph embedded on the Klein bottle. If C is a
contractible cycle of G of length k, then the subgraph G′ of G inside the cycle C
(G′ includes the cycle C itself) is k-minimal.

Proof. We verify that G′ is k-minimal. Let e be an edge of G′ that is not contained
in C. Since G is 6-critical, G \ e has a 5-coloring c. Let ϕe be the coloring c
restricted to the cycle C. If ϕe could be extended to G′, then the extension of
ϕe to the subgraph G′ combined with the coloring c outside C would yield a 5-
coloring G. This establishes the existence of a precoloring ϕe as in the definition
of k-minimal graphs and the proof of the lemma is now finished.

In the light of Lemma 4.6, our next goal is to find all k-minimal graphs for small
values of k. The following proposition enables us to systematically generate all k-
minimal graphs for any fixed k from the lists of k′-minimal graphs for 3 ≤ k′ < k.

Proposition 4.7. If G is a non-trivial k-minimal graph, k ≥ 3, with the outer
cycle C, then either the cycle C contains a chord or G contains a vertex v adjacent
to at least three vertices of the cycle C. In addition, if C ′ is a cycle of G of length
k′ and G′ is the subgraph of G bounded by the cycle C ′ (inclusively), then G′ is a
k′-minimal graph.

Proof. First assume that C is chordless and each vertex v of G is adjacent to at
most two vertices of C. Let G′ be the subgraph of G induced by the vertices
not lying on C. We consider the following list coloring problem: each vertex
of G′ not incident with the outer face receives a list of all five available colors
and each vertex incident with the outer face is given a list of the colors distinct
from the colors assigned to its neighbors on C in G. By our assumption, each
such vertex has a list of at least three colors. A classical list coloring result of
Thomassen [42] on list 5-colorings of planar graphs yields that G′ has a coloring
from the constructed lists. Hence, every precoloring of the boundary of G can be
extended to the whole graph G and thus G cannot be k-minimal. This establishes
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the first part of the proposition. The proof of the fact that every cycle of length
k′ bounds a k′-minimal subgraph is very analogous to that of Lemma 4.6 and
omitted.

Proposition 4.7 suggests the following algorithm for generating k-minimal graphs.
Assume that we have already generated all `-minimal graphs for ` < k and let
M` be the list of all `-minimal graphs. Note that we have explicitly described
the lists M3, M4, M5 and M6. The list Mk is then generated by the following
procedure (the vertices of outer boundary are denoted by v1, . . . , vk):

M_k := { the cycle C_k on v_1,...,v_k }

repeat

M’ := M_k

forall 1 <= a < b <= k with b-a >= 2 do

G := the cycle C_k on v_1,...,v_k with the chord v_av_b

forall G_1 in M_{b-a+1} and G_2 in M_{k+a-b+1} do

H := G with G_1 and G_2 pasted into its faces

if H is k-minimal and H is not in M_k then

add H to M_k

endfor

endfor

forall 1 <= a < b < c <= k do

G := the cycle C_k on v_1,...,v_k with the vertex v

adjacent to v_a, v_b and v_c

forall G_1 in M_{b-a+2}, G_2 in M_{c-b+2} and

G_3 in M_{k+a-c+2} do

H := G with G_1, G_2 and G_3 pasted into its faces

if H is k-minimal and H is not in M_k then

add H to M_k

endfor

endfor

until M_k = M’

Proposition 4.7 implies that the list Mk contains all k-minimal graphs after the
termination of the procedure: if G is a k-minimal graph, it contains either a chord
or a vertex v adjacent to three vertices on the outer cycle and the graphs inside the
faces of the skeleton formed by the outer cycle and the chord / the edges adjacent
to v are also minimal. The verifications whether the graph G is isomorphic to
one of the graphs in Mk and whether G is k-minimal are straightforward and the
reader can find the details in the program available at http://kam.mff.cuni.

cz/~bernard/klein.

The numbers of non-isomorphic k-minimal graphs for 3 ≤ k ≤ 10 can be found in
Table 4.1. We finish this subsection by justifying our approach with showing that
the number of k-minimal graphs is finite for every k; in particular, the procedure
always terminates for each value of k.

Proposition 4.8. The number of k-minimal graphs is finite for every k ≥ 3.
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k 3 4 5 6 7 8 9 10
|Mk| 1 2 4 14 46 291 2124 19876
nk 0 0 1 3 4 6 7 9

Table 4.1: The numbers of non-isomorphic k-minimal graphs for 3 ≤ k ≤ 10 and
the largest number nk of internal vertices of a k-critical graph.

Proof. Let Ak be the number of k-minimal graphs and Ak,` the number of k-
minimal graphs G such that exactly ` precolorings of the boundary of G with
five colors can be extended to G. Clearly, Ak,` = 0 for ` > 5 · 4k−1 since there
are at most 5 · 4k−1 proper precolorings of the boundary of G. We prove that the
numbers Ak,` are finite by the induction on 5k + `. More precisely, we establish
the following formula:

Ak,` ≤ k ·
k−1∑
i=3

4i(k + 2− i)AiAk+2−i + (4.1)

k ·
k−1∑
i=4

k+3−i∑
i′=4

8ii′(k + 6− i− i′)AiAi′Ak+6−i−i′ + (4.2)

k
`−1∑
i=1

2kAk,i (4.3)

Fix k and `. By Proposition 4.7, every k-minimal graph G with ` extendable
precolorings of its boundary cycle C either contains a chord or a vertex v adjacent
to three vertices on C. In the former case, the cycle C and the chord forms cycles
of length i and k + 2 − i. Since these cycles bound i-minimal and (k + 2 − i)-
minimal graphs by Proposition 4.7, the number of such k-minimal graphs is at
most AiAk+2−i. After considering at most k possible choices of the chord (for
fixed i) and 2i and 2(k + 2 − i) possible rotations and/or reflections, we obtain
the term (4.1).

Let us analyze the case that G contains a vertex v adjacent to three vertices on
C. If the neighbors of v are not three consecutive vertices of C, then the edges
between v and its neighbors delimit cycles of lengths i ≥ 4, i′ ≥ 4 and k+6−i−i′.
These cycles bound i-minimal, i′-minimal and (k+6− i− i′)-minimal graphs and
their number (including different rotations and reflections) is estimated by the
term (4.2).

Assume that the neighbors of v on C are consecutive. Let v′, v′′ and v′′′ be the
neighbors of v and G′ the subgraph of G inside the cycle C ′ where C ′ is the cycle
C with the path v′v′′v′′′ replaced with the path v′vv′′′ (see Figure 4.4). Fix a
precoloring ϕ0 of the vertices of C except for v′′. Let α be the number of ways in
which ϕ0 can be extended to v that also extends to G′. Similarly, α′ the number
of ways in which ϕ0 can be extended to v′′ that also extends to G.

We show that α ≤ α′. If α = 0, then α′ = 0. If α = 1, then α′ > 1. Finally,
if α > 1, then α ≤ α′ as any extension of ϕ0 to C also extends to G (note that
α′ is 3 or 4 depending on ϕ0(v′) and ϕ0(v′′′)). We conclude that the number of
precolorings of C ′ that can be extended to G′ does not exceed the number of
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Figure 4.4: The notation used in the proof of Proposition 4.4.

Figure 4.5: The list of all seven non-isomorphic 2-cell embeddings of K6 on the
Klein bottle.

precolorings of C extendable to G.

Let ϕ be the precoloring of C that cannot be extended to G but that can be
extended to G \ vv′′ and let ϕ0 be the restriction of ϕ to C \ v′′. It is easy to infer
that the value of α for this particular precoloring ϕ0 must be equal to one and
consequently α′ > 1 for ϕ0. Hence, the number of precolorings of C ′ that can
be extended to G′ is strictly smaller than the number of precolorings of C that
can be extended to G. Since G′ is a k-minimal graph with fewer precolorings of
the boundary that can be extended to G′ than the number of precolorings of C
extendable to G, the number of k-minimal graphs G with a vertex v with three
consecutive neighbors on C including their possible rotations and reflections is
estimated by (4.3). This finishes the proof of the inequality and thus the proof
of the whole proposition.

4.2.4 Embeddings of K6 on the Klein bottle

Subsequent applications of our reduction procedure to a 6-critical graph on the
Klein bottle eventually lead to an embedding of the complete graph K6. The
resulting embedding of K6 is either a 2-cell embedding or not. Recall that an
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embedding is said to be 2-cell if every face is homeomorphic to a disc.

If the resulting embedding of K6 is not 2-cell, the embedding must be isomorphic
to the embedding obtained from the unique embedding of K6 in the projective
plane by inserting a cross-cap into one of its faces. Otherwise, the embedding
is isomorphic to one of the seven embeddings of K6 depicted in Figure 4.5. All
2-cell embeddings of K6 on the Klein bottle can be easily generated by a sim-
ple program that ranges through all 2-cell embeddings of K6 on surfaces: for
each vertex v of K6, the program generates all cyclic permutations of the other
vertices (corresponding to the order in which the vertices appear around v) and
chooses which edges alter the orientation. Each such pair of cyclic permuta-
tions and alterations of orientations determines uniquely both the embedding
and the surface. It is straightforward to compute the genus of the surface and
test whether the constructed embedding is not isomorphic to one of the pre-
viously found embeddings. The source code of the program can be found at
http://kam.mff.cuni.cz/~bernard/klein.

4.2.5 Expansions of 2-cell embeddings of K6

In this subsection, we focus on embeddings of 6-critical graphs that can be reduced
to a 2-cell embedding of K6. All such 6-critical graphs can easily be generated,
using the expansion operation and Lemma 4.6, by the following procedure:

G_1, G_2, G_3, G_4, G_5, G_6, G_7 :=

non-isomorphic embeddings of K_6 on the Klein bottle

k := 7

i := 1

while i <= k do

for all vertices w of G_i do

for all partitions of N(w) into W_1 and W_2 do

H_0 := G[w,W_1,W_2]

for all H obtained from H_0 by pasting

minimal graphs into its faces do

if H is not isomorphic to any of G_1, ..., G_k then

k := k + 1; G_k := H

endfor

endfor

endfor

i := i + 1

done { while }

output G_1, ..., G_k

The source code of the program implementing the above procedure can be found
at http://kam.mff.cuni.cz/~bernard/klein. The program eventually termi-
nates outputting 11 embeddings of 6-critical graphs on the Klein bottle, which are
depicted in Figure 4.6, in addition to the seven 2-cell embeddings of K6. Hence,
Proposition 4.5 and Lemma 4.6 now yield:
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Figure 4.6: The list of 11 non-isomorphic embeddings of 6-critical graphs on the
Klein bottle that are distinct from K6. The graphs are drawn in the plane with
two cross-caps.
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Figure 4.7: The unique embedding of K6 in the projective plane and its two
possible expansions.

Lemma 4.9. Let G be an embedding of a 6-critical graph on the Klein bottle that
is distinct from K6. If G can sequentially be reduced to a 2-cell embedding of K6

on the Klein bottle, then G is isomorphic to one of the eleven embeddings depicted
in Figure 4.6.

4.2.6 Expansions of non-2-cell embedding of K6

As we have already analyzed embeddings of 6-critical graphs that can be reduced
to a 2-cell embedding of K6 on the Klein bottle, it remains to analyze 6-critical
graphs that can be reduced to a non-2-cell embedding of K6. We eventually show
that all such embeddings are isomorphic to one of those depicted in Figure 4.6.

Lemma 4.10. Let G be a 6-critical graph embedded on the Klein bottle. If G can
be reduced to a non-2-cell embedding of K6, then G is isomorphic to one of the
embeddings depicted in Figure 4.6.

Proof. Let G be a 6-critical graph on the Klein bottle with the smallest order that
can be reduced to a non-2-cell embedding of K6 and that is not isomorphic to any
of the embeddings in Figure 4.6. Observe that the choice of G implies that any
possible reduction of G yields a non-2-cell embedding of K6 on the Klein bottle
(otherwise, Lemma 4.9 yields that the reduced graph is a smaller graph missing
in Figure 4.6 which contradicts our choice of G).

Let H be the unique embedding of K6 in the projective plane and w a vertex
of H. By Proposition 4.5, G contains H[w,W1,W2] for some partition of the
neighborhood of w into non-empty sets W1 and W2. By symmetry, |W1| = 1 or
|W1| = 2. We first analyze the case that |W1| = 1, i.e., G contains the embedding
drawn in the middle of Figure 4.7 as a subgraph. The face which is not 2-cell is
drawn using the gray color.

Let G15 be the subgraph of G contained inside the cycle C15 = ww′w′′w1w5 and
G12 the subgraph contained inside the cycle C12 = ww′w′′w1w2. By Lemma 4.6,
G12 is either the cycle C12 with zero, one or two chords or a 5-wheel bounded
the cycle C12. The interiors of the remaining 2-cell faces of H[w,W1,W2] must
be empty (since they are triangles).
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Assume that G12 6= C12. The graph G without the interior of the cycle C12 is
5-colorable since G is 6-critical. Observe that the vertices w and w1 must get the
same color in any such 5-coloring (since adding an edge ww1 to G would form
a clique of order six). However, it is always possible to permute the colors of
the vertices of G15 preserving the colors of w, w1 and w5 in such a way that the
5-coloring can be extended to G12. This contradicts our assumption that G is
6-chromatic. Hence, G12 = C12.

Since G is 6-critical, the graph G15 is 5-colorable. Moreover, the vertices w and
w1 receive distinct colors in every 5-coloring of G15: if the vertices w and w1 have
the same color, the 5-coloring of G0 can be extended to the whole graph G.

Let G′ be the graph obtained from G15 by identifying the vertices w and w1. Since
G15 can be drawn in the projective plane with the cycle C15 bounding a face, G′

can also be drawn in the projective plane. As no 5-coloring assigns the vertices w
and w1 the same color, G′ contains K6 as a subgraph. On the other hand, since
G is 6-critical, G does not contain K6 as a subgraph and thus the subgraph of G′

isomorphic to K6 contains the vertex obtained by the identification of w and w1.
In addition, G′ does not contain any edges except for the edges of the complete
graph and the path ww5w1 (removing any additional edge from G would yield a
graph that is also not 5-colorable contrary to our assumption that G is 6-critical).
We conclude that G15 is comprised of

1. the path ww5w1, a complete graph on a 5-vertex set X such that {w′, w′′} ⊂
X and w5 6∈ X, and such that N(w) and N(w1) partition X, or

2. the path ww5w1, a complete graph on a 5-vertex set X, {w′, w′′, w5} ⊂ X,
such that N(w) \ {w5} and N(w1) \ {w5} partition X \ {w5}.

In the former case, the graph G is isomorphic to the first or the second embedding
on the first line in Figure 4.6; in the latter case, G is isomorphic to the third or
the fourth embedding on the first line in the figure. This finishes the analysis of
the case that |W1| = 1.

We now assume that |W1| = 2, i.e., G[w,W1,W2] is the graph depicted in the
right part of Figure 4.7. We can also assume that w is not adjacent to w2 in G
since otherwise we could choose W1 = {w1} which would bring us to the previous
case. Similarly, the vertices w, w1 and w5 do not form a triangular face of G.
Let C15 be the cycle ww′w′′w1w5, C23 the cycle ww′w′′w2w3, G15 the subgraph
of G inside the cycle C15, and G23 the subgraph inside the cycle C23. As in the
previous case, G23 is either the cycle C23 with zero, one or two chords or a 5-wheel
bounded by C23.

It is straightforward (but tedious) to check that any coloring c of G15 with five
colors extends to a coloring of G unless:

• the vertices w and w′′ are assigned the same color in c, or

• all the five vertices w, w′, w′′, w1 and w5 are assigned mutually distinct
colors and G contains edges w3w

′ and w3w
′′ (see the embedding in the left

part of Figure 4.8).
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Figure 4.8: The embeddings obtained in the analysis in the proof of Lemma 4.10.

The reader is asked to verify the details him-/her-/itself.

We first show that there is a coloring of G15 of the latter type. Let G′ be the graph
obtained from G15 by adding the edge ww′′. Assume that G′ contains a complete
graph of order six as a subgraph. If G23 contains an inner edge e, consider a
5-coloring of G\ e which exists since G is 6-critical. The coloring must assign the
vertices w and w′′ the same color (since otherwise, c restricted to G15 would also
be a proper coloring of G′). Consequently, none of the vertices wi, 1 ≤ i ≤ 5,
can be assigned the common color of w and w′′ which is impossible since the
vertices wi, 1 ≤ i ≤ 5, form a clique. We conclude (under the assumption that G′

contains K6 as a subgraph) that G23 is formed by the cycle C23 only. As in the
previous case, we can now establish that G′ is formed by a subgraph isomorphic
to K6 and the path ww5w1w

′′ (which need not to be disjoint); in particular, the
vertex w′ is contained in the subgraph isomorphic to K6. It is now easy to verify
that the embedding of G must be isomorphic to the first or the last embedding
in the first line in Figure 4.6.

Since G′ does not contain K6 as a subgraph, there is a coloring of G15 with
five colors which assigns the vertices w and w′′ distinct colors. Since G is not
5-colorable, G15 has a coloring assigning all the vertices w, w′, w′′, w1 and w5

distinct colors and G must be of the type depicted in the left part of Figure 4.8.
Since the vertices w and w2 are not adjacent in G and the degree of w4 is five,
we can consider the graph |G|w4ww2|; let G0 be this graph. By the choice of G,
G0 is a non-2-cell embedding of K6 in the projective plane and Proposition 4.4
implies that G0 contains the vertex w0 obtained by contracting the path ww4w2

in G.

If G0 does not contain the vertex w3, consider a coloring of G15 assigning the
vertices w, w′, w′′, w1 and w5 five distinct colors. This coloring restricted to G0

is a proper coloring of G0 = K6 with five colors since G0 can contain only the
edges w0w

′′ and w0w1 in addition to those contained in G15 (viewing the vertices
w and w0 to be the same vertex). Hence, G0 contains the vertex w3. Since the
only neighbors of w3 in G|w4ww2 are the vertices w0, w′, w′′, w1 and w5, the
vertex set of G0 must be {w0, w

′, w′′, w1, w5, w3}. In particular, the vertex w5

is adjacent to w′ and w′′ in G. A symmetric argument applied to |G|w2w
′′w4|

implies that the vertex w1 is adjacent to w′ and w′′ in G. This brings us to the
embedding depicted in the right part of Figure 4.8, which is isomorphic to the
third embedding on the second line in Figure 4.6.
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4.2.7 Wrapping together

We now wrap the results obtained in the previous subsections. The discussion in
Subsection 4.2.4 and Lemmas 4.9 and 4.10 yield Theorem 4.1.

Immediate corollaries of Theorem 4.1 are:

Corollary 4.11. Let G be a graph that can be embedded on the Klein bottle. G
is 5-colorable unless it contains one of the nine graphs depicted in Figure 4.2 as
a subgraph.

Corollary 4.12. Let G be a graph embedded on the Klein bottle. G is 5-colorable
unless it contains a subgraph with embedding isomorphic to one of the 19 embed-
dings depicted in Figures 4.5, 4.6 and 4.7.

Eppstein [14, 15] showed that testing the existence of a subgraph isomorphic to
a fixed graph H of a graph embedded on a fixed surface can be solved in linear
time. As we have found the explicit list of 6-critical graphs on the Klein bottle,
we also obtain the following corollary:

Corollary 4.13. There is an explicit linear-time algorithm for testing whether a
graph embedded on the Klein bottle is 5-colorable.
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4.3 6-critical graphs with few crossings

This section is based on paper [17].

4.3.1 Introduction

This section is devoted to showing that K6 is the only 6-critical graph with
crossing number at most four.

Theorem 4.14. The only 6-critical graph with crossing number at most four is
K6.

It is strengthening a result of Oporowski and Zaho [37] which is claiming that K6

is the only 6-critical graph with at most three crossings. They also conjectured
that K6 is the unique 6-critical graph even for at most five crossings. We disprove
the conjecture by exhibiting a 6-critical graph different from K6 with crossing
number five.

As a first step towards proving Theorem 4.14 we show that K6 is the only 6-critical
graph which may become planar after removing three of its edges.

Theorem 4.15. Let G be a 6-critical graph and let F be a set of its three edges.
If G− F is planar then G is K6.

The proof of Theorem 4.15 is interesting as it is not complicated yet it uses a
variety of basic graph coloring techniques and it uses Theorem 4.1.

A graph contains K6 as a subgraph if and only if it has a clique of size 6. Hence
it is possible to rephrase Theorem 4.14 as a claim that a graph G with crossing
number at most two is 5-colorable if and only if ω(G) ≤ 5. Analogously, it is also
possible to rephrase Theorem 4.15.

4.3.2 Drawings with crossings

Recall that a drawing of G is optimal if it minimizes the number of crossings.
Note that two edges may intersect several times, in either endvertices or crossings.
However, thanks to the two following lemmas, we will only consider nice drawings,
i.e. drawings such that two edges intersect at most once.

Lemma 4.16. Every graph with crossing number k has a nice drawing with at
most k crossings.

Proof. Let G be a graph with crossing number k. Consider an optimal drawing of
G that minimizes the number of crossings between edges with a common vertex.
Suppose, by contradiction, that two edges e1 = u1v1 and e2 = u2v2 intersect at
least twice. Let a and b be two points in the intersection of e1 and e2. Without
loss of generality we may assume that u1, u2, v1, and v2 are in the exterior of
the closed curve C which is the union of the (a, b)-portion P1 on u1v1 and the
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(a, b)-portion P2 on u2v2. We may also assume that P1 contains at least as many
crossings as P2.

Then one can redraw u1v1 along the (u1, a)-portion of e1, P2, and the (b, v1)-
portion of e1 slightly in the exterior of C so that e1 and e2 do not cross anymore.
Doing so, all the crossings of P1 including a and b (if they were crossings) disap-
pear while a crossing is created per crossings of P2 distinct from a and b. Since
one of {a, b} must be a crossing (there are no parallel arcs), we obtain a drawing
with one crossing less, a contradiction.

Similarly, one can show the following lemma.

Lemma 4.17. Every graph with a set F of edges whose deletion results in a
planar graph has a nice drawing in which each crossing contains at least one edge
from F .

In this section, we consider only nice drawings. Thus a crossing is uniquely defined
by the pair of edges it belongs to. Henceforth, we will often confound a crossing
with this set of two edges.

A face of a drawing G̃ is a connected component of the space obtained by deleting
Ṽ ∪ Ẽ from the plane. We let F (G̃) (or simply F ) be the set of faces of G̃. We
say that a vertex v or a portion of an edge is incident to f ∈ F̃ if v is contained
in the closure of f . The boundary of f , denoted by bd(f) consists of the vertices
and maximum (with respect to inclusion) portions of edges incident to it. An
embedding of a graph is the set of boundaries of the faces of some drawing of G
in the plane.

Lemma 4.18. Up to a permutation of the vertices, there is only one embedding
of K6 using exactly three crossings. (See Figure 4.9.)

Proof. Let A be an embedding of K6 using three crossings. Let us show that it is
unique. First we observe that every edge is crossed at most once. Otherwise, there
will be two edges whose removal leaves the graph planar which is a contradiction
to Proposition 2.1. As every cluster of a crossing contains four vertices, there
must be a vertex v contained in two of them. Note that v cannot be in all three
clusters since K6 − v (which is isomorphic to K5) is not planar. Let e1 = vx and
e2 = vy be the two crossed edges adjacent to v and e3 one of the edges of the
crossing whose cluster does not contain v. The graph K6 \ {e1, e2, e3} is a planar
triangulation T where deg(v) = 3.

We denote a, b, c the neighbours of v in T . They must induce a triangle. Without
loss of generality, ab and bc are the edges crossed by e1 and e2, respectively.

As T is a triangulation abx and bcy form triangles. Moreover, xby is also a triangle
as x and y are consecutive neighbours around b. The last two edges, which are
not discussed yet, are xc and ya. They must cross inside bxyc (one of them is
e3). Hence A is unique.

Lemma 4.19. A drawing of K5 with all vertices incident to the same face requires
5 crossings.
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Figure 4.9: Drawing of K6 with three crossings.

Proof. Let us number the vertices of K5 v1, v2, v3, v4, v5 in the clockwise order
around the boundary of the face f incident to them. Then free to redraw the
edges v1v2, v2v3, v3v4, v4v5 and v5v1, we may assume that the boundary is the cycle
v1v2v3v4v5 and that f is its interior. Now both v1v3 and v2v4 are in the exterior
of C and thus must cross. Similarly, {v2v4, v3v5}, {v3v5, v4v1}, {v4v1, v5v2} and
{v5v2, v1v3} are crossings.

Lemma 4.20. A drawing of K2,3 such that vertices of each part are in a common
face requires at least one crossing.

Proof. Let ({u1, u2}, {v1, v2, v3}) be the bipartition of K2,3. Suppose by contra-
diction that K2,3 has a drawing such that each part of the bipartition is in a
common face. Then adding a vertex u3 is the face incident to the vertices v1, v2

and v3 and connecting u3 to those vertices by new edges yields a drawing of K3,3

with no crossing which contradicts the fact that K3,3 is not planar.

4.3.3 Properties of 6-critical graphs

A stable crossing cover of a drawing of a graph is a set of vertices that is both
stable and a crossing cover.

Lemma 4.21. Every graph with a stable crossing cover is 5-colourable.

Proof. Let G be a graph having a stable crossing cover W . Use the Four Colour
Theorem on G −W and extend the colouring of G −W to G by using a fifth
colour on W .

LetG be a graph and u, v be vertices ofG. The operation of identification of u and
v in G results in a graph denoted by G/{u, v}, which is obtained from G−{u, v}
by adding a new vertex w and the set of edges {wz | uz or vz is an edge of G}.
Lemma 4.22. Let G be a graph and v be a degree five vertex of G. Let u and w
be two non-adjacent neighbours of v. If (G− v)/{u,w} is 5-colourable, then so is
G.

Proof. A proper 5-colouring of (G−v)/{u,w} corresponds to a proper 5-colouring
of G−v such that u and w are coloured by the same colour. So it can be extended
to a proper 5-colouring of G by assigning a colour to v.

43



Let G be a graph embedded in the plane. A cycle is separating if it has a vertex
in its interior and a vertex in its exterior. A cycle C is non-crossed if all its edges
are non-crossed. It is regular if any cluster of a crossing containing an edge of C
contains at least three vertices of C.

Lemma 4.23. In every drawing in the plane of a 6-critical graph there is no
separating regular triangle.

Proof. Let G be a 6-critical graph drawn in the plane. Suppose, by way of
contradiction, that there is a regular triangle C. Let G1 be the graph induced by
the vertices in C and inside C and let G2 be a graph induced by the vertices in C
and outside C. Since C is separating, both G1 and G2 have fewer vertices than G.
Hence, by 6-criticality of G, they are 5-colourings of those graphs. In addition,
in these colourings of G1 and G2, the colours of the vertices of C are distinct. So,
free to permute the colours, one can assume that the two 5-colourings of G1 and
G2 agree on C. Hence their union yields a 5-colouring of G.

Lemma 4.24. Let G be a 6-critical graph distinct from K6. In every nice drawing
of G, there is no separating triangle such that

• at most one of its edges is crossed, and

• there is at most one crossing in its interior.

Proof. Suppose, by way of contradiction, that such a cycle C = x1x2x3 exists.
Then by Lemma 4.23, one of its edges, say x2x3, is crossed. Let uv be the edge
crossing it with u inside C and v outside. By Lemma 4.23, C is not regular, so
u 6= x1. Moreover, u /∈ {x2, x3} since the drawing is nice.

Let G1 be the graph induced by C and the vertices outside C. Then G1 admits
a 5-colouring c1 since G is 6-critical.

Let G2 be the graph obtained from the graph induced by C and the vertices inside
C by adding the edges ux1, ux2 and ux3 if they do not exist. Observe that G2 has
a planar drawing with at most 2 crossings. Indeed the edge ux1 may be drawn
along uv and then a path in the outside of C and the edges ux2 and ux3 may be
drawn along the edges of the crossing {x2x3, uv}. Thus G2 admits a 5-colouring
c2.

In both colourings, the colours of the vertices of C are distinct. So, free to
permute the colours, we may assume that c1 and c2 agree on C. One can also
choose for u a colour of {1, . . . , 5} \ {c2(x1), c2(x2), c2(x3)} so that c2(u) 6= c1(v).
Then the union of c1 and c2 is a 5-colouring of G.

Lemma 4.25. Let G be a 6-critical graph. In every drawing of G in the plane,
there is no non-crossed 4-cycle C such that

• C has a chord in its exterior,

• C and its interior is a plane graph, and

• the interior of C contains at least one vertex.
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Proof. Suppose, by way of contradiction, that there is a 4-cycle C = tuvw satis-
fying the properties above with vt a chord in its exterior. Consider the graph G1,
which is obtained from G by removing the vertices inside C. Since G is 6-critical,
G1 admits a 5-colouring c1 in {1, 2, 3, 4, 5}. Without loss of generality, we may
assume that c1(v) = 5. Hence {c1(t), c1(u), c1(w)} ⊂ {1, 2, 3, 4}.
Now consider the graph G2 which is obtained from G by removing the vertices
outside C. If c1(u) = c1(w), letH be the graph obtained fromG2−v by identifying
u and w. If c1(u) 6= c1(w), let H be the graph obtained from G2 − v by adding
the edge uw if it does not already exist. In both cases H is a planar graph.
Hence H admits a 4-colouring c2 in {1, 2, 3, 4}. Moreover, by construction of H,
c2(u) = c2(w) if and only if c1(u) = c1(w). Hence free to permute the colours, we
may assume that c1 and c2 agree on {t, u, w}.
Hence the union of c1 and c2 is a 5-colouring of G.

4.3.4 6-critical graph of crossing number 5

We prove Theorem 4.26 by exhibiting a drawing of a 6-critical graph G using 5
crossings which is not K6.

Theorem 4.26. The graph G depicted in Figure 4.10 is 6-critical.

u

v

w

a
b

c d

Figure 4.10: A 6-critical graph of crossing number 5.

Proof. We show by contradiction that G is not 5-colourable. We refer the reader
to Figure 4.10 for names of vertices. Assume that % is a 5-colouring of G. As
vertices u, v and w form a triangle, they must get distinct colours. Without
loss of generality, assume that %(u) = 1, %(v) = 2 and %(w) = 3. The vertices
a and b are adjacent to each other and to all the vertices of the triangle uvw,
hence {%(a), %(b)} = {4, 5}. Thus %(c) = 3 as c is adjacent to a, b, u and v. By
symmetry we obtain that %(d) is also 3, which is a contradiction since cd is an
edge.

It can be easily checked that every proper subgraph of G is 5-colourable. So G is
6-critical.
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|V | = 8, |E| = 23 |V | = 9, |E| = 26

|V | = 10, |E| = 28 |V | = 10, |E| = 32

|V | = 10, |E| = 28 |V | = 10, |E| = 28

H1

H2

K6

v

u

Figure 4.11: The list of 6-critical graphs embeddable on the Klein bottle. The
first three of them are embeddable on torus as well.

4.3.5 Colouring graphs whose crossings are covered by
few edges

The main topic of this subsection is Theorem 4.15. In the proof of Theorem 4.15,
we use the list of all 6-critical graphs embeddable on the torus, which was obtained
by Thomassen [43], and the list of all 6-critical graphs embeddable on the Klein
bottle, which was the topic of previous section.

Lemma 4.27. If three edges are deleted from a 6-critical graph embeddable on
the torus other than K6, then the resulting graph is nonplanar.

Proof. Recall thet all 6-critical graphs embeddable on the torus are depicted in
Figure 4.1 For all of them except K6, we have |E| > 3|V | − 3. Thus the graphs
are not planar after removing three edges according to Proposition 2.1

Lemma 4.28. If three edges are deleted from a 6-critical graph embeddable on
the Klein bottle other than K6, then the resulting graph is nonplanar.

Proof. We know the complete list of graphs which must be checked due to Theo-
rem 4.1, see Figure 4.11. For all of those graphs except K6, H1 and H2, we have
|E| > 3|V | − 3. Thus those graphs are not planar after removing three edges
according to Proposition 2.1.

Now we need to deal with the last two graphs H1 and H2. Let us first examine
H1. It contains two edge disjoint copies of K6 without one edge. Each of these
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copies needs at least two edges to be removed by Proposition 2.1, so H1 needs at
least four edges to be removed.

Let us now examine H2. Let F be a set of edges such that H2 \ F is planar. Let
us denote by u and v the two vertices of the only 2-cut of H2, see Figure 4.11.
Observe that H2−{u, v} is a disjoint union of K5 and K4. Since K5 is not planar,
one edge e of this K5 is in F . But there is still a (u, v)-path P in K5 \ e. Then
the union of the graph induced by u, v, the vertices of the K4 and the path P is
a subdivision of K6. Thus, by Proposition 2.1 for K6, at least three of its edges
must be in F . Thus |F | ≥ 4.

To make the basic part of the proof of Theorem 4.15 simpler, we first prove the
following Theorem, which is a generalization of claim that there is no 6-critical
graph which is planar after removing at most two of its edges.

Theorem 4.29. Let G be a graph. If there is a set F of at most 2k edges such
that G \ F is planar then G is (4 + k)-colourable.

Proof. We procced by induction on k. The result holds when k = 0 by the Four
Colour Theorem.

Suppose that the result is true for k. Let G = (V,E) be a graph with a set F of
at most 2k + 2 edges such that G \ F is planar. Without loss of generality, we
may assume that F is minimal, i.e. for any proper subset F ′ ⊂ F , G \ F ′ is not
planar.

Consider a planar drawing of G \ F . It yields a drawing of G such that each
crossing contains an edge of F .

Suppose that |F | ≤ 2k + 1. Let e = uv be an edge of F . By the induction
hypothesis, G − v is (4 + k)-colourable because F \ e is a set of 2k edges whose
removal leaves G− v planar. Hence χ(G) ≤ χ(G− v) + 1 ≤ 4 + k + 1.

So we may assume that |F | = 2k + 2.

If two edges e and f of F have a common vertex v, then G−v is (4+k)-colourable
because F \ {e, f} is a set of 2k edges whose removal leaves G − v planar. So
χ(G) ≤ χ(G − v) + 1 ≤ 4 + k + 1. So we may assume that the edges of F are
pairwise non-adjacent.

Let e = {u1, u2} and f = {v1, v2} be two edges in F . Then the endvertices of
these two edges induce a K4. Suppose for contradiction that u1 and v1 are not
adjacent. Then G−{u1, v1} is (4 + k)-colourable because F \ {e, f} is a set of 2k
edges whose removal leaves G − {u1, v1} planar and u1 and v1 can get the same
colour. So χ(G) ≤ χ(G − {u1, v1}) + 1 ≤ 4 + k + 1. Hence X = {u1, u2, v1, v2}
induces a K4.

We further distinguish two possible cases:

k = 0: Let the edges of F be e = {u1, u2} and f = {v1, v2} and letX = {u1, u2, v1, v2}.
Let C be the 4-cycle induced by X in the plane graph G\{e, f}. Note that
C is a separating cycle, otherwise G \ e would be planar. We cut G along
C and obtain two smaller graphs G1 and G2, where both of them contain

47



X. We 5-colour them by induction. A colouring of G can be then obtained
from the 5-colourings of G1 and G2 by permuting colours on X so that the
these two colourings agree on V (C).

k ≥ 1: Note that union of all endvertices of edges from F induce a complete graph
K2|F |. A K2|F | must be planar after removing at most |F | edges. Hence the
following Euler’s formula holds:

|E| ≤ 3|V | − 6 + 2k + 2(
4k + 4

2

)
≤ 3(4k + 4) + 2k − 4

8k2 − 2 ≤ 0

Hence this case is not possible.

And now comes the proof of Theorem 4.15.

Proof. Let G be a 6-critical graph distinct from K6 and let F be a set of at most
three edges. Assume for a contradiction that G \ F is planar.

Let us consider a nice drawing of G. By Lemma 4.21, G has no stable crossing
cover.

If |F | ≤ 2, then Theorem 4.29 contradicts the fact that G is not 5-colourable.
Hence we assume that F = {e1, e2, e3}. Set ei = uivi for i ∈ {1, 2, 3}.
Claim 1. The three edges of F are pairwise vertex-disjoint.

Proof. If there is a vertex v shared by all three edges, then {v} is a stable crossing
cover, a contradiction. Hence a vertex u is shared by at most two edges of F .
Let s be the number of degree two vertices in the graph induced by F .

We now derive a contradiction for each value of s > 0. So s = 0, which proves
the claim.

s = 1: Without loss of generality, u = u1 = u2. None of {u, u3} and {u, v3} is
a stable crossing cover so uu3 and uv3 are edges. We redraw the edge e3

along the path u3uv3 such that it crosses only edges incident to u. See
Figure 4.12(A). Then u is a stable crossing cover, a contradiction.

s = 2: Without loss of generality, u = u1 = u2 and v = v2 = v3. Then F induces
a path. None of {v1, v} and {u, u3} is a stable crossing cover, so v1v and
uu3 are edges. We add a handle between vertices u and v. Then we draw
edges of F using the handle, see Figure 4.12(B). Hence G can be embedded
on the torus, which is a contradiction to Lemma 4.27.

s = 3: Without loss of generality, u = u1 = u2 is one of the shared vertices. Let v
and w be the other two. Note that F induces a triangle. By Proposition 2.1,

48



we have |E(G)| ≤ 3|V (G)| − 3. Hence there must be at least 6 vertices of
degree five as the minimum degree of G is five.

Let x be a degree five vertex different from u, v and w. By minimality
of G, there exists a 5-colouring % of G − x. Free to permute the colours,
we may assume that %(u) = 1, %(v) = 2 and %(w) = 3. Moreover, the
neighbours of x are coloured all differently. We denote by y and z the
neighbours of x, which are coloured 4 and 5 respectively. We assume that
G is embedded in the plane such that all crossings are covered by F . There
are two consecutive neighbours of x in the clockwise order such that they
have colours in {1, 2, 3}. We denote these vertices by a and b. Without loss
of generality let the clockwise order around x be z, y, a, b and %(a) = 1 and
%(b) = 2. See Figure 4.12(C).

Let A be the connected component of a in the graph induced by the vertices
coloured 1 and 5. If A does not contain z, we can switch colours on it. Then
x can be coloured by 1 and we have a contradiction. Note that the colour
switch is correct even if u is in A because the new colour of u will be 5
which different from 2 and 3. Thus there must be a path between a and z
of vertices coloured 1 and 5. A similar argument shows that there is a path
between b and y of vertices coloured 2 and 4. These paths must be disjoint
and they are not using edges of F . But they cannot be drawn in the plane
without crossings, a contradiction.

Claim 2. For any distinct integers i, j ∈ {1, 2, 3}, an endvertex of ei is adjacent
to at most one endvertex of ej.

Proof. Suppose not. Then without loss of generality, we may assume that u2 is
adjacent to u1 and v1. First we redraw the edge e1 along the path u1u2v1. Then
every edge crossed by e1, which is not e3, is incident to e2. Since {u2, u3} and
{u2, v3} are not stable crossing covers, u2u3 and u2v3 are edges. We redraw e3

along the path u3u2v3. Then, again, every edge crossed by e3, which is not e1,
is incident to e2. Moreover, the edges e1 and e3 cross otherwise {u2} would be a
stable crossing cover. See Figure 4.12(D).

We distinguish several cases according to the number p of neighbours of v2 among
u1, v1, u3 and v3.

p = 0: The vertex v2 and a pair of two non-adjacent vertices among u1, v1, u3 and
v3 would form a stable crossing cover. Hence {u1, v1, u3, v3} induces a K4.
See Figure 4.12(E). By Lemma 4.23, there is no vertex inside each of the
triangles u2u1u3, u2u3v1, u2v1v3 and u2u1v3. Hence all the vertices are inside
the 4-cycle u1u3v1v3. It includes the vertex v2. We redraw e1 such that it
is crossing only e3 and u2v3. Then {v3, v2} is a stable crossing cover, a
contradiction. See Figure 4.12(F).

p = 1: Without loss of generality we may assume that the neighbour of v2 is u1.
None of {v2, v1, u3} and {v2, v1, v3} is a stable crossing cover so u3v1 and v1v3

are edges. By Lemma 4.23, there is no vertex inside each of the triangles
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Figure 4.12: The three black edges are covering all the crossings.
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u2u3v1 and u2v1v3. See Figure 4.12(G). Thus the edge e3 could be drawn
inside these triangles and the set F can be changed to F ′ = {e1, e2, u2v1}.
Two edges of F ′ share an endvertex which is a contradiction to Claim 1.

p ∈ {2, 3}: We further distinguish two sub-cases. Either two neighbours of v2

in {u1, v1, u3, v3} are joined by an edge of F or not.

In the second case, without loss of generality, we may assume that the
vertices adjacent to v2 are u1 and v3. Now by Lemma 4.25 there is no vertex
inside the 4-cycle v2u1u2v3. Hence e2 can be drawn inside this cycle. See
Figure 4.12(H). Since the removal of {e1, e3} does not make G planar, v1v3

is inside v2u1u2v3. Hence the set F ′ = {e1, e3, u1v3} contradicts Claim 1.

In the first case, we may assume Without loss of generality, that v2 is
adjacent to u1 and v1. We first redraw e1 along the path u1v2v1. Now all
the edges crossing e1 are incident to v2. Thus {v2, u3} or {v2, v3} form a
stable crossing cover. See Figure 4.12(I).

p = 4: See Figure 4.12(J). We repeatedly use Lemma 4.25 which implies that the
4-cycles u2u3v2u1, u2u3v2v1, u2v1v2v3 and u2v3v2u1 are not separating. This
means that the graph contains only six vertices. This is a contradiction
because the unique 6-critical graph on six vertices is K6.

Since {u1, u2, u3} is not a stable crossing cover, it must induce at least one edge,
say u1u2. Then Claim 2 implies that u1v2 and v1u2 are not edges. Now {v1, u2, u3}
and {v1, u2, v3} are not stable crossing covers. Thus, by symmetry, we may assume
that u2u3 and v1v3 are edges. {u1, v2, u3} is not a stable crossing cover so u1u3 is
an edge; {v1, v2, u3} is not a stable crossing cover so v1v2 is an edge; {u1, v2, v3}
is not a stable crossing cover so v2v3 is an edge. Hence there are two triangles
u1u2u3 and v1v2v3, which are not separating by Lemma 4.23.

Without loss of generality, two possibilities occur. Either the edges of F do
not cross each other or one pair of them is crossing. If they do not cross (Fig-
ure 4.13(A)), G can be embedded on the torus by adding a handle into the trian-
gles and drawing the edges of F on the handle, which contradicts Lemma 4.27.

u1

v1

u2

v2

u3

v3

(A)

u1

v2

u2

v1

u3

v3

(B)

u1

v2

u2

v1

u3

v3

(C)

Figure 4.13: The last case of Theorem 4.15.
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If they cross (Figure 4.13(B)), it is possible to draw G on the Klein bottle, see
Figure 4.13(C), which contradicts Lemma 4.28.

4.3.6 5-colouring graphs with 4 crossings

In this subsection we prove the Theorem 4.14. We repeat it for reades conveinence.

Theorem. The unique 6-critical graph with crossing number at most four is K6.

Proof. Suppose, by way of contradiction, that G = (V,E) is a 6-critical graph
with crossing number at most 4 distinct from K6. Moreover, one may assume
that G is such a critical graph with the minimum number of vertices and with
the maximum number of edges on |V (G)| vertices.

Moreover, assume that we have a nice optimal drawing of G. By Theorem 4.15,
there are four crossings and every edge is crossed at most once.

Since G is 6-critical, every vertex has degree at least 5. By Proposition 2.1, we
have |E| ≤ 3|V | − 6 + cr(G) ≤ 3|V | − 2. Hence there are at least four vertices of
degree 5.

Let v be an arbitrary degree five vertex and vi, 1 ≤ i ≤ 5 be the neighbours of
v in the counterclockwise order around v. By criticality of G, the graph G − v
admits a 5-colouring φ. Necessarily, all the vi are coloured differently, otherwise
φ could be extended to v.

For any i ≤ j, there is a path, denoted by vi − vj, from vi to vj such that all
its vertices are coloured in φ(vi) or φ(vj). Otherwise, vj is not in the connected
component A of vi in the graph induced by the vertices coloured φ(vi) and φ(vj).
Hence by exchanging the colours φ(vi) and φ(vj) on A, we obtain a 5-colouring φ′

of G− v such that no neighbour of v is coloured φ(vi). Hence by assigning φ(vi)
to v we obtain a 5-colouring of G, a contradiction.

Let q be the number of crossed edges incident to v.

Claim 3. q 6= 0.

Proof. The union of the vi−vj, for i 6= j, is a subdivision of K5 in G−v. If q = 0,
then the vi, 1 ≤ i ≤ 5, are in one face after the removal of v. By Lemma 4.19,
such a subdivision requires 5 crossings which contradicts the assumption of at
most four crossings.

Claim 4. q 6= 1.

Proof. Suppose to the opposite that q = 1. Without loss of generality, we may
assume that the crossed edge is vv1.

The path v2 − v4 must cross the two paths v1 − v3 and v3 − v5. Since every edge
is crossed at most once, then v2v4 is not an edge.

Let G′ be the graph obtained from G−v by identifying v2 and v4 into a new vertex
v′. By Lemma 4.22, G′ is not 5-colourable. Now G′ has at most three crossings
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because we removed the crossed edge vv1 together with v. So, by minimality of
G, the graph G′ contains a subgraph H isomorphic to K6. Moreover, H must
contain v′ since G contains no K6. Since G′ has only three crossings we can
use Lemma 4.18. Let u1 and u2 be vertices of H which form a triangular face
together with v′ and let u3, u4 and u5 be the vertices forming the other triangular
face. Without loss of generality, we may assume that u3u4u5 is inside v′u1u2 as
in Figure 4.14(A).

v′
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u3 u4
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a b

(C)

v
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u2

u3
u4

u5

x

y
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(D)

v

u1

u2

u3
u4

u5

x

y

a

b

(E)

Figure 4.14: K6 when identifying two neighbours of v.

Let us now consider the situation in G. Instead of discussing many rotations of K6

we rather fix K6 and try to investigate possible placings of v and its neighbours.
We denote the neighbours of v which were identified by x and y (i.e. {v2, v4} =
{x, y}). Let a and b be the two other neighbours of v such that va and vb are not
crossed ({a, b} = {v3, v5}). Moreover, we assume that in the counterclockwise
order around v, the sequence is x, a, y, b. Note that the vertex v1 may be inserted
anywhere in the sequence.

One of the identified vertices, say x, is adjacent to at least two vertices of
{u3, u4, u5}.

1) Assume first that x is adjacent to u3,u4 and u5. Then since G has no K6,
it is not adjacent to some vertex in {u1, u2}, say u2. Thus yu2 ∈ E.

The vertex a is either inside u2yvx or is u2. See Figure 4.14(B) and (C),
respectively. The path a − b (represented by dotted line in the figure)
necessarily uses u2. Since colours φ(a) and φ(b) alternate on a − b, this
path cannot contain x nor u3, u4 and u5. The paths a− b and avb separate
x and y and there must be paths v1 − x and v1 − y. Thus at least one of
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them must cross the path a− b. But none of the four crossings is available
for that, a contradiction.

2) Let us now assume that x is adjacent to only two vertices of {u3, u4, u5},
say u4 and u5. Then u3 is adjacent to y. (Possibly u4 and y are adjacent
too.) The path a − b must go through u4 and then continue to u1 or u2.
It cannot go through u3 or u5 since the colours on the path alternate. See
Figure 4.14(D) and (E).

The path x− y must cross a− b. Hence either x− y goes through u3y and
a − b through u4u2 or x − y goes through xu5 and a − b through u4u1. In
both cases, one of the paths v1 − x and v1 − y must cross a− b. But there
are no more crossings available.

This completes the proof of Claim 4.

Claim 5. q 6= 2.

Proof. Suppose to the opposite that q = 2.

We first prove the following assertion that will be used several times.

Assertion Let x and y be two neighbours of v. Then x and y are adjacent if one
of the following holds:

• vx and vy are not crossed;

• {x, y} is included in the cluster of some crossing.

Observe that G − v has at most two crossings. Suppose that x and y are not
adjacent. If vx and vy are not crossed, we can identify x and y along xvy without
adding any new crossing. If {x, y} is included in the cluster of some crossing, we
can identify x and y along the edges of this crossing without adding any new
crossing. Hence in both cases (G− v)/{x, y} has a planar drawing with at most
2 crossings. Then Lemma 4.22 and Theorem 4.29 yield a contradiction. This
proves the Assertion.

Assume that the crossed edges are consecutive, say vv1 and vv2. By the Asser-
tion, v3v5 is an edge. See Figure 4.15(A). If v3v5 is not crossed or crosses either
vv1 and vv2, then the cycle vv3v5 is regular, which contradicts Lemma 4.23. If
v3v5 is crossed by another edge, then the cycle vv3v5 contradicts Lemma 4.24.
Henceforth, we may assume that the two crossed edges are not consecutive, say
vv2 and vv5.

By the Assertion, v1v3, v1v4 and v3v4 are edges. If v1v3 is not crossed, then the
triangle vv1v3 is separating because v2 and v4 are on the opposite sides. This
contradicts Lemma 4.23. If v1v3 is crossed it can be redrawn along the path
v1vv3 with one crossing with vv2. Symmetrically, we assume that v1v4 is crossing
vv5. See Figure 4.15(B).

By the Assertion, {v1v2, v2v3, v4v5, v5v1} ⊂ E(G). See Figure 4.15(C).
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Figure 4.15: Two crossed edges.
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Let C = {c1c2, c3c4} and D = {d1d2, d3d4} be the two crossings not having v in
their cluster. For convenience and with a slight abuse of notation, we denote by
C (resp. D) both the crossing C (resp. D) and its cluster. For X ∈ {C,D}, let
a(X) := |X∩N(v)|. Without loss of generality, we may assume that a(C) ≤ a(D).

A vertex u is a candidate if it is not adjacent to v. There is no candidate u
common to both C and D otherwise {u, v} would be a stable crossing cover.
There are no non-adjacent candidate vertices c ∈ C and d ∈ D otherwise {v, c, d}
would be a stable crossing cover.

Assume that a(D) = 4. The vertex v1 cannot be in D because it is already adja-
cent to all the other neighbours of v by edges not in D. Thus D = {v2, v3, v4, v5}.
But then, by the Assertion, v2v5 is an edge. So N(v) ∪ {v} induces a K6, a
contradiction.
Hence a(C) ≤ a(D) ≤ 3.

Suppose now that X ∈ {C,D} does not induce a K4. Then two vertices x1 and
x2 of X are not adjacent. One can add the edge x1x2 and draw it along the edges
of the crossing such that no new crossing is created. Hence by the choice of G,
the obtained graph G∪x1x2 contains a K6. Since K6 has crossing number 3, one
of the crossings containing v in its cluster must be used. So v belongs to the K6

and hence the K6 is induced by {v} ∪ N(v). In such case edges v2v4 and v3v5

cross and hence form C or D, which is not possible since a(C) ≤ a(D) ≤ 3.

Hence both C and D induce a K4. Thus the candidates in C ∪ D induce a
complete graph. So there are at most five of them. Since C ∩ D contains no
candidate, we have a(C) + a(D) ≥ 3 and so 2 ≤ a(D) ≤ 3

Assume that a(D) = 2 and thus 1 ≤ a(C) ≤ 2. Then C (resp. D) contains a
set C ′ (resp. D′) of two candidates. All the vertices of C ′ are adjacent to all the
vertices of D′. But since both C and D contain a vertex in N(v), drawing all the
edges between these two sets requires one more crossing, a contradiction.
Hence a(D) = 3.

Thus, an edge of D has its two endvertices in N(v) and so it is v2v5, v2v4 or v3v5.
Let u be the unique candidate of D.

Assume first that v1 ∈ D. Then v1u is an edge of D. Moreover, C must be on the
paths v2 − v4 and v3 − v5. Since edges are crossed at most once D = {v1u, v2v5}.
Let w be a candidate vertex in C. Then w is outside the cycle vv2v5. But the
only neigbour of v1 outside this cycle is u which is distinct from w because the
crossings C and D have no candidate vertex in common. Thus {w, v1} is a stable
crossing cover, a contradiction to Lemma 4.21.
So v1 /∈ D.

By symmetry, we may assume that D is either {v3v5, v4u} (Figure 4.15(D)) or
{v3v5, v2u} (Figure 4.15(E)) or {v2v5, v3u} (Figure 4.15(F)). In the second and
third cases, Lemma 4.24 is contradicted by the cycle v3v4v5 and v1v2v5 respec-
tively.
Hence D = {v3v5, v4u}.
The set {v2, v4} is stable and covers the three crossings distinct from C. Hence
{v2, v4} does not intersect C, otherwise it would be a stable crossing cover. So
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C ∩ N(v) ⊂ {v1, v3, v5}. The edge v1v5 is not crossed, otherwise it could be
redrawn along the edges of the crossing {vv5, v1v4} to obtain a drawing of G with
fewer crossings. Furthermore, v1v3 and v3v5 are not in C because they are in
some other crossing. Hence a(C) ≤ 2.

Let B be the set of candidates of C. Recall that all vertices of B are adjacent
to u. Moreover, every vertex b ∈ B is adjacent to a vertex of {v2, v4} otherwise
{v2, v4, b} is a stable crossing cover. But v4 and u are separated by v3v4v5, so all
vertices of B are adjacent to v2. Now the graph induced by the edges between B
and {u, v2} is a complete bipartite graph. Moreover, its induced drawing has no
crossing and the vertices of each part are in a common face. Thus, by Lemma 4.20,
|B| ≤ 2.
So a(C) = 2.

Recall that C∩N(v) ⊂ {v1, v3, v5}. Suppose that C∩N(v) = {v1, v3}. The closed
curve formed by the path v3vv1 and the two“half-edges” connecting v1 to v3 in
C separates v2 and u. Then the vertices of B cannot be adjacent to both u and
v2, a contradiction. Similarly, we obtain a contradiction if C ∩ N(v) = {v3, v5}.
Hence we may assume that C∩N(v) = {v1, v5}. But then connecting the vertices
of B to those of {v2, v4} would require one more crossing. See Figure 4.15(G).

This completes the proof of Claim 5.

Claim 6. q 6= 3.

Proof. Suppose that q = 3.

Let C be the crossing whose cluster does not contain v. It contains no candidate
u otherwise {u, v} would be a stable crossing cover. Hence C ⊂ N(v).

Assume first that the three crossed edges incident to v are consecutive, say the
crossed edges are vv1, vv2 and vv5. By the Assertion, v3v4 is an edge. See Fig-
ure 4.16(A). Up to symmetry, the cluster of C is one of the following three sets
{v1, v2, v3, v4} or {v2, v3, v4, v5} or {v1, v2, v4, v5}.
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v
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Figure 4.16: Three consecutive crossed edges.

• C = {v1, v2, v3, v4}. Then the edges of C are not v1v4 and v2v3 because it
is impossible to draw them such that each is crossed exactly once. Hence
C = {v1v3, v2v4}. The Jordan curve formed by the path v1vv4 and the
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two “half-edges” connecting v1 to v4 in C separates {v2, v3} and v5. See
Figure 4.16(B). Moreover, it is crossed only once (on edge v1v), while two
crossings are needed, one for each of the disjoint paths v2 − v5 and v3 − v5,
a contradiction.

• C = {v2, v3, v4, v5}. Then the edges of C are not v2v3 and v4v5 because it
is impossible to draw them such that each is crossed exactly once. Hence
C = {v2v4, v3v5}. Hence by the Assertion, v2v3, v4v5 and v2v5 are edges.
The triangle vv2v3 has only one crossed edge. So, by Lemma 4.24, it is not
separating. Thus its interior is empty and the edge crossing vv2 is incident
to v3. Let u be the second endvertex of this edge. By symmetry, the interior
of vv4v5 is empty and the edge crossing vv5 is v4t for some vertex t.

If u = t = v1, then by the Assertion v1v2 and v1v5 are edges. So N(v)∪{v}
induces a K6, a contradiction. Hence without loss of generality we may
assume that u 6= v1. See Figure 4.16(C).

The interiors of the cycles vv2v3, vv3v4 and v2v3v4 contain no vertices by
Lemma 4.23. Hence v3 is a degree five vertex. Moreover, its two neighbours
u and v are not adjacent and (G − v3)/{u, v} has at most two crossings.
Then Theorem 4.29 and Lemma 4.22 yield a contradiction.

• C = {v1, v2, v4, v5}. The crossing C is neither {v1v2, v4v5} nor {v1v5, v2v4}
since it is impossible to draw so that every edge is crossed exactly once.
Hence C = {v1v4, v2v5}. By the Assertion, v2v4 ∈ E(G). Then the triangle
vv2v4 contradicts Lemma 4.24.

Suppose now that the three crossed edges incident to v are not consecutive.
Without loss of generality, we assume that these edges are vv1, vv3 and vv4.

By the Assertion, v2v5 is an edge. If v2v5 is not crossed, then vv2v5 is a separating
triangle, contradicting Lemma 4.23. So v2v5 is crossed. It could not cross vv3

nor vv4 otherwise vv2v5 would be a regular cycle contradicting Lemma 4.23.
Moreover, v2v5 cannot be in C otherwise vv2v5 would contradict Lemma 4.24.
Hence v2v5 crosses vv1.

By the Assertion, v1v2 and v1v5 are edges. Moreover they are not crossed, other-
wise they could be redrawn along the edges of the crossing {vv1, v2v5} to obtain
a drawing of G with fewer crossings. See Figure 4.17(A).

Consider the paths v2 − v4 and v3 − v5. If they cross, it is through C. Since
C ⊂ N(v), the paths v2 − v4 and v3 − v5 are actually edges. See Figure 4.17(B).
But one can redraw v2v5 along the edges of C to obtain a drawing of G with fewer
crossings, a contradiction.

Suppose now that v2−v4 and v3−v5 do not cross. By symmetry, we may assume
that v2 − v4 cross vv3. The paths v1 − v4 and v3 − v5 cross. It must be through
C so v1v4 and v3v5 are both edges. See Figure 4.17(C). By the Assertion, v1v3,
v3v4 and v4v5 are edges.

If v2v4 is also an edge, the Assertion implies that v2v3 is also an edge. Then
N(v) ∪ {v} induces a K6, a contradiction. Hence v2v4 /∈ E(G).

58



v

v1

v2

v3 v4

v5

(A)

v

v1

v2

v3 v4

v5

(B)

v

v1

v2

v3 v4

v5

(C)

v

v1

v2

v3 v4

v5

z

(D)

v

v1

v2

v3 v4

v5

z

(E)

Figure 4.17: Three non-consecutive crossed edges.

By Lemma 4.24, the cycle vv4v5 is not separating, so its interior contains no
vertex and vv4 is crossed by an edge with v5 as an endvertex. Let z be the other
endvertex of this edge. As an edge is crossed at most once, z is inside vv3v4. See
Figure 4.17(D).

Let ab be the edge which is crossing vv3. The sets {v5, a} and {v5, b} are not
stable otherwise they would be a stable crossing cover. Hence v5a and v5b are
both edges. Thus ab = v2z. See Figure 4.17(E). Now v1z is not an edge and
hence {v1, z} is a stable crossing cover, contradicting Lemma 4.21.

This completes the proof of Claim 6.

Claim 7. q 6= 4

Proof. By way of contradiction, suppose that q = 4. Then {v} is a stable crossing
cover, a contradiction.

Combining Claims 3, 4, 5, 6 and 7 yields a contradiction. This finishes the proof
of Theorem 4.14.
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Chapter 5

3-choosability of planar
triangle-free graphs

This chapter is based on papers On 3-choosability of plane graphs without 3-, 7-
and 8-cycles [11] and 3-choosability of triangle-free planar graphs with constraints
on 4-cycles [12] by Dvořák, Lidický and Škrekovski.

5.1 Introduction

Recall that a graph G is k-choosable if every vertex of G can be properly colored
whenever every vertex has a list of at least k available colors.

A celebrated Four color theorem states that every planar graph is 4-colorable.
Grötzsch’s theorem states that every planar triangle-free graph is 3-colorable.
One might then ask - what other sets of forbidden cycles guarante 3-colorability?
Or more generally, what are the sufficient conditions imposed on short cycles to
imply 3-colorability? Montassier [36] is collecting all related results and presents
them in a catalogue style manner.

In this chapter we consider analogue of 3-color problem for choosability.
Thomassen [42] proved that every planar graph is 5-choosable. Voigt [48] showed
that not all planar graphs are 4-choosable. We would like to have an analogue of
Grötzsch’s theorem for 3-choosability. By 3-degenericity, every planar triangle-
free graph is 4-choosable. Voigt [49] exhibited an example of a non-3-choosable
triangle-free planar graph. Hence the analogue of Grötzsch’s theorem for 3-
choosability needs to have some additional conditions.

For example, forbidding all odd cycles is a sufficient condition as every planar
bipartite graph is 3-choosable [1].

There is a bunch of other results on this topic. We summarize them in Table 5.1.
Current state is also available at Montassier’s web page [36].

There are many other possible combinations of cycles one may try to forbid. We
would like to explicitly mention one, which was our initial motivation to study
3-choosability of planar graphs:
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3 4 5 6 7 8 9 authors year
× × Thomassen [44] 1995
× × × × Zhang and Xu [52] 2004
× × × × Zhang [51] 2005
× × × Lam, Shiu and Song [32] 2005
× × × Zhang, Xu and Sun [53] 2006
× × × Zhu, Lianying and Wang [54] 2007
× × × × Lidický [34] 2009
× × × Dvořák, Lidický and Škrekovski [11] 2009
× × × Dvořák, Lidický and Škrekovski [12] 2010

Table 5.1: Forbidden cycles in planar graphs implying 3-choosability.

Problem 5.1. Is there k such that forbidding all odd cycles of length ≤ k is a
sufficient condition for 3-choosability of planar graphs?

Such a condition makes a graph locally bipartite and would strengthen the result
of Alon and Tarsi [1] that every bipartite planar graph is 3-choosable.

In the following section we give the proof that every triangle-free planar graph
without 7-cycles and 8-cycles in 3-choosable. The proof is by Discharging method.
The basic idea of the method is to start with a counterexample and show that is
has some structure. Next, Euler’s formula is used to show that the counterexam-
ple is not planar. Discharging is a very powerful technique for attacking planar
graphs. For example The Four color theorem was proven by a brutal discharging.

In Section 5.3 we show that every triangle-free planar graph without 6-cycles and
7-cycles in 3-choosable. It is actually a corollary of a theorem which is forbidding
triangles and some configurations of 4-cycles. Hence it is also strengthening a
result of Thomassen [44] which is forbidding 4-cycles completely. Moreover, is
also strengthens the results of Lidický [34], Zhang and Xu [52], Lam et al. [32] and
Li [33]. Recently, Guoa and Wang [26] published the same result as ours claiming
that they are strenghtening and fixing the result of Li [33]. Although the result
looks similar the result presented in the next section, the proof method is different.
We use a method developed by Thomassen and used for showing 5-choosability of
planar graphs [42]. The basic idea is to identify a vertex (or vertices) in the outer
face which can be removed and use induction on the smaller graph. The method
is not used as much as Discharging. On the other hand, proof by Thomassen’s
method tends to be more elegant.
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5.2 Graphs without 3-,7-,8-cycles

This section is based on paper [11].

Our goal is to prove the following theorem.

Theorem 5.2. Every plane graph G without 3-, 7- and 8-cycles is 3-choosable.
Moreover, any precoloring of a 4- or 5-face h can be extended to a list coloring of
G provided that each vertex not in V (h) has at least three available colors.

Proof. Suppose that Theorem 5.2 is false, and let G be a minimal counterexample.
In case that h is precolored, we assume that h is the outer face of G. We shall
get a contradiction by using the Discharging Method. Here is an overview of
the proof: First we study some reducible configurations which cannot occur in
the smallest counterexample because of the minimality. Next, we identify some
additional configurations which are forbidden by the assumptions of the theorem.
Finally, we show that there is no planar graph satisfying all the constraints. To
prove it, we assign each vertex and face an initial charge such that the total
charge is negative. Afterwards, the charge of faces and vertices is redistributed
according to prescribed rules in such a way that the total charge stays unchanged,
and thus negative. Under the assumption that the identified configurations are
not present in G, we show that the final charge of each vertex and each face is
non-negative, which is a contradiction.

Lemma 5.3. No 4- or 5-cycle is separating.

Proof. Let C be a separating 4- or 5-cycle. By the minimality of G, color first
the part of G outside of C, and then extend the coloring of C to the part of G
inside C.

5.2.1 Reducible configurations

We use the term configuration for a graph H, possibly with degree constraints
on its vertices when considering H as a potential subgraph of G. We say that a
configuration H is reducible if it cannot appear in the minimal counterexample
G.

Lemma 5.4. The following configurations of non-precolored vertices are reducible:

(1) a (≤ 2)-vertex v;

(2) an even cycle C2k whose vertices have degree 3;

(3) two 4-cycles v1v2v3v4 and v1v5v6v7 consisting of mutually distinct vertices
v1, . . . , v7, such that v1 is a 4-vertex and vi has degree 3 for 2 ≤ i ≤ 7, see
Figure 5.1.

Proof. Let L be an arbitrary list assignment of G such that each vertex is assigned
precisely 3 colors. We show that G is L-colorable provided that it contains one
of the three configurations.
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Figure 5.1: A reducible configuration.

If G has a non-precolored 2-vertex v, then by the minimality of G, the graph G−v
is L-colorable. This coloring can be extended to v, since it has three available
colors and at most two neighbors.

Suppose now that G contains an even cycle C of non-precolored 3-vertices. Let
ϕ be an L-coloring of G − C. For each v ∈ V (C), if v has a neighbor w in
G − C, then let L′(v) = L(v) \ {ϕ(w)}. Otherwise (if all three neighbors of v
belong to C), let L′(v) = L(v). The graph induced by the vertices of C, say
G[C], is a 2-connected graph different from a clique and an odd cycle, such that
degG[C](v) = |L′(v)| for each v ∈ V (G[C]). Hence, G[C] is L′-colorable by [16].
This completes the proof of Lemma 5.4.(2).

Finally suppose that G contains the third configuration K. Note that vi for
2 ≤ i ≤ 7 has two neighbors in K and the third neighbor, denoted by wi, must be
in G−K. Otherwise, G contains a triangle, which is forbidden by the assumptions
of the theorem, or a separating 4- or 5-cycle which contradicts Lemma 5.3.

Let ϕ be an L-coloring of G − K. Let L′(v1) = L(v1) and let L′(vi) = L(vi) \
{ϕ(wi)} for 2 ≤ i ≤ 7. We show that there exists a proper L′-coloring ϕ′ of v2, v3

and v4 such that |L′(v1) \ {ϕ′(v2), ϕ′(v4)}| ≥ 2. Consider the following cases:

• L′(v2)∩L′(v4) 6= ∅: Let a be a common color of v2 and v4. We color v2 and
v4 by a, and extend this coloring to v3.

• L′(v2) ∩ L′(v4) = ∅: Then |L′(v2) ∪ L′(v4)| ≥ 4. Hence, there exists a
color a ∈ (L′(v2) ∪ L′(v4)) \ L′(v1). Without loss of generality assume that
a ∈ L′(v2). We assign a to v2, and afterwards L′-color v3 and v4.

Since the 4-cycle v1v5v6v7 is 2-choosable, we can extend ϕ′ to an L′-coloring of
K, giving an L-coloring of G.

We can assume that the outer face h of G is a precolored 4- or 5-cycle: if G has no
precolored 4- or 5-face, then every vertex has degree ≥ 3 according Lemma 5.4(1).
Euler’s formula implies that G has a 4- or 5-face f . So we can fix some coloring
of the vertices of f and redraw G such that f becomes the outer face.

Lemma 5.5. A 4-face f 6= h cannot be adjacent to 5- or 6-face. Moreover, f
can share at most two edges with other 4-faces. If a 4-face shares edges with two
other 4-faces, then they surround a vertex of degree three.
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Proof. Let f = v1v2v3v4 be a 4-face sharing at least one edge with a face f ′ =
v1v2u3 . . . ut, where t ∈ {4, 5, 6}. As G has no triangles, u3 6= v4 and ut 6= v3. If
u3 = v3, then deg(v2) = 2 and thus v1v2v3 is a part of the outer face h. Observe
that f ′ = h since 2-vertex v2 can be shared by at most two faces and h 6= f .
In this case, we remove v2 and color v4 instead. Therefore, u3 6= v3, and by
symmetry, ut 6= v4.

Suppose that t = 5. If u4 6∈ {v3, v4}, then v1u5u4u3v2v3v4 would be a 7-cycle, and
if u4 ∈ {v3, v4}, then G contains a triangle, which is a contradiction. Therefore,
G does not contain a 4-face adjacent to a 5-face.

Consider the case that t = 6. If {u4, u5} ∩ {v3, v4} = ∅, then v1u6u5u4u3v2v3v4

would be an 8-cycle, thus assume that say u4 ∈ {v3, v4}. As G does not contain
triangles, u4 6= v3, and hence u4 = v4. But, the 4-cycle v4v1v2u3 separates v3 from
u5, which is a contradiction. It follows that G does not contain a 4-face adjacent
to a 6-face.

Suppose now that t = 4 and that f shares an edge with one more 4-face f ′′.
Assume first that f ′′ = v3v4u5u6. Observe that {u5, u6}∩{v1, v2} = ∅. If {u5, u6}∩
{u3, u4} = ∅, then v1u4u3v2v3u6u5v4 is an 8-cycle, thus assume that say u5 ∈
{u3, u4}. As G does not contain triangles, u5 6= u4, thus u5 = u3. However, G
then contains a separating 4-cycle u3v2v1v4.

It follows that f ′′ = v1v4u5u6. By symmetry, f does not share the edge v2v3

with a 4-face, thus f does not share edges with three 4-faces. Also, as G does
not contain 8-cycles, {u5, u6} ∩ {u3, u4} 6= ∅. Note that u5 6= u3 because of the
separating 4-cycle u3v2v1v4, and u5 6= u4 and u6 6= u3, as G does not contain
triangles. It follows that u4 = u6, thus v1 has degree three and it is surrounded
by 4-faces f , f ′ and f ′′.

Lemma 5.6. No two 5-faces f and f ′ distinct from h are adjacent.

Proof. Let f = v1v2v3v4v5 and f ′ = v1v2u3u4u5. As f 6= h and f ′ 6= h, v1

and v2 have degree at least three, thus v3 6= u3 and v5 6= u5. As G does not
contain triangles, v3 6= u5 and v5 6= u3. As v2v3v4v5v1u5u4u3 is not an 8-cycle,
{v3, v4, v5} ∩ {u3, u4, u5} 6= ∅. By symmetry, we may assume that v4 ∈ {u3, u4}.
As G does not contain triangles, v4 6= u3, thus v4 = u4. However, at least one
of 4-cycles u4u3v2v3 or u4u5v1v5 is distinct from h, contradicting Lemma 5.3 or
Lemma 5.5.

5.2.2 Initial charges

We assign the initial charge to each non-precolored vertex v and the initial charge
to each face f 6= h, respectively, by

ch(v) := 2 deg(v)− 6 and ch(f) := `(f)− 6.

A precolored vertex v of h has initial charge ch(v) := 2 deg(v)− 4 and the outer
face h has initial charge ch(h) := 0.

It is easy to see that every vertex has non-negative initial charge, and that only
the (≤ 5)-faces 6= h have negative charge. We are interested in the total amount
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of charge of G. By Euler’s formula, the total amount of charge is∑
v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =
∑

v∈V (G)

(2 deg(v)− 6) +

2`(h) +
∑

f∈F (G)

(`(f)− 6) + 6− `(h)

= (4|E(G)| − 6|V (G)|) +

(2|E(G)| − 6|F (G)|) + 6 + `(h)

= 6(|E(G)| − |V (G)| − |F (G)|) + 6 + `(h)

= −6 + `(h).

As `(h) ≤ 5, the total charge is negative.

5.2.3 Discharging rules

We use the following discharging rules to redistribute the initial charge, see Fig-
ure 5.2. A vertex v is big if deg(v) ≥ 4 or it is precolored and deg(v) = 3.

Rule 1. Let a (≥ 9)-face f share an edge e with a 4-face g 6= h. If g contains
only one big vertex, then f sends charge 1/3 to g through the edge e.

Rule 2. Let two (≥ 9)-faces f1 and f2 share a 3-vertex v with a 4-face g 6= h
which contains only one big vertex. Let e be the common edge of f1 and
f2 that is incident with v. Then each of f1 and f2 sends charge 1/6 to g
through the edge e.

Rule 3. Let a (≥ 9)-face f share a common edge uv with a 4-face g, which has
no precolored vertex, and deg(v) = 4. Let uvw be a part of the facial walk
of f . If v is the only big vertex of g, then f sends charge 1/6 to g through
the edge vw.

Rule 4. A (≥ 9)-face sends charge 1/3 to an adjacent 5-face g 6= h through
their common edge e = uv, if u and v are of degree three.

Rule 5. A 6-face sends charge 1/4 to an adjacent 5-face g 6= h through their
common edge e = uv, if u and v are of degree three.

Rule 6. A big vertex v sends charge to an incident 4-face g 6= h. If deg(v) = 4
and v is not precolored, or deg(v) = 3 (and v is precolored), then v sends
charge 1. Otherwise, v sends charge 4/3 to g.

Rule 7. A big vertex sends charge 1/2 to every adjacent 5- or 6-face g 6= h.

Note that rules apply simultaneously. Hence, for example Rule 1 and Rule 2 can
both send charge from one face to some other. Also multiplicity is considered,
for example, a face can send charge to another face through several edges.
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Figure 5.2: The discharging Rules 1–7. A black vertex denotes a big vertex, a
white vertex denotes a non-precolored 3-vertex, and a gray vertex can be of any
degree in G. A thick edge is used for transferring charge and a gray face is a
(≥ 9)-face.

5.2.4 Final charges

We use ch∗(x) to denote the final charge of a vertex or face x. Next we show
that the final charge of every vertex and face is non-negative, thus establishing
the theorem.

Let v be a vertex of degree d of G. If v is not big, then its initial charge is
zero, and no charge is sent or received by it, hence its final charge is zero as well.
Therefore, assume that v is big. If d = 3, then v is incident with h, hence its
initial charge is 2, As v sends charge of at most 1 to each of the two incident faces
distinct from h, its final charge is nonnegative. Therefore, assume that d ≥ 4.

The vertex v sends charge by Rules 6 and 7 to 4-, 5-, and 6-faces. Let a be the
number of 4-faces distinct from h incident with v. Let b be the number of 5-faces
and 6-faces (other than h) incident with v. The final charge of v is

ch∗(v) ≥ 2d− 6− 4

3
a− 1

2
b.

If a = 0, then the final charge of v is at least 2d− 6− 1
2
b ≥ 3d

2
− 6 ≥ 0. Suppose

now that a > 0. A 4-face distinct from h cannot be adjacent to a 5- or 6-face
by Lemma 5.5. Hence if v is not incident with h, there must be at least two
(≥ 7)-faces incident with v, and if v is incident with h, then there must be at
least one (≥ 7)-face incident with v. In both cases, a + b ≤ d − 2. The final
charge of v is at least 2d− 6− 4

3
(a+ b) ≥ 2d−10

3
, which is nonnegative if d ≥ 5.

Finally, consider the case that d = 4. Since a > 0, we have a + b ≤ 2. If v
is incident with h, then its initial charge is 4, and the final charge is at least
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4 − 4
3
(a + b) ≥ 4

3
. If v is not incident with h, then its initial charge is 2, and it

sends at most one to each incident face of length at most 6, thus its final charge
is at least 2 − (a + b) ≥ 0. We conclude that the final charge of each vertex is
nonnegative.

Let f be an arbitrary face of G. If f is the outer face h, then ch∗(h) = ch(h) = 0.
Therefore, we assume that f 6= h.

We consider the following cases regarding `(f):

`(f) ≥ 9: We show that f sends charge of at most 1/3 through each of its edges.
Then,

ch∗(f) ≥ `(f)− 6− `(f)

3
≥ 2`(f)

3
− 6 ≥ 0.

Let e = uv be an edge of f and let g be the face incident with e distinct
from f . If g = h, then no charge is sent through e, hence assume that
g 6= h. Note that if f sends charge through e only once, then this charge is
at most 1/3. We consider the following subcases regarding the size of g:

• `(g) = 4 and g is incident with only one big vertex: f sends charge 1/3
to g through e by Rule 1. The face f can send further charge through
e only by Rule 3. Then, we may assume that v is a 4-vertex, vw is an
edge of f and it is incident with some 4-face g′ for which v is also the
only big incident vertex, and no vertex of g′ is precolored. As v is the
only big vertex of g, no vertex of g is precolored as well. But then g
and g′ form a reducible configuration, by Lemma 5.4(3).

• `(g) = 4 and g is incident with more than one big vertex: then the
charge is sent through e only by Rule 3, for the total of at most 1/6 +
1/6 = 1/3.

• `(g) = 5: In this case, f sends either at most 1/3 through e by Rule 4
(if both u and v have degree three) or at most twice 1/6 by Rule 3 (if
u or v have degree four).

• `(g) = 6: The face f sends at most twice 1/6 through e by Rule 3.

• `(g) ≥ 9: The charge of 1/6 is sent at most twice through e by Rule 2
or Rule 3.

This case analysis establishes the claim.

If `(f) ≤ 6, then the boundary of f is a cycle, thus if f contains a precolored
vertex of degree two, then it contains at least two precolored vertices of
degree at least three, and these two vertices are big. Similarly, if `(f) ≤ 6
and f is incident with a precolored vertex of degree three, then f contains
at least two big vertices.

`(f) = 6: By Lemma 5.4(2), f cannot consist of only non-precolored 3-vertices,
thus f contains a big vertex v. The face f receives 1/2 from v by Rule 7, and
at most twice sends 1/4 by Rule 5 (as two 5-faces distinct from h cannot
share an edge by Lemma 5.6 and f contains a big vertex). Therefore,
ch∗(f) ≥ 0 + 1/2− 2/4 = 0.
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`(f) = 5: The face f has initial charge −1 and it sends no charge. By Lemmas 5.5
and 5.6, f is not adjacent to any face of length at most 5 distinct from h. We
consider several possibilities regarding the number of big vertices incident
with f .

If f contains at least two big vertices, then Rule 7 applies twice, and thus
ch∗(f) ≥ −1 + 2/2 = 0.

If f contains one big vertex v, then no vertex of f except possibly for v
is precolored. Note that Rule 7 applies once. Moreover, f contains three
edges whose endvertices are non-precolored vertices of degree 3. The charge
is received by f through these three edges by Rules 4 and 5. Thus, ch∗(f) ≥
−1 + 1/2 + 3/4 > 0.

If f is incident with no big vertex, then all its vertices are of degree 3 and
are not precolored. Then, f receives charge by Rules 4 and 5 through each
incident edge, and ch∗(f) ≥ −1 + 5/4 > 0.

`(f) = 4: By Lemma 5.4(2), the face f must contain a big vertex. If f contains at
least two big vertices, then Rule 6 applies twice, and ch∗(f) ≥ −2 + 2 = 0.
Therefore, we may assume that f is incident with exactly one big vertex
v. In particular, no vertex of f other than v is precolored, and if v is
precolored, then deg(v) ≥ 4.

If at most one edge of f is shared with another 4-face, then at least three
edges of f are incident with faces of size at least 9 by Lemma 5.5. After
applying Rule 6 and three times Rule 1, we obtain ch∗(f) ≥ −2+1+3/3 = 0.
By Lemma 5.5, the 4-face f cannot share three edges with other 4-faces.
Therefore, we may assume that f shares exactly two edges with other 4-
faces f1 and f2, and the three 4-faces surround a 3-vertex y. Note that
v 6= y, otherwise, v is precolored and hence f contains at least two big
vertices.

If v is incident with f1 or f2, then Rule 6, twice Rule 1 and twice Rule 2
apply and ch∗(f) ≥ −2 + 1 + 2/3 + 2/6 = 0. Now assume that v is not
adjacent to any of the other two 4-faces. If v is precolored or deg(v) ≥ 5,
then Rule 6 and twice Rule 1 apply and ch∗(f) ≥ −2 + 4/3 + 2/3 = 0.
Finally, if v is a non-precolored 4-vertex, then Rule 6, twice Rule 1, and
twice Rule 3 apply, and we infer that ch∗(f) ≥ −2 + 1 + 2/3 + 2/6 = 0.
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5.3 Graphs with constraints on 4-cycles

This section is based on paper [12].

5.3.1 Introduction

In this section we prove the following theorem:

Theorem 5.7. Any planar triangle-free graph without 4-cycles adjacent to 4- and
5-cycles is 3-choosable.

Let us point out the result of Li [33], strengthening the result of Thomassen [44]:
every planar triangle-free graph such that no 4-cycle shares a vertex with another
4- or 5-cycle is 3-choosable. Theorem 5.7 is forbidding only 4-cycles sharing an
edge with other 4- or 5-cycles: Hence it is also strengthening the result of Li [33].
Recently, Guoa and Wang [26] published an alternative proof of Theorem 5.7.

Moreover, we obtain the following corollary is a direct consequence.

Corollary 5.8. Any planar graph without 3-, 6- and 7-cycles is 3-choosable.

Using the proof technique of precoloring extension developed by Thomassen [44],
we show the following extension of Theorem 5.7:

Theorem 5.9. Let G be a triangle-free planar graph without 4-cycles adjacent to
4- and 5-cycles, with outer face C, and P a path of length at most three such that
V (P ) ⊆ V (C). The graph G can be L-colored for any list assignment L such that

• |L(v)| = 3 for all v ∈ V (G) \ V (C);

• 2 ≤ |L(v)| ≤ 3 for all v ∈ V (C) \ V (P );

• |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper coloring
of the subgraph of G induced by V (P );

• the vertices with lists of size two form an independent set; and

• each vertex with lists of size two has at most one neighbor in P .

Note that we view the single-element lists as a precoloring of the vertices of P .
Also, P does not have to be a part of the facial walk of C, as we only require
V (P ) ⊆ V (C).

5.3.2 Short outer face corollary

Theorem 5.9 has the following easy consequence about short outer face. We give
it before the proof of Theorem 5.9 as it comes handy during induction.

Corollary 5.10. Let G be a triangle-free planar graph without 4-cycles adjacent
to 4- and 5-cycles, with the outer face bounded by an induced cycle C of length at
most 9. Furthermore, assume that
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• if `(C) = 8, then at least one edge of C does not belong to a 4-cycle; and

• if `(C) = 9, then some two consecutive edges of C do not belong to 4- and
5-cycles.

Let L be an assignment of lists of size 1 to the vertices of C and lists of size 3
to the other vertices of G. If L prescribes a proper coloring of C, then G can be
L-colored.

Proof. The claim follows from Theorem 5.9 for `(C) = 4. If `(C) ∈ {5, 6, 7},
then let u1w1vw2u2 be an arbitrary subpath of C. Let L′ be the list assignment
obtained from L by removing the color L(v) from the lists of vertices adjacent to
v. We also set the lists of w1 and w2 to 2-lists such that the precoloring of the
other vertices of C forces the prescribed color L(w1) on w1 and L(w2) on w2, i.e.,
L′(w1) = L(w1) ∪ L(u1) and L′(w2) = L(w2) ∪ L(u2). As all the vertices x with
|L′(x)| = 2 are neighbors of a single vertex v, the graph G− v together with the
list assignment L′ satisfies the assumptions of Theorem 5.9. It follows that we
can L′-color G− v, giving an L-coloring of G.

Let us now consider the case that `(C) = 8, and let C = w1uvw2r1r2r3r4, where
the edge uv does not belong to a 4-cycle. Let us delete vertices u and v from G,
remove the color in L(u) from the lists of neighbors of u and the color in L(v)
from the lists of neighbors of v, and change the list of w1 to L(w1) ∪ L(r4) and
the list of w2 to L(w2) ∪ L(r1), so that the precoloring of the path P = r1r2r3r4

forces the right colors on w1 and w2. As uv does not belong to a 4-cycle, the
vertices with lists of size two form an independent set. As C is induced, both w1

and w2 have only one neighbor in the 3-path P . Let x be a neighbor of u other
than v and w1. The vertex x cannot be adjacent to both r1 and r4, as the 4-cycle
uxr4w1 would be adjacent to a 5-cycle xr1r2r3r4. Similarly, x cannot be adjacent
to both r1 and r3 or both r2 and r4. As G does not contain triangles, x has at
most one neighbor in P . By symmetry, this is also true for the neighbors if v.
Therefore, the graph satisfies assumptions of Theorem 5.9, and can be colored
from the prescribed lists.

Finally, suppose that `(C) = 9, and let C = w1uvww2r1r2r3r4, where the edges
uv and vw are not incident with 4- and 5-cycles. We argue similarly as in the
previous case. We delete vertices u, v and w from G and remove their colors from
the lists of their neighbors. We also set the list of w1 to L(w1) ∪ L(r4) and the
list of w2 to L(w2)∪L(r1), so that the precoloring of the path r1r2r3r4 forces the
right colors on w1 and w2. Observe that the resulting graph satisfies assumptions
of Theorem 5.9, hence it can be colored.

5.3.3 Proof of Theorem 5.9

Before we proceed with the proof of Theorem 5.9, let us describe the notation
that we use in figures. We mark the precolored vertices of P by full circles, the
vertices with list of size three by empty circles, and the vertices with list of size
two by empty squares. The vertices for that the size of the list is not uniquely
determined in the situation demonstrated by the particular figure are marked by
crosses.
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Proof of Theorem 5.9. Suppose G together with lists L is the smallest counterex-
ample, i.e., such that |V (G)| + |E(G)| is minimal among all graphs that satisfy
the assumptions of Theorem 5.9, but cannot be L-colored, and

∑
v∈V (G) |L(v)|

is minimal among all such graphs. Let C be the outer face of G and P a path
with V (P ) ⊆ V (C) as in the statement of the theorem. We first derive several
properties of this counterexample. Note that each vertex v of G has degree at
least |L(v)|.
Lemma 5.11. The graph G does not contain separating cycles of length at most
seven. Every edge of each separating 8-cycle K belongs to a 4-cycle lying inside
K. And, at least one of every two consecutive edges of each separating 9-cycle K
belongs to a 4- or 5-cycle lying inside K.

Proof. Let K be the separating cycle. We may assume that K is induced, as
otherwise we could consider a shorter separating cycle of length at most 7. Let
G1 be the subgraph of G induced by the exterior of K (including K) and G2 the
subgraph of G induced by the interior of K (including K). By the minimality of
G, Theorem 5.9 holds for G1 and G2 and their subgraphs. Therefore, there exists
a coloring of G1 from the prescribed lists, and this coloring can be extended to
G2 by Corollary 5.10. This is a contradiction, as G cannot be colored from the
lists.

A chord of a cycle K is an edge in G joining two distinct vertices of K that
are not adjacent in K. As G does not have triangles and 4-cycles adjacent to
4- and 5-cycles, a cycle of length at most 7 does not have a chord. Therefore,
Lemma 5.11 implies that every cycle of length at most 7 is a face. Similarly, a
cycle K of length 8 with an edge that does not belong to a 4-cycle in the interior
of K is either an 8-face, or it has a chord splitting it to a 4-face and a 6-face, or
two 5-faces.

Lemma 5.12. The graph G is 2-connected.

Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G and
G1 and G2 are nontrivial induced subgraphs of G such that G = G1 ∪ G2 and
V (G1) ∩ V (G2) = {v}. Both G1 and G2 satisfy the assumptions of Theorem 5.9.
If v is precolored, then by the minimality of G there exist L-colorings of G1 and
G2, and they combine to a proper L-coloring of G. If v is not precolored, then
we may assume that P ⊆ G1. An L-coloring of G1 assigns a color c to v. We
change the list of v to {c}, color G2 and combine the colorings to an L-coloring
of G.

By Lemma 5.12, C is a cycle. A k-chord of C is a path Q = q0q1 . . . qk of length k
joining two distinct vertices of C, such that V (C)∩V (Q) = {q0, qk} (e.g., 1-chord
is just a chord).

Lemma 5.13. The cycle C has no chords.

Proof. Suppose e = uv is a chord of C, separating G to two subgraphs G1 and
G2 intersecting in e. If both u and v are precolored, then we L-color G1 and
G2 by the minimality of G and combine their colorings. Otherwise, by symmetry

71



v w

u

G1 G2

v w

u z

G1 G2

Figure 5.3: A chord of C

assume that u 6∈ V (P ), and that |V (P )∩V (G1)| ≥ |V (P )∩V (G2)|. In particular,
|(V (P ) ∩ V (G2)) \ {u, v}| ≤ 1. Furthermore, let us choose the chord in such a
way that G2 is as small as possible; in particular, the outer face of G2 does not
have a chord. Let us find an L-coloring of G1 and change the lists of u and v to
the colors assigned to them. If G2 with these new lists satisfies assumptions of
Theorem 5.9, then we find its coloring and combine the colorings to an L-coloring
of G, hence assume that this is not the case.

Let X = (V (P ) ∩ V (G2)) \ {u, v}. As G2 does not satisfy assumptions of Theo-
rem 5.9, there exists a vertex z with list of size two adjacent to two precolored
vertices. As G is triangle-free, we conclude that X is not empty, say X = {w}
(see Figure 5.3), and z is adjacent to u and w. As G2 does not contain chords
and separating 4-cycles and z ∈ V (C), G2 is equal to the cycle uvwz. Since
|L(z)| = 2, it holds that |L(u)| = 3. Let c1 be the color of u in the coloring of
G1, and c2 the single color in the list of w. If L(z) 6= {c1, c2}, then we can color z
and finish the coloring of G, hence assume that L(z) = {c1, c2}. Let c be a color
in L(u) \ ({c1} ∪ L(v)) (this set is nonempty, as |L(v)| = 1 and |L(u)| = 3).

Let us now color z by c1 and set the list of u to {c}. If G1 with this list at u
satisfies assumptions of Theorem 5.9, we can color G1, and thus obtain an L-
coloring of G. Since G does not have such an L-coloring, the assumptions are
violated, i.e., either u is adjacent to a vertex of P other than v, or G1 contains
a vertex (with list of size two) adjacent to both u and a vertex of P . This is a
contradiction, as G would in both of these cases contain either a triangle, or a 4-
or 5-cycle adjacent to the 4-cycle uvwz.

By the previous lemma, P is a part of the facial walk of C, and C is an induced
cycle.

Lemma 5.14. `(C) ≥ 8.

Proof. Suppose that `(C) ≤ 7. If V (C) 6= V (P ), then color the vertices of C
properly from their lists. This can be done, as C is chordless and contains at
least one vertex with list of size three. If 5 ≤ `(C) ≤ 7, then the claim follows
from the proof of Corollary 5.10, as by the minimality of G, all subgraphs of
G satisfy Theorem 5.9. If `(C) = 4, then we delete one of the vertices of C
and remove its color from the lists of its neighbors. It is easy to verify that the
resulting graph satisfies the assumptions of Theorem 5.9, hence it has a proper
coloring by the minimality of G. This coloring extends to an L-coloring of G,
which is a contradiction.
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Figure 5.5: A 2-chord of C

Lemma 5.15. No 4-cycle shares an edge with another 4- or 5-cycle.

Proof. Suppose that C1 = v1v2v3v4 and C2 = v1v2u3 . . . ut are cycles sharing the
edge v1v2, `(C1) = 4 and t = `(C2) ∈ {4, 5}. Note that C1 6= C and C2 6= C by
Lemma 5.14. By Lemma 5.11, both C1 and C2 bound a face. If v3 = u3, then
v2 would be a 2-vertex with list of size three. Thus, v3 6= u3 and by symmetry,
v4 6= ut. As G does not contain triangles, v3 6= ut and v4 6= u3, and in case that
t = 5, v3 6= u4 and v4 6= u4. Therefore, C1 and C2 are adjacent, contradicting the
assumptions of Theorem 5.9.

Note that we can assume that |V (P )| = 4, as otherwise we can prescribe color
for more of the vertices of C, without violating assumptions of Theorem 5.9. Let
P = p1p2p3p4. We say that a k-chord Q of C splits off a face F from G if F 6= C
is a face of both G and C ∪ Q. See Figure 5.4 for an illustration of 2-chords
splitting off a face.

Lemma 5.16. Every 2-chord uvw of C splits off a k-face F such that

(a) |V (F ) ∩ V (P )| ≤ 2 and {u,w} 6⊆ V (P ),

(b) k ≤ 5, and

(c) if |V (F ) ∩ V (P )| ≤ 1, then k = 4.

In particular, the cycle C has no 2-chord with |L(w)| = 2 and u 6= p2, p3.

Proof. Suppose first that u,w ∈ V (P ). By Lemma 5.11, the 2-chord uvw together
with a part of P bounds a face K. Color v by a color different from the colors of
u and w, and remove V (K) \ {u, v, w} from G, obtaining a graph G′. Note that
a path of length at most three is precolored in G′. Since G cannot be L-colored,
we may assume that G′ does not satisfy assumptions of Theorem 5.9, i.e., there
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exists z with |L(z)| = 2 adjacent to both v and a vertex y ∈ V (P ) ∩ V (G′). As
G is triangle-free, y 6∈ {u,w}. It follows that yuvz or ywvz is a 4-face. This is a
contradiction, as K would be an adjacent 4-face. Therefore, {u,w} 6⊆ V (P ), and
by symmetry we assume that w 6∈ V (P ).

The 2-chord uvw splits G to two subgraphs G1 and G2 intersecting in uvw. Let us
choose G2 such that |V (P )∩V (G2)| ≤ |V (P )∩V (G1)|, see Figure 5.5. Note that
|V (P ) ∩ V (G2)| ≤ 2. Let us consider the 2-chord uvw such that |V (P ) ∩ V (G2)|
is minimal, subject to the assumption that G2 is not a face. By the minimality
of G, there exists an L-coloring ϕ of G1. Let L′ be the list assignment for G2

such that L′(u) = {ϕ(u)}, L′(v) = {ϕ(v)}, L′(w) = {ϕ(w)} and L′(x) = L(x) for
x ∈ V (G2) \ {u, v, w}. Let P ′ be the precolored path in G2 (consisting of u, v,
w, and possibly one other vertex p of P adjacent to u). As C has no chords and
G2 is not a face, P ′ is an induced subgraph. Since G cannot be L-colored, we
conclude that G2 cannot be L′-colored, and thus G2 with the list assignment L′

does not satisfy the assumptions of Theorem 5.9. Therefore, there exists a vertex
z with |L(z)| = 2, adjacent to two vertices of P ′.

Since G2 is not a face, Lemmas 5.11 and 5.13 imply that z is not adjacent to both
w and p. Similarly, z is not adjacent to both u and w. It follows that z is adjacent
to v and p, and thus |V (P )∩ V (G2)| = 2. Since we have chosen the 2-chord uvw
so that |V (P ) ∩ V (G2)| = 2 is minimal among the 2-chords for that G2 is not
a face, the 2-chord wvz splits off a face F ′ from G. Let x be the neighbor of z
in F ′ other than v. Since |L(z)| = 2, it holds that |L(x)| = 3. As F ′ is a face,
deg(x) = 2, which is a contradiction. It follows that for every 2-chord, G2 is a
face. The choice of G2 establishes (a).

Let wvuv4 . . . vk be the boundary of the face G2. Note that V (P ) ∩ V (G2) ⊆
{u, v4}, and v4, . . . , vk have degree two. If k > 5, then at least one of v5 and v6

has list of size three, which is a contradiction, proving (b). Similarly, if |V (F ) ∩
V (P )| ≤ 1 and k = 5, then at least one of v4 and v5 would be a 2-vertex with list
of size three, proving (c).

Consider now a 2-chord uvw such that |L(w)| = 2 and u 6∈ {p2, p3}, and let x be
the neighbor of w in G2 distinct from v. As u 6∈ {p2, p3}, no vertex of V (P ) \ {u}
lies in G2. Therefore, |L(x)| = 3 and deg(x) = 2, a contradiction. We conclude
that no such 2-chord exists.

Let us now consider the 3-chords of C:

Lemma 5.17. Every 3-chord Q = uvwx of C such that u, x 6∈ {p2, p3} splits off
a 4- or 5-face.

Proof. Suppose that Q splits G into two subgraphs G1 and G2 intersecting in
uvwx, such that V (P ) ∩ V (G2) ⊆ {u, x}. Let us L-color G1 and consider the
vertices u, v, w and x of G2 as precolored according to this coloring. If ux were
an edge, then Q would split off a 4-face. It follows that Q is an induced path
thus this precoloring of Q is proper. Similarly, as Q does not split off a 5-face,
u and x do not have a common neighbor with list of size two. Neither v nor w
is adjacent to a vertex with list of size 2 by Lemma 5.16. Therefore, G2 satisfies
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Figure 5.6: A 2-chord from p1 or p2 to {x1, x2, x3, x4}

assumptions of Theorem 5.9, and the coloring can be extended to G2, giving an
L-coloring of G. This is a contradiction.

5.3.4 Vertices in the outer face

Let x1x2x3x4 be the part of the facial walk of C such that x1 is adjacent to p4

and x2 6= p4. By Lemma 5.14, {x1, x2, x3, x4} ∩ V (P ) = ∅. Let us now show a
few properties of the vertices x1, x2, x3, x4 and their neighbors.

Lemma 5.18. Let Q = v0v1 . . . vk be a k-chord starting and ending in vertices
of x1x2x3x4, or a cycle intersecting C in a single vertex x ∈ {x1, x2, x3, x4}. The
following holds (for some i ∈ {1, 2, 3, 4}):

• If `(Q) = 2, then Q = xiv1xi+2 splits off a 4-face.

• If `(Q) = 3, then Q splits off either a 4-face xixi+1v1v2, or a 5-face
xixi+1xi+2v1v2.

• If `(Q) = 4, then Q forms a boundary of a 4-face xiv1v2v3, or splits off a
5-face xixi+1v1v2v3, or splits off a 6-face xixi+1xi+2v1v2v3.

Proof. By a simple case analysis. The details are left to the reader.

Note also that if Q splits off a face of form xixi+1xi+2v1 . . . vk−1, then deg(xi+1) =
|L(xi+1)| = 2.

Lemma 5.19. If Q is a k-chord with k ≤ 3, starting in a vertex xi (where
1 ≤ i ≤ 4) and ending in a vertex with list of size two, then k = 3 and Q bounds
a 4-face.

Proof. Let Q = q0q1 . . . qk, where q0 ∈ {x1, x2, x3, x4} and |L(qk)| = 2. By Lem-
mas 5.13 and 5.16, k > 2. If k = 3, then by Lemma 5.17, Q splits off a 4- or
5-face. However, the latter is impossible, as |L(q3)| = 2, so the remaining vertex
of the 5-face, whose degree is two, would have a list of size three.

Lemma 5.20. There is no 2-chord from {p1, p2} to {x1, x2, x3, x4}.
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(C3b)
x5 = p1

p4 x1 x2 x3 x4

(C4)
p4 x1 x2 x3 x4

(C5)

Figure 5.7: The construction of the set X1

Proof. Suppose Q = pivxj is such a 2-chord, and let K be the cycle formed by
Q and pi . . . p4x1 . . . xj. Note that `(K) ≤ 9. Let us choose Q such that `(K) is
minimal. By Lemma 5.16, Q splits off a face F such that `(F ) ≤ 5. Furthermore,
if `(K) = 9, then i = 1, and hence |V (P )∩V (F )| = 1. In that case, the claim (c)
of Lemma 5.16 implies `(F ) = 4. See Figure 5.6 for illustration. It follows that
the edges piv and vxj are not incident with a 4-face inside K, and if `(K) = 9,
then they are not incident with a 5-face. By Lemma 5.11, K is not separating. If
`(K) ≤ 7, then K is a face, and deg(v) = 2, which is a contradiction. Similarly,
if `(K) > 7, then K has a chord incident with v. By the minimality of `(K), v is
adjacent to p3 or p4. However, this contradicts Lemma 5.16(a).

If both x1 and x2 have lists of size three, then we remove one color from L(x1) and
find a coloring by the minimality of L (note that x1 is not adjacent to any vertex
with list of size two, and has only one neighbor in P , as C does not have chords).
Therefore, exactly one of x1 and x2 has a list of size two. Let x5 be the neighbor
of x4 in C distinct from x3. We now distinguish several cases depending on the
lists of vertices in {x1, x2, x3, x4}, in order to choose a set X1 ⊆ {x1, x2, x3, x4} of
vertices that we are going to color (and remove).

(C1) If |L(x1)| = 2 and |L(x2)| = |L(x3)| = 3 (see Figure 5.7(1)), then we set
X1 = {x1}.

(C2) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| = 3 (see
Figure 5.7(2)), then we set X1 = {x1, x2, x3}.

(C3) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| ≤ 2 (see
Figure 5.7(3)), then we set X1 = {x2, x3, x4}.

(C4) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 3 (see Figure 5.7(4)),
then we set X1 = {x1, x2}.

(C5) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 2 (see Figure 5.7(5)),
then we set X1 = {x1, x2, x3}.

Let m = max{i : xi ∈ X1}. Note the following properties of the set X1:

• |X1| ≤ 3.
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r(z) = xm−1
xm xm+1

z

R(z)
d)

Figure 5.8: The construction of the set X2

• If |L(xm)| = 2, then m ≤ 3 and |L(xm+1)| = |L(xm+2)| = 3.

• If |L(xm)| = 3, then |L(xm+1)| ≤ 2.

Let F be the set of faces of G incident with the edges of the path induced by
X1 (F = ∅ in the case (C1)). We define a set X2 ⊆ V (G) \ V (C), together with
functions r : X2 → X1 and R : X2 → F . A vertex z ∈ V (G) \ V (C) belongs to
X2 if

• z is adjacent to two vertices in X1 (see Figure 5.8(a) for an example). By
Lemma 5.18, z lies in a (uniquely determined) 4-face F = xixi+1xi+2z,
where xi, xi+1, xi+2 ∈ X1. We define r(z) := xi and R(z) := F . Or,

• there exists a path xzvy such that x, y ∈ X1 and v 6∈ {p1} ∪ X1 (see Fig-
ure 5.8(b), (c) and (d) for examples). If v = xm+1, then by Lemma 5.16,
the 2-chord xzv splits off a 4-face F . Otherwise the 3-chord xzvy splits off
a 4- or 5-face F by Lemma 5.18. We define r(z) := x and R(z) := F . Note
that v 6= x1: otherwise, x1 6∈ X1 and we are in case (C3), hence |L(x1)| = 2
and the 2-chord x1zx would contradict Lemma 5.16. It follows that v also
belongs to X2, unless v = xm+1.

Let us now show that r(z) and R(z) are well-defined. As a 4-face cannot
be adjacent to a 4- or 5-face and G is triangle-free, z does not have another
neighbor in X1. Also, if there existed another path xzv′y′ with y′ ∈ X1

splitting off a face F ′, then both F and F ′ would be 5-faces; however,
that would imply |X1| ≥ 5, which is a contradiction. Therefore, r and R
are defined uniquely. Furthermore, v is the only neighbor of z in X2, and
R(v) = R(z) (assuming that v 6= xm+1).

We now find an L-coloring of X1 ∪X2 that we aim to extend to a coloring of G.

Lemma 5.21. Let H = G[V (P ) ∪ X1 ∪ X2] be the subgraph of G induced by
V (P )∪X1 ∪X2. There exist an L-coloring ϕ1 of X1 and an L-coloring ϕ2 of X2

such that

• the coloring of H given by ϕ1, ϕ2 and the precoloring of P is proper,
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• if |L(xm+1)| ≤ 2, then ϕ1(xm) 6∈ L(xm+1),

• if x1 6∈ X1 (i.e., in the case (C3) of the definition of X1), then L(x1) 6=
L(p4) ∪ {ϕ1(x2)}, and

• if z ∈ X2 is adjacent to xm+1, then |L(xm+1) \ {ϕ1(xm), ϕ2(z)}| ≥ 2.

Proof. Suppose first that there exists z ∈ X2 adjacent to xm+1. Note that z is
unique, m ≥ 2 and R(z) = xm−1xmxm+1z is a 4-face. As G does not contain a
2-vertex with list of size three, |L(xm)| = 2 and |L(xm−1)| = |L(xm+1)| = 3. This
happens only in the cases (C2) and (C4) of the definition of X1, thus x1 ∈ X1 and
m ≤ 3. Furthermore, xm−1 is the only neighbor of z in X1 and z is not adjacent
to any other vertex of X2. As R(z) is a 4-face and G does not contain 4-cycles
adjacent to 4- or 5-cycles, z is not adjacent to p3 and p4. By Lemma 5.20, z is
not adjacent to p1 and p2, either, thus any choice of the color for z is consistent
with the precoloring of P . Let us distinguish the following cases:

• If L(z)∩L(xm) 6= ∅, then choose c ∈ L(z)∩L(xm) and let ϕ1(xm) = ϕ2(z) =
c.

• If L(z) 6= L(xm+1), then choose ϕ2(z) ∈ L(z)\L(xm+1) and ϕ1(xm) ∈ L(xm)
arbitrarily.

• Finally, consider the case that L(z) ∩ L(xm) = ∅ and L(z) = L(xm+1),
i.e., the lists of xm and xm+1 are disjoint. We choose ϕ1(xm) ∈ L(xm) and
ϕ2(z) ∈ L(z) arbitrarily.

On the other hand, suppose that no vertex ofX2 is adjacent to xm+1. If |L(xm+1)| =
2, then choose ϕ1(xm) ∈ L(xm) \ L(xm+1). Otherwise, choose ϕ1(xm) ∈ L(xm)
arbitrarily (in case that m = 1, choose a color different from the one in L(p4))

In both of these cases, the precoloring of xm (and possibly z) can be extended to
a proper coloring ψ of the subgraph induced by {x1, . . . , xm, z} consistent with
the precoloring of P . We fix ϕ1 as the restriction of ψ to X1.

Let us now construct (the rest of) the coloring ϕ2. Consider a vertex u ∈ X2

that is not adjacent to xm+1. As u 6∈ V (C), it holds that |L(u)| = 3. If u has
no neighbor in X2, then it has two neighbors r(u), x ∈ X1 and R(u) is a 4-face.
We claim that u has no neighbor pi ∈ V (P ). Otherwise, we obtain i ≥ 3 by
Lemma 5.20. By Lemma 5.16, the 2-chord piur(u) splits off a 4- or 5-face. This
face shares an edge with R(u), which is a contradiction. Therefore, any choice of
ϕ2(u) ∈ L(u) \ {ϕ1(x), ϕ1(r(u))} is consistent with the precoloring of P .

Finally, suppose that u has a neighbor w ∈ X2. As we argued in the definition of
X2, each of u and w has exactly one neighbor in X1, and u and w do not have
any other neighbors in X2. Also, w is not adjacent to xm+1, as otherwise G would
contain a triangle or two adjacent 4-cycles. By Lemma 5.16(a), each of u and w
has at most one neighbor in P . If one of them does not have any such neighbor,
then we can easily color u and w, hence assume that piu and pjw are edges. By
Lemma 5.20, i, j ≥ 3. Without loss on generality, j = 3 and i = 4. This is a
contradiction, as the 4-face p3p4uw shares an edge with R(u).
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Consider the colorings ϕ1 and ϕ2 constructed in Lemma 5.21. Let G′ = G −
(X1 ∪ X2) and let L′ be the list assignment such that L′(v) is obtained from
L(v) by removing the colors of the neighbors of v in X1 and X2 for v 6= x1, and
L′(x1) = L(x1) if x1 6∈ X1. Suppose that G′ with the list assignment L′ satisfies
assumptions of Theorem 5.9. Then there exists an L′-coloring ϕ of G′, which
together with ϕ1 and ϕ2 gives an L-coloring of G: this is obvious if x1 ∈ X1. If
x1 6∈ X1, then |L(x1)| = 2, and L(p4) ⊆ L(x1) by the minimality of G (otherwise,
we could remove the edge p4x1). By the choice of ϕ1, it holds that ϕ1(x2) 6= ϕ(x1).
Since no other vertex of X may be adjacent to x1 by Lemmas 5.13 and 5.16, ϕ
together with ϕ1 and ϕ2 is a proper coloring of G. As G is a counterexample to
Theorem 5.9, it follows that L′ violates assumptions of Theorem 5.9, i.e.,

(a) a vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P ; or

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ); or

(c) two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent.

Let us now consider each of these possibilities separately.

(a) A vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P . By
Lemmas 5.13 and 5.16(a), this is not possible.

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ). If |L(xm+1)| = 2, then xm+1 does
not have a neighbor in X2 by Lemma 5.16 and hence |L′(xm+1)| = 2 by the
choice of ϕ1. If |L(xm+1)| = 3, then the choice of ϕ1 and ϕ2 according to
Lemma 5.21 ensures |L′(xm+1)| ≥ 2. Therefore, v 6= xm+1.

Since G has neither chords nor 2-chords starting in X1 and ending in a
vertex with list of size two, it holds that |L(v)| = 3. Therefore, v has at
least two neighbors u1, u2 ∈ X1∪X2. If at least one of u1 and u2 belonged to
X1, then v would be included in X2, hence we may assume that u1, u2 ∈ X2.

Consider the path xiu1vu2xj, where xi = r(u1) and xj = r(u2). We may
assume that i ≤ j. The cycle xi . . . xju2vu1 has length at most six, thus
it bounds a face F . Note that i = j, as each of R(u1) and R(u2) shares
at least one edge with the path induced by X1 and F 6= R(u1) 6= R(u2) 6=
F . Therefore, F is a 4-face sharing an edge with 4-face R(u1) (and also
with R(u2)), which is a contradiction. Therefore, |L′(v)| ≥ 2 for every
v ∈ V (G′) \ V (P ).

(c) Two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent. As the
vertices with lists of size two form an independent set in G, we may assume
that |L(u)| = 3. Let y1 be a neighbor of u in X1 ∪X2.

Consider first the case that |L(v)| = 2. If u 6∈ V (C), then by Lemma 5.16,
y1 6∈ V (C), and thus y1 ∈ X2 and vuy1r(y1) is a 3-chord. By Lemma 5.19,
this 3-chord splits off a 4-face F . Note that F 6= R(y1), as u 6∈ X2. This
is impossible, as the 4-face F would share an edge with R(y1). Therefore,
u ∈ V (C), and hence v 6= x1. If y1 ∈ X2, then uy1r(y1) is a 2-chord, and
by Lemma 5.16, it splits off a 4-face adjacent to R(y1), which is again a
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contradiction. Assume now that y1 ∈ X1. As C does not have chords, it
follows that y1 = xm and u = xm+1. However, in that case v = xm+2 and
|L(xm+2)| = 2, which contradicts the choice of X1.

Consider now the case that |L(v)| = 3. Let y2 be a neighbor of v in X1∪X2.
As u, v 6∈ X2, at least one of y1 and y2, say y1, belongs to X2. Let us consider
the possibilities y2 ∈ X1 and y2 ∈ X2 separately:

• y2 ∈ X1: The cycle formed by r(y1)y1uvy2 and a part of the path
x1x2x3x4 between r(y1) and y2 has length at most six, thus it bounds
a face F . Note that R(y1) shares an edge with F . Let k1 and k2 be the
number of edges that R(y1) and F , respectively, share with the path
induced by X1, k1 ≥ `(R(y1)) − 3 ≥ 1 and k2 = `(F ) − 4 ≥ 0. Since
|X1| ≤ 3, it holds that k1 + k2 ≤ 2. If k1 = 1, then R(y1) is a 4-face.
Since 4- and 5-faces cannot be adjacent to R(y1), we obtain `(F ) ≥ 6.
It follows that k2 ≥ 2, which is a contradiction. Similarly, if k1 = 2,
then F cannot be a 4-face, hence `(F ) ≥ 5 and thus k2 ≥ 1. This is
again a contradiction.

• y2 ∈ X2: Let F be the cycle bounded by r(y1)y1uvy2r(y2) and the
part of the path x1x2x3x4 between r(y1) and r(y2). As `(F ) ≤ 7, F
bounds a face. Note that R(y1) 6= R(y2) and `(R(y1)) = `(R(y2)) = 4,
as each of R(y1) and R(y2) shares an edge with the path induced by
X1. Since F shares edges with both R(y1) and R(y2), `(F ) ≥ 6. It
follows that F shares at least one edge with the path induced by X1

as well. However, this is impossible, since |X1| ≤ 3.

Therefore, the assumptions of Theorem 5.9 are satisfied by G′ and L′. We con-
clude that we can find a proper coloring of G, which contradicts the choice of G
as a counterexample to Theorem 5.9.
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Chapter 6

Packing coloring

This chapter is based on a paper The packing chromatic number of infinite product
graphs by Fiala, Klavžar and Lidický [19] and a manuscript The packing chromatic
number of the square lattice is at least 12 Ekstein, Fiala, Holub and Lidický [13].

6.1 Introduction

The concept of packing coloring comes from the area of frequency planning in
wireless networks. This model emphasizes the fact that some frequencies are used
more sparely than the others.

In graph terms, we ask for a partition of the vertex set of a graph G into dis-
joint classes X1, . . . , Xk (representing frequency usage) according to the following
constraints. Each color class Xi should be an i-packing, that is, a set of vertices
with the property that any distinct pair u, v ∈ Xi satisfies dist(u, v) > i. Here
dist(u, v) denotes the usual shortest path distance between u and v. Such par-
tition is called a packing k-coloring, even though it is allowed that some sets Xi

may be empty. The smallest integer k for which there exists a packing k-coloring
of G is called the packing chromatic number of G and it is denoted by χρ(G).
This concept was introduced by Goddard et al. [25] under the name broadcast
chromatic number. The term packing chromatic number was later (even if the
corresponding paper was published earlier) proposed by Brešar et al. [5].

Sloper [41] followed with a closely related concept, the eccentric coloring. An
eccentric coloring of a graph is a packing coloring in which a vertex v is colored
with a color not larger than the eccentricity of v. His results among others imply
that the infinite 3-regular tree has packing chromatic number 7.

The determination of the packing chromatic number is computationally difficult.
In particular, it is NP-complete for general graphs [25]. In addition, in the same
paper it was also proved that it is NP-complete to decide whether χρ(G) ≤ 4.
But things are even much worse: Fiala and Golovach showed that determining
χρ(G) is one of few problems that are NP-complete on trees [18].

The following interesting phenomena was the starting point for our investigations.
The packing chromatic number of the infinite square lattice Z2 is finite, more
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precisely, Goddard et al. [25] showed that it lies between 9 and 23. On the other
hand, Finbow and Rall [20] proved that the packing chromatic number of the
infinite cubic lattice Z3 is unbounded. So where does a step from a finite number
to the infinity occur? In Section 6.3 we prove that the packing chromatic number
is unbounded already on two layers of the square lattice, that is, χρ(P2 � Z2) =∞.

The upper bound for the square lattice was pushed to 17 by Holub and Soukal [28].
We improve the lower bound to 10 without using a computer and to 12 with use
of a computer.

Just like square and cubic lattices, the hexagonal lattice H is important in differ-
ent applications, for instance in the field of frequency assignment [22], which was
the original motivation for packing chromatic cumber. Brešar et al. [5] showed
that 6 ≤ χρ(H) ≤ 8 and asserted (without a proof) that the actual lower bound
is 7. This was later indeed verified, using a computer, by Vesel [46]. In preprint
version of [5], they asked if 8 is the correct bound. We prove an upper bound
7. As a consequence we now know that χρ(H) = 7. We also investigate the
situation of the hexagonal lattice with more hexagonal layers and we prove that
χρ(Pm �H) = ∞ for every m ≥ 6. Unlike for the square lattice we show that
χρ(P2 �H) is finite by exhibiting a coloring using 536 colors.

6.2 Density

Our approach on proving lower bounds or that a lattice L cannot be covered by
a finite number of packings is based on arguments using the notion of the density
of a packing. The idea is, roughly speaking, to assign first a unit area to every
vertex of L. Then we redistribute the area to vertices covered by the packing such
that areas at vertices from the packing are equal and as large as possible. In this
way we can define a density for every vertex from the packing as the reciprocal
of the area.

Formally we proceed as follows. Let Xk be a k-packing in L. For every x from L
and a positive integer l we denote by Nl(x) the set vertices at distance at most
l from x, i.e. Nl(x) := {y : y ∈ L, dist(x, y) ≤ l}. Observe that for arbitrary
vertices u and v of Xk the sets Nbk/2c(u) and Nbk/2c(v) are disjoint, since the
vertices u and v are at distance greater than k.

Let k be an odd number, x be a vertex from Xk, and y be a vertex at distance⌈
k
2

⌉
from x. Then there is no vertex from Xk in Nbk/2c(y). Hence y is not in

Nbk/2c(z) of any vertex z from Xk. We redistribute the unit area assigned to y to
vertices of Xk by sending the reciprocal of its degree to every of its neighboring
sets Nbk/2c(x) as follows:

Definition 6.1. The k-area A(x, k) assigned to a vertex x ∈ V (L) is defined by

A(x, k) :=


|Nk/2(x)| for k even ,

|Nbk/2c(x)|+
∑

y∈V (G)
dist(x,y)=dk/2e

|N1(y) ∩Nbk/2c(x)|
deg(y)

for k odd .
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If the k-area is the same for all vertices of the lattice L we define A(k) := A(x, k),
where x is chosen arbitrarily.

By abuse of language we only speak of area instead of k-area if k is clear from the
context. See Figure 6.1 for an example of distribution of the area in Z2. Note that
the area A(k) is in particular well-defined for lattices that are vertex transitive.

A(2) = 5 A(3) = 8

Figure 6.1: Coverage of Z2 by X2 on the left and by X3 on the right. Vertices
from the packings are black. The dotted cross shapes correspond to N1(x). The
white vertices on the right are not covered by any set N1(x), x ∈ X3. For every
white vertex, each adjoining set N1(x) receives 1

4
or 2

4
of its area, depending on

the mutual position.

The definition of the area is justified in the following fundamental observation.

Proposition 6.2. If a finite graph G has a packing k-coloring and all areas A(i),
1 ≤ i ≤ k, are well-defined, then

k∑
i=1

1

A(i)
≥ 1 .

Proof. If G has n vertices then any color class Xi can contain at most n
A(i)

vertices.

Therefore, n = |VG| = |X1| + · · · + |Xk| ≤ n
A(1)

+ · · · + n
A(k)

, and the assertion
follows.

Definition 6.3. LetG be a graph. Then the density of a set of verticesX ⊂ V (G)
is

d(X) := lim sup
l→∞

max
x∈V

{ |X ∩Nl(x)|
|Nl(x)|

}
.

The following claim goes immediately:

Observation 6.4. Let G be a graph and X ( V (G). Then for every ε > 0 there
exists l0 such that for every vertex x ∈ V (G) and l > l0, it holds that

|X ∩Nl(x)|
|Nl(x)| < d(X) + ε .

83



We now get an analogue of Proposition 6.2.

Lemma 6.5. For every finite packing coloring with k classes X1, X2, . . . , Xk of
a graph G holds that

k∑
i=1

d(Xi) ≥ d(X1 ∪X2) +
k∑
i=3

d(Xi) ≥ d
( k⋃
i=1

Xi

)
= 1 .

Proof. We apply iteratively the following argument that for any vertex x and
arbitrarily positive small ε, every sufficiently large l satisfies that

|Nl(x) ∩ (X ∪ Y )|
|Nl(x)| ≤ |Nl(x) ∩X|

|Nl(x)| +
|Nl(x) ∩ Y |
|Nl(x)| ≤ d(X) + d(Y ) + ε.

Let x be a vertex of a graph G. We denote the boundary of Nl(x) by ∆Nl(x) :=
{y : dist(y, x) = l}.
Lemma 6.6. If for a graph G the area A(k) is well-defined, and if

lim
l→∞
|∆Nl(x)|
|Nl(x)| = 0 ,

then for any k-packing Xk it holds that d(Xk) ≤ 1
A(k)

.

Proof. We choose a vertex x arbitrarily and use the following estimate: |Xk ∩
Nl(x)| ≤ |Nl(x)|

Ak
+ |{y : l− k ≤ dist(y, x) ≤ l}|. Here the first summand estimates

the maximum number of vertices z of Xk such that Nbk/2c(z) ⊂ Nl(x). The
second summand is simply a rough estimate of all the remaining vertices of Nl(x).
According to our assumptions the right summand is negligible in comparison with
Nl(x) if l is large enough and the claim follows.

6.3 Square lattices

In this section we focus on the case when two factors of the Cartesian product
are 2-way infinite paths. In particular we prove that χρ(Pm � Z2) =∞ for m ≥ 2
and that χρ(Z2) ≥ 10.

We now focus our attention on the lattice P2 � Z2.

6.3.1 Two layers are not colorable

Lemma 6.7. For every k and the lattice P2 � Z2,

A(k) =

{
k2 + 2 for k even ,

k2 + 1 for k odd .
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Proof. Observe that in a single layer of Z2 for any vertex x ∈ Z2 and integer i it
holds that |{y : dist(x, y) = i}| = 4i. Then the number of vertices at distance at
most l in Z2 from any fixed vertex is 1 +

∑l
i=1 4i.

In the lattice P2 � Z2 we first consider the case of an even k = 2l. We count the
size of Nl in both layers separately. By using the previous observation we get
that:

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i+ 1 +
l−1∑
i=1

4i = 4l2 + 2 = k2 + 2 .

If k = 2l + 1 is odd then we first discuss the case of k = 1. In this case A(1) =
1 + 5

5
= 2 since N0(x) is just a single vertex and it has 5 neighbors.

For the case of l ≥ 1 we have to distinguish four kinds of vertices that are at
distance l + 1 from some vertex x:

• four such vertices have one neighbor in Nl(x) — those from the same Z2-
layer as x that share a coordinate with x,

• 4l vertices have two neighbors in Nl(x) — those remaining from the same
layer,

• another four vertices have also two neighbors in Nl(x) — those from the
other layer but which share a coordinate with x,

• 4l − 4 vertices have three neighbors in Nl(x) — all the remaining vertices
from the other layer.

In total we have:

A(k) = |Nl(x)|+ 4
1

5
+ 4l

2

5
+ 4

2

5
+ (4l − 4)

3

5
= 4l2 + 2 + 4l = k2 + 1 .

We now are ready to prove the main result of this section, i.e. that the packing
chromatic number of two layers of the square lattice is infinite.

Theorem 6.8. For any m ≥ 2, it holds that χρ(Pm � Z2) =∞.

Proof. To get the result it is enough to prove the case m = 2. Let V be the
vertex set of P2 � Z2.

We show that the sum of densities of all optimal k-packings is strictly less than
one and get a contradiction with Lemma 6.5.

Since the lattice P2 � Z2 satisfies assumptions of Lemma 6.6 (cf. also Lemma 6.7),
we can bound densities in terms of area, and for areas use an explicit expression
given by Lemma 6.7.

However, this approach does not work such straightforwardly — the case of op-
timal 1- and 2-packings needs to be treated separately: Observe that the box
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P2 �P2 �P2 (the cube) cannot contain more than five vertices from X1 ∪ X2.
Hence we can bound the density of d(X1 ∪ X2) by 5

8
since the whole lattice

P2 � Z2 can be partitioned into such boxes.

We get a contradiction by the following estimate that holds for any packing
coloring X1, . . . , Xk:

d
( k⋃
i=1

Xi

)
≤ d(X1 ∪X2) +

k∑
i=3

d(Xi) ≤ 5

8
+
∞∑
i=3

1

A(i)
≤

≤ 5

8
+

15∑
i=3

1

A(i)
+

∫ ∞
i=15

di

i2
≤ 0.9329 +

1

15
< 1 .

Here the exact value of the sum of the first 15 summands was obtained by a
computer program.

6.3.2 Lower bound 10

In this subsection we focus our attention on the square lattice Z2 and improve
the lower bound of its packing chromatic number from 9 to 10. We base the
argument on an observation that the best packing patterns for X1 and for Xk

with even k significantly overlap.

Lemma 6.9. For the lattice Z2 and every k it holds that A(k) =
⌊
k2

2

⌋
+ k + 1.

Proof. In the proof of Lemma 6.7 we have already observed that |{y : dist(x, y) =
i}| = 4i for every vertex x ∈ Z2 and every i.

In the case of an even k = 2l we have

A(k) = |Nl(x)| = 1 +
l∑

i=1

4i = 2l2 + 2l + 1 =
k2

2
+ k + 1 .

In the case of an odd k = 2l + 1 we have four vertices at distance l + 1 from x
that have a single neighbor in Nl(x) and the remaining 4l vertices at distance
l + 1 have two neighbors in Nl(x). We get that

A(k) = |Nl(x)|+ 4
1

4
+ 4l

2

4
= 2l2 + 4l + 2 =

⌊k2

2

⌋
+ k + 1 .

We now show that the best possible coverage of Z2 by X1 ∪ X2 covers 5
8

of the
lattice which improves the bound 1

2
+ 1

6
corresponding to the case where X1 and

X2 are treated separately.

Lemma 6.10. The density d(X1 ∪X2) on Z2 is at most 5
8
.
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v1 v2

v3v4v5

v6

v7

v8

Figure 6.2: The graph O.

Proof. We first define a graph O on eight vertices consisting of a cycle v1, . . . v6, v1,
a chord v1v4 and two vertices v7 and v8 of degree one adjacent to v1 and v4

respectively.

In Figure 6.2 is depicted an embedding of the graph O in Z2. We say that the
position of O is [x, y] if in such an embedding of O the vertex v1 is placed at [x, y].

The square lattice Z2 can be partitioned into copies of O, e.g. those copies of
O placed at positions [4i + 2j, 2j] where i, j ∈ Z. This partition is depicted in
Figure 6.3 and through the proof we assume that it is fixed.

y

x

Figure 6.3: A partition of Z2 into isomorphic copies of O.

Assume that X1, . . . , Xk is a packing k-coloring of Z2. Let X be the union of
X1 and X2. We bound the density of X according to Definition 6.3, but first we
present some properties of X and O. For this purpose, a copy of O is called a
z-copy if it contains exactly z vertices of X.

The goal is to show that on average every copy of O contains at most 5 vertices
of X.

We assume that the partition contains a 6-copy O[x, y] and without loss of gen-
erality assume, that v3, v6, v7, v8 ∈ X1 and v2, v5 ∈ X2.

87



vertices of X1

vertices of X2

other vertices

Figure 6.4: A 6-copy O[x, y] is the bottom left copy of O. The others are possi-
bilities for a 5-copy O[x+ 2, y + 2].

We claim that if the partition contains another 6-copy O[x+ 2i, y + 2i] for some
i > 0 then there exists j ∈ [0, i] such that O[x + 2j, y + 2j] contains strictly less
than 5 vertices of X.

Observe that v6 and v7 of O[x + 2, y + 2] do not belong to X. There are four
possibilities of extending X such that O[x + 2, y + 2] contains five vertices of
X. They are depicted in Figure 6.4. All four possibilities force that v6 and v7

from O[x + 4, y + 4] do not belong to X. Hence it becomes an invariant which
propagates through the diagonal up to O[x+2i, y+2i]. This contradiction proves
the claim.

Note that in previous paragraph we went along the up-right diagonal. It was due
to the configuration of the 6-copy O[x, y]. For the other possible configuration,
where v3, v5 ∈ X2, we use the down-right diagonal. It is essential that in either
case we can proceed the diagonals to the right. In the sequel we refer to such a
diagonal from a 6-copy as an O-strip. The O-strip contains only 5-copies. Note
that the O-strip can be one-way infinite.

It may happen that two O-strips have different orientations and hence they cross.
Assume that the partition contains appropriate 6-copies O[x − 2i, y − 2i] and
O[x− 2j, y+ 2j] for positive i, j such that O[x, y] is in the intersection of the two
corresponding O-strips.

Assume also that between O[x, y] and O[x − 2i, y − 2i] are only 5-copies as well
as for the other O-strip. We reuse the invariant from the previous paragraph and
get that X contains no v5, v6, v7 or v8 of O[x, y]. Moreover, at most three vertices
of v1, . . . , v4 may belong to X. Hence O[x, y] contains at most three vertices of
X. See Figure 6.5.

Now we are ready to prove the limit on the density of X. For every 6-copy C we
traverse the diagonal while increasing the first coordinate. We either encounter
a z-copy D where z < 5 or the diagonal consist only of 5-copies. The z-copy D
is a pairing copy for C. Note that D can be in two pairs but then z < 4.

Let x be an arbitrary vertex. We use the fact that liml→∞
|∆Nl(x)|
|Nl(x)| = 0 on Z2. We

denote by Ol(x) the set of copies of O which are included in Nl(x).

Now we show that |X ∩Nl(x)| ≤ 5|Ol|+ c|∆Nl(x)|. If a 6-copy and its pair copy
are both in Ol(x) then they contribute to X ∩Nl(x) at most 10 vertices. Indeed,
if the two copies are paired with a single copy of O then these three contain at
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[x, y]

[x− 2j, y + 2j]

[x− 2i, y − 2i]

vertices of X1

vertices of X2

not sure
other vertices

Figure 6.5: Intersection of two O-strips. In every possible intersection some
vertices are forced to be in X1, X2, or they are not covered at all. The square
vertices are not forced.

most 15 vertices of X.

Observe that the number of 6-copies which has no pair copy in Ol is linear in
|∆Nl(x)| since traversing a diagonal of a copy of O without its pair in Ol(x) ends
on the boundary. Note that Ol(x) does not have to cover whole Nl(x) but it can
miss linearly many vertices of the boundary. See Figure 6.6.

6-copy of O;

pairing O copy for a 6-copy or O-copy on border

vertices not covered by Ol

vertices in Ol

Figure 6.6: Bounding density of X in Nl(x)

Finally, the density of X is:

d(X) ≤ lim sup
l→∞

(
5

8
+
c|∆Nl(x)|
|Nl(x)|

)
=

5

8
.

Theorem 6.11. For the infinite square lattice Z2 it holds that 10 ≤ χρ(Z2).
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Proof. We compute an upper bound on the density of the union of packings Xi,
1 ≤ i ≤ 9. The bound for the union of X1 and X2 is given in Lemma 6.10. The
other packings are bounded separately by using Lemma 6.9.

d
( 9⋃
i=1

Xi

)
≤ 5

8
+

9∑
i=3

1

A(i)
=

3830381

3837600
< 1.

Finally Lemma 6.5 implies that the packing chromatic number of Z2 is at least
10.

6.3.3 Lower bound 12 (computer assisted)

By using a computer we were able to improve the lower bound on the square
lattice from the previous subsection from 10 to 12.

Theorem 6.12. The packing chromatic number for the square lattice is at least
12.

Proof. The proof relies on computer. We describe the main idea of the algorithm,
which proves the theorem. All necessary code for running the computation is
available at http://kam.mff.cuni.cz/~bernard/packing.

The algorithm for proving Theorem 6.12 is a brute force search through all pos-
sible configurations on lattice 15 × 9. It is too time consuming to simply check
every configuration. Hence we use the following observation to speed up the
computation by avoiding several configurations.

Observation 6.13. If there exists a coloring of the square lattice with 11 colors
then it is possible to color lattice 15× 9 where color 9 is at position [5, 5].

Any other color at any other position could be fixed instead of 9 at [5, 5]. Color
9 at [5, 5] just sufficiently reduces the number of configurations to check. We do
not claim that it is the optimal choice.

If there exists a coloring we simply find any vertex of color 9 and take a piece of
the lattice in its neighborhood.

So in the search through the configurations we assume that at position [5, 5] is
precolored by 9. The coloring procedure gets a matrix and tries to color the
vertices row by row. A pseudocode follows.
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function boolean try_color(lattice, [x,y])

begin

for color := 1 to 11 do

if can use color on lattice at [x,y] then

lattice[x,y] := color

if [x,y] is the last point return true

else if try_color(lattice, next([x,y]) then return true

endif

endfor

return false

end

We have two implementations of this function. One is in the language C++ and
the other is in Pascal. The first one is available online at http://kam.mff.cuni.
cz/~bernard/packing. We include the full source code as well as descriptions
of inputs and outputs. We were checking the outputs of both programs during
the computation and we verified that they match. The total number of checked
configurations was 43112312093324. The computation took about 120 days of
computing time on a single core workstation in year 2009.

The procedure fails to color the matrix 15 × 9 with 9 at position [5, 5]. Hence
we conclude that the packing chromatic number for the square lattice is at least
12.

6.4 Hexagonal lattice

Now we turn our attention to the infinite hexagonal lattice H.

6.4.1 Upper bound 7

We first exhibit its packing coloring of H that uses only 7 colors.

Theorem 6.14. For the hexagonal lattice H, χρ(H) ≤ 7.

Proof. We exhibit a tiling of H; refer to Figure 6.7. One class of the bipartition
of the lattice H is the first color class X1. The other class of bipartition can
be covered by packings X2, . . . , X7. The pattern for filling the hexagonal lattice
consists of 12 vertices. It is bordered by a bold line in the figure.

6.4.2 Coloring two layers

Next we turn our attention to layers of the hexagonal lattice. First we show that
two layers of hexagonal lattice have finite packing chromatic number and in the
subsection we show that six layers cannot be colored.

Theorem 6.15. For two layers of the hexagonal lattice P2 �H,
χρ(P2 �H) ≤ 537.
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2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

2 4 3 2 6 3
3 2 5 3 2 7

3

1

?

1

?

1
3

Figure 6.7: The pattern for partitioning hexagonal lattice using 7 packings of
pairwise different width.

Proof. We have found a tiling of P2 �H by a method similar to the method
Holub a Soukal [28]. As the resulting pattern on 1179648 vertices is a bit too
large for printing on a paper it can be found on the enclosed CD. Here we only
briefly described the method. The method requires a computer to succeed in a
reasonable time.

We start by coloring half of the vertices by color one and we process color one
by one in the increasing order. For every color c we take all already generated
coloring using colors 1, . . . , c − 1 and we extend them by using c on uncolored
vertices. We store for further processing with color c + 1 only patterns with
minimum number of uncolored vertices and even from them we randomly chose
just several as the total number of possible patterns is horribly large.

6.4.3 Six layers are not colorable

In this last subsection we show that six layers of the hexagonal lattice cannot
be covered by a finite number of packings of pairwise different width. We follow
the same approach as we have used for proving Theorem 6.8. We number the
hexagonal layers of P6 �H by 1, 2, 3, 4, 5, 6 where layer 1 and layer 6 are on the
boundary. Every vertex is in one layer.

Lemma 6.16. For every l ≥ 6, the density of X2l on P6 �H is at most 1
9l2−36l+66

.
The upper bounds on d(X2), d(X4), . . . , (X10) are given in the next table.

l 1 2 3 4 5
d(X2l) ≤ 1

5
1
15

1
34

1
65

1
111

Proof. We count the size of Nl(x) and obtain an upper bound on the density due
to Lemma 6.6. The size of Nl(x) depends on the choice of x. More precisely
it depends on the layer of x. The smallest size of Nl(x) is for x in one of the
boundary layers. On the other hand it is the largest for layers 3 and 4. Hence we
bound the size Nl(x) from below by the size of Nl of vertices in layer 1.

Let y be a vertex of H. Then the number of vertices at distance l is 3l. Hence
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the number of vertices at distance at most l including y is

|NHl| := 1 +
l∑

i=1

3i = 1 + 3
(l + 1)l

2
.

For a vertex x in the layer 1 we compute the size of Nl(x) in the following way:

|Nl(x)| =
l∑

i=l−5

|NHi| = 9l2 − 36l + 66.

Note that the last equality holds only for l ≥ 6. The values of Nl(x) for smaler
values of l were computed explicitly.

Lemma 6.17. Any packings X1, X2, X3, and X4 on P3 �H staisfy that:

• d(X3) ≤ 2
18

.

• d(X1 ∪X2 ∪X4) ≤ 12
18

.

Proof. We partition P3 �H into copies of P3 �C6. The graph P3 �C6 and par-
titioning of H into disjoint copies of C6 are depicted in Figure 6.8.

The graph P3 �C6 consists of three copies of C6. We call them layer 1, layer 2,
and layer 3 where layer 2 is the middle one.

The first claim of the lemma follows from the simple fact that |X3∩(P3 �C6)| ≤ 2.

In the rest of the proof we abbreviate X := X1 ∪X2 ∪X4.

Assume that it is possible to cover 13 vertices of P3 �C6 by X. Then there is
a copy C of C6 such that |X ∩ C| = 5. There are two possibilities of such a
covering: either |X2 ∩ C| = 1 or |X2 ∩ C| = 2.

First we discuss the case that there are two layers with five vertices of X. The
only possibility is that they are not neighbors because of vertices from X4. Hence
these layers are 1 and 3. Two cases of possible layer 1 are depicted in Figure 6.9.
These two cases are compatible three cases for layer 3. We determined them by
the position of a vertex from X4 which is unique. It is not possible to cover more
than one vertex in layer 2, therefore we get at most 11 covered vertices.

Now we know that one layer contains five vertices and the other two contain four
vertices. We introduce two observations about X2 and X1 ∪ X2 which give us
more information about possible structure of the layers.

The first observation is that if one of the layers contains two vertices of X2 then
the neighboring layer(s) does not contain any vertices of X2. This holds since all
vertices in the neighboring layers are at distance at most two from the vertices of
X2.

The second observation is that P3 �C6 contains at most 11 vertices of X1 ∪X2.
So let there be 12 such vertices. One layer may contain at most four vertices of
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X1∪X2. Hence every layer contains four of them. Moreover, every layer contains
exactly one vertex of X2 since every layer must contain at least one. Take the
middle layer and let v be the vertex from X2. Since we want to cover four vertices
of the middle layer, the vertices of X1 are determined by the position of v. Then
vertices of X1 are also determined in the other two layers since there must be
three of them in each; refer Figure 6.8. Now the only two vertices left for X2 in
layers one and three are too close to each other hence it is not possible to cover
12 vertices by X1 ∪X2.

v

vertices in X1

vertex in X2

candidates for X2

other vertices

Figure 6.8: On the left-hand side is a possible tiling of the hexagonal lattice
using C6’s. On the right-hand side is a coverage of C6 �P3 by X1 and X2 which
contains 9 vertices of X1 and a vertex of X2 in the middle layer. There are only
two other candidate vertices for X2, which are square vertices. But they are too
close to be both in X2.

Since X1 ∪ X2 covers at most 11 vertices and we want to cover 13 vertices, we
derived that two vertices must be from X4. These two vertices must be in layer
1 and layer 3. Hence the layer containing five vertices of X must be layer 1 or
layer 3. Assume without lost of generality that it is layer 1. The other two layers
must each contain four vertices of X.

Hence the middle layer must contain one vertex from X2 and three vertices of
X1. This implies that the first layer contains only one vertex from X2. Hence
we know the configurations for layer 1 and layer 2. See Figure 6.10. We observe
that there are only three vertices in layer 3 which can be in X. Hence we failed
to include 13 vertices of P3 �C6 to X.

In the following lemma we estimate the density of X5 on P6 �H by a simpler
case study on P3 �H.

Lemma 6.18. The density of any packing X5 on P3 �H is at most 1
21.9

.

Proof. We bound the density using Lemma 6.6. We compute A(x, 5) in P3 �H
for a vertex x in one of two outer layers. Assume layer 1 for x. Then the area
consists of vertices in N2(x) together with the part obtained from vertices at
distance three from x. We distinguish several types of these vertices.

• six vertices from the layer 1 have one neighbor in N2(x),
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Figure 6.9: Layer 1 contains five vertices of X. There are two possibilities. The
first one is on the left and the second one is on the right. Layer 3 contains also
five vertices of X. Vertices from the middle layer are assigned lists of available
packings.

• three vertices from the layer 1 have two neighbors in N2(x),

• six vertices from the layer 2 have two neighbors in N2(x),

• three vertices from the layer 3 have two neighbors in N2(x).

In total we have:

A(x, 5) = 15 +
6

4
+

6

4
+

12

5
+

6

4
= 21.9 .

For a vertex x from the middle layer the area A(x, 5) is 25.4 hence we can estimate
the area by 21.9 for any vertex of P3 �H. Refer to Figure 6.11 for three hexagonal
layers of P3 �H and N2(x).

4

1

1

2

1

1

2

11

{}
{1}
{}

{1, 2, 4}
{}

{1, 2}

layer 1 layer 2 layer 3

Figure 6.10: Let layer 1 contain five vertices of X and layer 2 contain four vertices
of X. They must look as depicted. Vertices of the third layer have assigned lists
of possible colors. But there are only three with nonempty list.

95



layer 1

x

layer 2 layer 3

Figure 6.11: Three layers of hexagonal lattice. Black square corresponds to x.
Black vertices correspond to vertices from N2(x) and white vertices are at distance
3 from x.

Theorem 6.19. For any m ≥ 6 it holds that χρ(Pm �H) =∞.

Proof. Assume m = 6. We show that the sum of densities of all k-packing is
strictly less than 1 and we get a contradiction with Lemma 6.5.

The lattice P6 �H can be partitioned into two copies of P3 �H. Hence we can
use bound on X1∪X2∪X3∪X4 from Lemma 6.17. Also X5 can be bounded using
Lemma 6.18. Since a (2l + 1)-packing is also a 2l-packing we bound the density
of X2l+1 by the density of X2l. Note that the density of X2l may be bounded by
1

2l2
.

We get the contradiction by the following estimate that holds for any packing
coloring X1, . . . , Xk:

d
( k⋃
i=1

Xi

)
≤ 14

18
+

1

21.9
+
∞∑
i=6

d(Xi)

≤ 541

657
+

59∑
i=6

d(Xi) +
∞∑
i=30

2

(2i)2

≤ 0.982 +
1

2

∫ ∞
i=29

di

i2
≤ 0.982 +

1

58
< 1 .

Again, the exact value of the sum of the first 59 summands was determined by a
computer program.
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Chapter 7

Conclusion

In this work we have presented results on three different variants of colorings.
We have started with studying 6-critical graphs. We have disproved a conjecture
of Thomassen about 6-critical graphs on the Klein bottle by enumerating all
nine non-isomorphic 6-critical graphs on the Klein bottle in Theorem 4.1. We
followed with disproving a conjecture of Oporowski and Zhao by introducing a
6-critical graph with five crossings different from K6 and we have pushed their
result further and have proved that K6 is the only 6-critical graph with crossing
number at most four.

The work in this area might follow by enumerating critical graphs on other sur-
faces or with higher crossing number. In particular, it would be interesting to
know the complete list of 6-critical graphs with crossing number at most five. So
far there are only two such graphs known and it remains open if there are any
other such graphs.

In the second part of the work we have focused on list coloring of planar graphs
with restrictions on short cycles. Coloring and list coloring of planar graphs are
very popular topic with many recent results. We have presented a proof that
planar graphs without triangles, 7- and 8-cycles are 3-choosable and a proof that
planar graphs without triangles and constraints on 4-cycles are 3-choosable. The
latter result is improving a result of Thomassen that every planar graph without
triangles and 4-cycles is 3-choosable.

The current state of art in this area is monitored by a site maintained by Mon-
tassier [36]. In particular, Steinberg’s conjecture that every planar graph without
4- and 5-cycles is 3-colorable is opened for more than thirty years. Another inter-
esting opened problem, not mentioned on Montassier’s page, is if there exists k
such that every planar graph without odd cycles of lengths up to k is 3-choosable.
So far it is only known that k > 3. An upper bound on k would strengthen a
result of Alon and Tarsi [1] and show that locally bipartite planar graphs are
3-choosable.

In the third part we have focused on packing coloring which is a very recent
concept motivated by channel assignment. We have improved a lower bound
on the packing chromatic number for the square lattice from 9 to 12 (the best
upper bound is 17) and an upper bound of Brešar, Klavžar and Rall [5] for the
hexagonal lattice from 8 to 7 and hence matched the lower bound 7. We have
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also improved a result of Finbow and Rall [20] about layers of the square lattice
by showing that it is not possible to color even two layers, while they showed the
same for infinite number of layers. We finished by showing that six layers of the
hexagonal grid cannot be colored by a finite number of colors while two layers
can be colored by a finite number of colors.

An open problem left on the hexagonal grid is to find the number of layers that
can be colored by a finite number of colors. The number is known to be between
two and five. It seems that three layers are difficult to color and hence it might be
the case that three layers cannot be colored by a finite number of colors. Current
results suggest that cubic planar graphs have bounded packing chromatic number.
Hence it is an interesting problem for future research. The notion of density we
have defined does not work on all graphs. In particular, it does not work on
infinite 3-regular trees. Generalization of the definition of density to all graphs is
also a possible direction of exploration.
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