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Abstract

We determine the inducibility of all tournaments with at most 4 vertices together with the
extremal constructions. The 4-vertex tournament containing an oriented C3 and one source
vertex has a particularly interesting extremal construction, first conjectured by Bożyk, Grze-
sik and Kielak. It is an unbalanced blow-up of an edge, where the sink vertex is replaced
by a quasi-random tournament and the source vertex is iteratively replaced by a copy of the
construction itself.

1 Introduction
One of the central questions in extremal graph theory is to maximize the number of induced copies
of a given graph H in a larger host graph on a fixed number of vertices. Denoting the number of
vertices by of a graph G by |G|, let I(H,G) be the number of vertex subsets of G which induce a
graph isomorphic to H, and let

I(H,n) = max
|G|=n

I(H,G).

We normalize these definitions and write i(H,G) = I(H,G)

(|G|
|H|)

and i(H,n) = I(H,n)
( n
|H|)

. This implies that

0 ≤ i(H,G) ≤ 1, and we can think of i(H,G) as a subgraph density. An easy averaging argu-
ment shows that i(H,n) is monotone decreasing and thus converges for n → ∞. Pippenger and
Golumbic [25] define the inducibility of H as the limit of this quantity,

i(H) = lim
n→∞

i(H,n).

Determining inducibilities is notoriously difficult, and the answer is known only for very few
explicit graphs H. A major breakthrough for the problem was the introduction of the flag algebra
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method by Razborov [26] in 2007, and since then the inducibility of a good number of small graphs
has been determined with the help of this method [1, 3, 10]. While we are using this method as
well in this paper, we will not thoroughly explain it here but rather direct the reader to earlier
papers [2,8,21]. In a nutshell, the method uses semidefinite programming to solve an optimization
problem on subgraph densities which can be set up in a very structured and easily computer assisted
way, almost to the point where one may call it fully automated. We can add any number of linear
constraints on the subgraph densities to the semidefinite program. Nevertheless, we do not even
know i(P4), i.e. the inducibility of the path on four vertices, and we do not even have a conjecture
for the answer.

On the other end of the spectrum, Fox, Huang, and Lee [12], and independently Yuster [27],
have determined exact values for i(H,n) and thus i(H) for all n and almost all large enough graphs
H by studying random graphs. They show that the extremal construction is an iterated blow-up of
the given graph, a fractal like structure. This iterated blow-up construction was already established
by Pippinger and Golumbic as a general lower bound for inducibilities, and they asked which
graphs meet this lower bound. There are numerous other results on inducibility [5,9,13–15,19,20,
22, 23].

All of these questions can be studied for directed graphs as well, the definitions naturally
transfer. Falgas-Ravry and Vaughan [11] studied inducibility of small outstars using flag alge-
bras. Huang [18] extended the result to all outstars. This was further generalized to other stars
by Hu, Ma, Norin, and Wu [17]. Short paths with further restrictions were considered in [6] and
orientations of a 4-cycle in [16]. In an REU (Research Experience for Undergraduates) in 2018,
Burgher and Burke studied and conjectured extremal constructions for most oriented graphs (di-
rected graphs without 2-cycles) of up to 4 vertices using the flag algebra method. In a similar and
independent project around the same time, Bożyk, Grzesik and Kielak [4] established the same
and more bounds and constructions for oriented graphs.

In this paper, we look closer at the tournaments in this list, i.e. oriented complete graphs. The
number of non-isomorphic tournaments on k vertices is slightly smaller than the number of graphs,
and flag algebra computations tend to have similar power. The two projects mentioned in the previ-
ous paragraph both found inducibility bounds and closely matching lower bound constructions for
all tournaments on up to 4 vertices, where the results are easy or trivial for all but three of these 8
small tournaments. These last three tournaments on 4 vertices have very interesting constructions,
and in this paper we prove that these constructions are indeed optimal for large n.

In a somewhat related question, Mubayi and Razborov [24] considered edge colored tourna-
ments and showed that for every tournament T on k ≥ 4 vertices whose edges are colored by

(k
2

)
distinct colors, the iterated blow-up of T achieves i(T,n). This implies that i(T ) = k!

kk−k in this
rainbow setting.

2 Results
We discuss tournaments on at most four vertices. For the tournaments T1 and T2 on one and two
vertices, respectively, any tournament T has i(Tk,T ) = 1, and thus i(Tk) = i(Tk,n) = 1. Similarly,
for all transitive tournaments T Tk on k ≥ 3 vertices, the transitive tournament T Tn on n ≥ k vertices
is the unique tournament on n vertices with i(T Tk,T ) = 1, and thus i(T Tk) = i(T Tk,n) = 1. On the
other hand, i(T T3,T ) is minimized exactly if T has all out-degrees in {n−2

2 , n−1
2 , n

2}. This easily
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follows from counting T T3 by first choosing the source vertex, and then any two out-neighbors. As
a consequence, one gets for the only other tournament on three vertices C3:

Proposition 1 (Folklore). The number of induced copies of C3 is maximized if and only if every
vertex of a tournament has out-degree in {n−2

2 , n−1
2 , n

2}.

This implies i(C3) = 1/4 and leaves us with three 4-vertex tournaments to consider, see Fig-
ure 1: the tournaments we get from C3 by adding a source vertex (C+

3 ), a sink vertex (C−
3 ), and by

adding a vertex of out-degree 1 or 2 (this choice results in isomorphic outcomes, the carousel C4
defined in the next paragraph).

T T4 C+
3 C−

3 C4

Figure 1: The four 4-vertex tournaments.

Let us now define the class Cn of carousels on n ≥ 3 vertices. A tournament T is in Cn if its
vertices can be labeled {v1,v2, . . . ,vn} such that viv j ∈ E(T ) if 0 < j− i < n

2 or if −n < j− i <−n
2 .

An easy exercise shows that a tournament T is in Cn if and only if for every x ∈ V (T ), the in-
and out-neighborhoods induce transitive tournaments (T is locally transitive) and are as balanced
as possible (T is balanced when |V (T )| is odd, or nearly balanced when |V (T )| is even). See
Figure 2 for an illustration.

Observe that for odd n and for n = 4 (up to isomorphism), Cn contains exactly one tournament,
and we will call this unique carousel Cn. For even n ≥ 6, Cn contains more than one tournament,
depending on the directions of the arcs vivi+ n

2
. For even n, we denote by Cn ∈ Cn the unique

tournament we get from deleting one vertex in Cn+1. Note that one can alternatively construct
Cn from Cn−1 by duplicating one vertex and adding the edge between the two otherwise identical
vertices in either direction.

Our first result describes precisely all extremal constructions for I(C4,n) for large enough n.

Theorem 2. For n ≥ 4, the tournaments maximizing I(C4,T ) are precisely the tournaments in Cn.
Consequently, i(C4) =

1
2 , and for every n, we have

I(C4,n) =

{
n(n2−1)(n−3)

48 if n is odd,
n(n2−4)(n−3)

48 if n is even.

Note that the asymptotic statement that i(C4) =
1
2 is also proved in [4], with a proof very similar

to the one we provide in the next section. Numeric bounds from flag algebra computations indicate
that a similar statement may also be true for C5, C6, C7 and C8, and we conjecture it is true for all
k. See the discussion at the end of this paper for a few more details on this. Observe that for k ≥ 5
and even n ≥ k, Cn contains more copies of Ck than the other members of Cn, so our conjectured
extremal tournament is unique for k ≥ 5.
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v

N−(v) N+(v)

TransitiveTransitive

Figure 2: For odd n, the carousel C ∈ Cn is unique and vertex transitive. For even n, the directions
of the diagonals can be chosen arbitrarily, resulting in several non-isomorphic tournaments.

Conjecture 3. For all k ≥ 5 and n ≥ k, the unique n-vertex tournaments maximizing I(Ck,T ) are
the tournaments Cn.

The only tournaments on 4 vertices left to consider are the two tournaments C−
3 and C+

3 . As
one gets C−

3 from C+
3 by reversal of all arcs, the tournaments extremal for C−

3 are precisely the re-
versals of the tournaments extremal for C+

3 , so it suffices to only study C+
3 . Consider the following

probabilistic construction of a tournament T̃n on n vertices which was discovered independently by
Burgher and Burke, and in [4] with an almost matching upper bound via the flag algebra method.
For some fixed α ∈ (0,1), partition the vertices into two sets Hn (for high out-degree) and Ln (for
low out-degree) of size ⌈αn⌉ and ⌊(1−α)n⌋, respectively. On the set Ln, direct the edges uni-
formly at random, i.e. insert a random tournament R on ⌊(1−α)n⌋ vertices. All arcs between the
sets are directed from Hn to Ln. On the set Hn, iterate the construction, i.e. insert the tournament
T̃⌈αn⌉ inductively. See Figure 3 for a sketch of the iterated construction.

Note that with probability approaching 1 for large n, we have i(H,R) = E(i(H,R))+o(1) for
every tournament H in a random tournament R on n vertices. We may thus choose a (quasi-random)
sequence of tournaments Rn on n vertices with i(H,Rn) =E(i(H,R))+o(1), and use this sequence
in place of the probabilistic construction described above.

In this construction, all copies of C+
3 lie completely in Hn, completely in Ln, or have exactly

one vertex in Hn and three vertices forming a C3 in Ln. Notice that i(C3,R⌊(1−α)n⌋) = 1/4+ o(1)
and i(C+

3 ,R⌊(1−α)n⌋) = 1/8+o(1). As i(C+
3 ,T⌈αn⌉) = i(C+

3 ,Tn)+o(1), we have

i(C+
3 ,Tn) = α

4i(C+
3 ,Tn)+4α(1−α)3i(C3,R⌊(1−α)n⌋)+(1−α)4i(C+

3 ,R⌊(1−α)n⌋)+o(1)

= α
4i(C+

3 ,Tn)+4α(1−α)3 1
4 +(1−α)4 1

8 +o(1),
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T̃n

Hn = T̃αn

Hαn Lαn

Ln

Random, (1−α)n

Figure 3: A construction asymptotically maximizing the number of copies of C+
3 . For α ∈ [0,1]

and n sufficiently large, this construction T̃n can be decomposed into subtournaments Ln, of size
about (1−α)n, and Hn, of size about αn with the properties shown above.

so

i(C+
3 ,Tn) =

α(1−α)3 + 1
8(1−α)4

1−α4 +o(1).

Maximizing this quantity gives us α = 1
5(2

3
√

9−2− 3
√

3)≈ 0.1435836, and

i(C+
3 ,Tn)+o(1) =

1
8

(
8−9 3

√
3+3 3

√
9
)
≈ 0.157500667.

We show in Section 4 that all large extremal tournaments for C+
3 essentially look this way. While

we can not determine exactly the extremal tournaments Tn, we can at least say that the limit object
is a unique graphon (when the original definition of graphons is transferred to the tournament
setting).

Theorem 4. Let (Tn)
∞
n=1 be a sequence of tournaments on n vertices with I(C+

3 ,Tn) = I(C+
3 ,n).

Let α = 1
5(2

3
√

9−2− 3
√

3). For sufficiently large n, the vertex set of Tn can be partitioned into sets
Ln and Hn so that |Hn|= αn+o(1), all arcs between these sets are from Hn to Ln, the sequence of
tournaments (Tn[Ln])

∞
n=1 is quasi-random, and I(C+

3 ,Tn[Hn]) = I(C+
3 , |Hn|). Hence

i(C+
3 ) =

1
8

(
8−9 3

√
3+3 3

√
9
)
≈ 0.157500667.

While C+
3 may not be the most interesting tournament to consider at first, we find this extremal

construction fascinating. It combines quasi-random parts with iterated blow-ups, and is thus more
complex than most known extremal constructions for other problems.
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3 Proof of Theorem 2
Proof of Theorem 2. We begin by observing the following identity for all tournaments T on at least
4 vertices:

i(C3,T ) = 1
2 i(C4,T )+ 1

4 i(C+
3 ,T )+

1
4 i(C−

3 ,T ). (1)

This follows from the fact that the probability to find a C3 when picking three vertices at random is
equal to the probability to first find C4, C+

3 , or C−
3 when picking four vertices, times the appropriate

probability that removing one of these vertices leaves a C3.
Multiplying both sides by

(n
4

)
, we can express this relationship in terms of a direct count of

induced C4 for any tournament T :

I(C3,T ) · n−3
4 = 1

2 I(C4,T )+ 1
4(I(C

+
3 ,T )+ I(C−

3 ,T )),

implying that

I(C4,T ) = I(C3,T ) · n−3
2 − 1

2(I(C
+
3 ,T )+ I(C−

3 ,T )).

Let T ∈ Cn. Then every vertex in T has out-degree in {n−2
2 , n−1

2 , n
2}, so by Proposition 1,

I(C3,T ) is maximized. On the other hand, the out-neighborhoods and in-neighborhoods of all ver-
tices in T induce transitive tournaments, so I(C+

3 ,T ) = I(C−
3 ,T ) = 0. This shows that T maximizes

I(C4,T ). The ideas up to this point are very similar to the proof in [4].
To extend their result to Theorem 2, it remains to show that no other tournament shares this

property. For this, let T be any {C+
3 ,C

−
3 }-free, (near) regular tournament, and let v1 ∈ V (T ) with

d+(v1) = k ∈ {n−2
2 , n−1

2 , n
2}. As T is C+

3 -free, the out-neighborhood of v1 is C3-free and therefore
transitive, and we may relabel the out-neighbors in this induced order as {v2,v3, . . . ,vk+1}. Simi-
larly, the in-neighborhood is transitive, and we may relabel it in the induced order as {vk+2, . . . ,vn}.

Now suppose, for the sake of contradiction, that T /∈ Cn, and thus there exists an arc viv j with
0 < i− j < n

2 or if −n < i− j <−n
2 . Let us first assume that 0 < i− j < n

2 . As {v2,v3, . . . ,vk+1} and
{vk+2, . . . ,vn} are transitively ordered, we have j ≤ k and i ≥ k+1. As v j has out-degree at least
n−1

2 , v j has an out-neighbor vi′ with i′> i, implying that vivi′ ∈E(T ). But now T [v1,v j,vi,vi′]≃C+
3 ,

a contradiction.
Let us now assume that −n < i− j < −n

2 , and so i ≤ k and j > k. Similarly as before, there
now exists a j′ with k < j′ < j and v j′vi ∈ E, which again implies that T [v1,vi,v j′,v j] ≃ C+

3 , a
contradiction proving the theorem.

4 Proof of Theorem 4
Proof of Theorem 4. We start with an upper bound for the inducibility of C+

3 using standard flag
algebra methods. Notice that the upper bound is not sharp, which is common for extremal con-
structions involving iterations. We will always assume that n is large enough that we are allowed
to suppress lower order terms in our computations.

Claim 4.1. i(C+
3 ,n) ∈ (0.157500667,0.157500672).
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Proof. We know that i(C+
3 ,n)> 0.157500667 by our construction. Using standard plain flag alge-

bra techniques, we find that

i(C+
3 )≤

2205009402351719189231861082004597041252856
14000000000000000000000000000000000000000000

< 0.157500672.

We computed with flags of size 8, and the computation, including the subsequent claims, ran for
about 6 hours on a standard desktop. Certificates are too large to be presented here, and do not add
much insight. They can be found at http://lidicky.name/pub/tournaments.

In the next claim, a symmetrization argument gives that every vertex is in roughly the same
number of C+

3 . Recall that in the theorem statement, (Tn)
∞
n=1 is a sequence of tournaments on n

vertices with I(C+
3 ,Tn) = I(C+

3 ,n).

Claim 4.2. Every vertex is in i(C+
3 ,Tn)

(n−1
3

)
+O(n2) many copies of C+

3 .

Proof. By definition, the average number of copies a vertex is in is i(C+
3 ,Tn)

(n−1
3

)
. Let v be a

vertex which is in the fewest copies C+
3 (v), and let w be a vertex which is in the most copies

C+
3 (w). Let C+

3 (vw) be the number of copies containing both v and w. If we delete v, and add a
copy of w, we gain

C+
3 (w)−C+

3 (v)−C+
3 (vw)

copies of C+
3 . As Tn is extremal, this quantity must be non-positive. Observing that C+

3 (vw) =
O(n2) shows the claim.

The traditional way to extract structure from flag algebra computations is to look for subgraphs
for which the computations tell you that they have zero (+o(1)) density in every extremal construc-
tion. But this only works if the bounds from the computation are sharp. If the computations do not
give sharp bounds like in our case, another approach is to do the opposite, and to compute bounds
on subgraphs which occur with high density to find a general structure of the extremal example,
and then use stability methods to establish the finer structure. Neither of these approaches has
much promise in this problem without new ideas. As a large part of the conjectured extremal tour-
nament is quasi-random, all subgraphs appear with a frequency similar to a random tournament,
and structural differences to a random tournament are difficult to extract.

Inspired by the conjectured extremal tournament, we are looking for other features. A first
observation is that the degree distribution is concentrated around a few discrete values. All vertices
in Ln have about the same fairly small out-degree, and all vertices in Hn have very large out-
degree, where the corresponding discrete values are a sequence converging to 1 when normalized.
A second observation is that all arcs between Ln and Hn are directed from Hn to Ln. We use flag
algebra computations to prove that these two observations are true in every extremal tournament,
and from this we are able to prove the theorem.

Let deg(x) be the normalized out-degree distribution function for an extremal tournament Tn:

deg(x) = 1
n

∣∣{v ∈V (T ) : d+(v) = xn}
∣∣ .

For the remainder of the proof, the word “normalized” will be suppressed for simplicity. To make
our computations more intuitive to follow, we will often denote the quantity i(H,Tn) by a picture
of the graph H, so we might write

= i(C+
3 ,Tn).
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We now show that Tn has a degree distribution similar to the conjectured example, i.e. almost all
vertices have degrees in small intervals around the degrees appearing in the construction. While
we might be able to separate the high degree vertices into more degree bands with more effort,
this will not be needed later, so we collect them all in one interval. We state these bounds up to a
precision useful later in the proof.

Claim 4.3. For all x ∈ [0,0.416]∪ [0.44057,0.8849], deg(x) = 0. In other words, all but o(n)
vertices have degrees either in (0.416,0.44057) or in (0.8849,1].

Proof. We prove this claim by showing three bounds. First we investigate vertices v with d+(v)≤
0.85n and obtain lower and upper bounds on d+(v), namely that d+(v)∈ (0.416,0.44057). For the
third bound, we switch to vertices v with d+(v)≥ 0.85n and show that actually d+(v)> 0.8849n.

We begin with the lower bound of the support of deg(x). Fix some vertex v ∈ V (Tn) and
color all vertices in N+(v) black and color N−(v) white. We will use flag algebras to bound the
proportion of black vertices in Tn − v, and to this end we begin setting up a program that can be
bounded by the plain flag algebra method. Since i(C+

3 ,Tn − v) > 0.157500667, we know the sum
of the densities of all 2-colorings of C+

3 is at least 0.157500667. We reduce our search space with
the constraint that ≤ 0.85, interpreted as v having normalized out-degree at most 0.85.

Ignoring lower order terms, we also know that every vertex is in the same number of C+
3 (see

Claim 4.2), so we can add an additional constraint to reflect this fact. If v plays the role of the source
vertex in the C+

3 , then the remaining three vertices are all in N+(v) and induce a C3. Otherwise, v
plays the role of one of the vertices in the C3, and the other three vertices induce a transitive triangle
where the source and sink are in N−(v) and the last vertex is in N+(x). Our coloring scheme thus
allows us to include the final bound in the following program:

Objective:

minimize

Constraints:

≤ 0.85
0.157500667 ≤ + + + + + + +

0.157500667 ≤ +

From this program, we find that > 0.416. More precisely,

≥ 3745132053776853970635292684882343419187823353945331
9000000000000000000000000000000000000000000000000000

> 0.416.

Similarly, we obtain < 0.44057, or more precisely that

≤ 3965045776267019146300369491791058488457641019475359
9000000000000000000000000000000000000000000000000000

< 0.44057,

from the following program:

Objective:
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maximize

Constraints:

≤ 0.85
0.157500667 ≤ + + + + + + +

0.157500667 ≤ +

These two results imply that for large enough n, no vertices have normalized out-degree in
[0,0.416]∪ [0.44057,0.85]. We extend this result with the following program restricting the degree
of large out-degree vertices:

Objective:

minimize

Constraints:

≥ 0.85
0.157500667 ≤ + + + + + + +

0.157500667 ≤ +

This program outputs the lower bound > 0.8849, completing the proof of this claim. More
precisely, it gives

≥ 7964349279220411495203511946962186030422903216282624
9000000000000000000000000000000000000000000000000000

> 0.88492769769.

All certificates can be found at http://lidicky.name/pub/tournaments.

Let Hn be the set of vertices in Tn with normalized out-degree in (0.8849,1], and Ln be the set of
vertices with normalized out-degree in (0.416,0.44057). The above claim implies that Hn ∪Ln =
V (Tn). We now show that no arcs in Tn are directed from Ln to Hn, once again using a coloring-
scheme to acquire localized information in an extremal construction.

Claim 4.4. For every x ∈ Ln and y ∈ Hn, yx ∈ E(Tn).

Proof. Let x ∈ Ln, y ∈ Hn, so x has normalized out degree in [0.415,0.441] and y has normalized
out-degree at least 0.8849. We color V (Tn)− {x,y} with the following scheme, in which the
top color represents the relation to x, and the bottom color represents the relation to y (see also
Figure 4):

• Assign color black-black to N+(x)∩N+(y),

• Assign color black-white to N+(x)∩N−(y),

• Assign color white-black to N−(x)∩N+(y),

9
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x

y

Figure 4: Four-coloring scheme for Tn −{x,y}
.

• Assign color white-white to N−(x)∩N−(y).

In order to model the out-degree assumptions, we will use the following constraints:

0.416 ≤ + ≤ 0.44057 and 0.8849 ≤ + .

As in the proof of Claim 4.3, any programs involving this color scheme can include a constraint to
ensure that x is in the right number of C+

3 with vertices in V (Tn)\y, and that y is in the right number
of C+

3 with vertices in V (Tn)\x.
The purpose of this set up is to show that x → y results in fewer C+

3 than y → x, so we need
to count C+

3 which include both of these vertices, with the edge between the vertices in either
direction. For this, we look again at Figure 4. If x → y, we create a C+

3 with each arc and
with each arc . On the other hand, if y → x, we create a C+

3 with each arc and with
each arc .

Similarly as above, we can now pose the following program bounding the difference between
C+

3 containing x → y and containing y → x. Note that there are up to 96 different C+
3 in Tn −{x,y}

with 4 colors. Also, when counting the C+
3 in Tn−y containing x, we have to account for the colors

induced by the arcs with y.

Objective: maximize  +

−

 +

 .
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Constraints:

0.416 ≤ + ≤ 0.44057
0.8849 ≤ +

0.157500667 ≤ sum of all 4-colorings of C+
3

0.157500667 ≤ + + + + +

+ + + + + +

0.157500667 ≤ + + + + +

+ + + + + +

We find that the solution to this program is bounded above by −0.077:
−94611767053769387132533069422799745047344297
1220703125000000000000000000000000000000000000

≈−0.077506,

implying that (y → x) results in at least 0.077 ·
(n

2

)
more copies of C+

3 than (x → y) in Tn for
sufficiently large n, proving our claim. Certificates can be found at http://lidicky.name/pub/
tournaments.

Having determined the behavior of the relationship between Hn and Ln, we now focus on the
internal behavior of Hn. The following claim implies that, for large enough n, the overall structure
of Tn iterates into Hn.

Claim 4.5. I(C+
3 ,Tn[Hn]) = I(C+

3 , |Hn|).

Proof. The only copies of C+
3 in Tn are those chosen completely in Hn, completely in Ln, or with

precisely 1 vertex chosen from Hn. The arcs in Tn[H] impact neither the second nor third type of
C+

3 . Therefore, Tn[Hn] is extremal and the claim follows.

We next focus on showing that the sizes of Hn and Ln are correct. While we could prove a
slightly stronger bound here with the same method, we only need |Ln|< (6

7 −ε)n later in Claim 4.9.

Claim 4.6. |Ln|< 6
7n−0.00001n ≈ 0.85713n.

Proof. First, since there are no arcs from Ln to Hn, the average out-degree of vertices in Ln is
|Ln|−1

2 , so by Claim 4.3
1
n |Ln| ∈ (0.832,0.88114).

We would like a tighter upper bound, so we pose the following program wherein we color the
vertices in Ln black and the vertices in Hn white. In this program, we assume that |Ln| ≥ 6

7n and
show that the density of C+

3 is then bounded above by a bound smaller than in our construction,
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implying the claim. We note as well that is a forbidden subgraph by Claim 4.4, so we include
this as a constraint in the program as well.

Objective:

maximize + +

Constraints:

6/7−0.00001 ≤ ≤ 0.88114

Forbidden Subgraph:

This program is bounded above by
141750035467643236211349281693358548643157719744000
900000000000000000000000000000000000000000000000000

< 0.15750004 < i(C+
3 ,Tn),

thus cannot be extremal, and so implies that Tn must satisfy |Ln|< 6
7n. Certificates can be found at

http://lidicky.name/pub/tournaments.

We next aim to prove that the sequence (Tn[Ln])
∞
n=1 is quasi-random. To do so we prove

Claim 4.7, a consequence of the characterization of quasi-random tournaments in (Chung and
Graham [7]). They list 11 different equivalent properties characterizing quasi-random sequences
Gn of tournaments on n vertices, but we will only use the first two.

P1: For every fixed tournament H, i(H,Gn) converges to the expected value in the random tour-
nament on n vertices.

P2: lim
n→∞

i(C4,Gn) =
3
8 .

Since graphons are completely determined by subgraph densities, P1 implies that every quasi-
random sequence of tournaments has the same limit graphon. The following claim is an addition
to the 11 properties listed in [7], tailored to our problem.

Claim 4.7. A sequence of tournaments (Gn)
∞
n=1 with |G|= n is quasi-random if and only if

lim
n→∞

i(C3,Gn) =
1
4 and lim

n→∞
i(C+

3 ,Gn) =
1
8 .

Proof. The ”only if” statement follows immediately from property P1, so we concern ourselves
with proving the ”if” statement. Let (Gn)

∞
n=1 be a sequence of tournaments so that |Gn| = n, and

recall from Proposition 1 that (near) regular tournaments are the tournaments which maximize the
number of induced copies of C3.

So, assume that
lim
n→∞

i(C3,Gn) =
1
4 and lim

n→∞
i(C+

3 ,Gn) =
1
8 ,
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and observe that this implies that the degrees in the tournaments are concentrated around n
2 , i.e. all

but o(n) vertices have out-degree n
2 +o(n). Now observe that

1
8

(
n
4

)
+o(n4) = I(C+

3 ,Gn)

= ∑
v∈V (Gn)

I(C3,Gn[N+(v)])

= ∑
v∈V (Gn)

i(C3,Gn[N+(v)])
(

n/2
3

)
+o(n3), by degree concentration

≤ ∑
v∈V (Gn)

(
1
4
+o(1)

)(
n/2
3

)
+o(n3), by the inducibilty of C3

=
1
8

(
n
4

)
+o(n4).

This implies that i(C3,Gn[N+(v)]) = 1
4 + o(1) for all but at most o(n) vertices v ∈ V (Gn). This

equality also implies that i(T T4,Gn) =
3
8 +o(1). Now

1
4
+o(1) = i(C3,Gn) =

1
2

i(C4,Gn)+
1
4

i(C+
3 ,Gn)+

1
4

i(C−
3 ,Gn), and

1
4
+o(1) =

1
3

i(T T3,Gn) =
1
6

i(C4,Gn)+
1
4

i(C+
3 ,Gn)+

1
4

i(C−
3 ,Gn)+

1
3

i(T T4,Gn),

so
o(1) = i(C3,Gn)−

1
3

i(T T3,Gn) =
1
3

i(C4,Gn)−
1
8
+o(1),

and thus i(C4,Gn) =
3
8 +o(1). This last statement is equivalent to property P2.

Claim 4.8. In any tournament T on n vertices, i(C+
3 ,T )≤

1
8 +

2
3(

1
4 − i(C3,T ))+o(1).

Proof. Using the plain flag algebra method, we show

3i(C+
3 ,T )+2i(C3,T )≤

7
8
+o(1).

The claim follows by rearranging the inequality. Certificates can be found at http://lidicky.
name/pub/tournaments.

Claim 4.9. The sequence (Tn[Ln]) is quasi-random.

Proof. Let L = 1
n |Ln|. By Claim 4.5, i(C+

3 ,Tn[Hn]) = i(C+
3 ,Tn)+o(1). Thus, the density of the C+

3
which are not completely contained in Hn is (1− (1−L)4)i(C+

3 ,Tn)+o(1). We have,

L4 1
8 +4(1−L)L3 1

4 ≤ (1− (1−L)4)i(C+
3 ,Tn)+o(1)

= L4 · i(C+
3 ,Tn[Ln])+4(1−L)L3 · i(C3,Tn[Ln])+o(1)

≤ L4 ·
(1

8 +
2
3(

1
4 − i(C3,Tn[Ln]))

)
+4(1−L)L3 · i(C3,Tn[Ln])+o(1)

= 7
24L4 +L3i(C3,Tn[Ln])(4− 14

3 L)+o(1)

≤ 7
24L4 +L3 1

4(4−
14
3 L)+o(1)

= L4 1
8 +4(1−L)L3 1

4 +o(1).
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The first inequality is true as the left side is the value of the next term we would expect if we
replaced Tn[Ln] by a random tournament on the same vertices. The second inequality follows from
Claim 4.8. For the last inequality, note that 0 < L < 6

7 − 0.00001 + o(1) implying 4 − 14
3 L >

0.00004+o(1). Thus, the left side is maximized if and only if C3 is maximized at 1
4 . As the first

and the last term in this chain of inequalities are equal up to o(1), we have equality throughout.
Thus i(C3,Tn[Ln]) =

1
4 +o(1) and i(C+

3 ,Tn[Ln]) =
1
8 +o(1), proving the claim using Claim 4.7.

Claim 4.10. The normalized size of Ln is L = 1
5

(
7+ 3

√
3−2 3

√
9
)
+ o(1), and our construction

converges in the graphon language to the limit object for the inducibility of C+
3 .

Proof. We know that L < 6/7+o(1), that Tn[Ln] is quasi-random, that all arcs between Hn and Ln
point towards Ln, and that i(C+

3 ,Tn[Hn]) = i(C+
3 ,Tn)+o(1) since Tn[Hn] is extremal for C+

3 . Thus,

i(C+
3 ,Tn) = L4 · 1

8
+

(
4
1

)
L3(1−L) · 1

4
+(1−L)4(i(C3,Tn)+o(1)).

This is maximized when i(C+
3 ,Tn) =

1
8

(
8−9 3

√
3+ 3√35

)
+o(1) and L = 1−α +o(1).

We have thus shown that every extremal tournament matches our construction up to the choice
of the sequence of quasi-random tournaments, completing the proof of this theorem.

5 Discussion
In this section, we discuss some of the peculiarities of this problem and its solutions, including
the novel strategies introduced in this paper. First and foremost, we know of no other inducibility
problem for which all extremal constructions include a quasi-random component as in the case of
C+

3 and C−
3 and ask the following question:

Problem 1. For what classes of graphs (undirected or directed) do the extremal constructions for
the corresponding inducibility problem involve non-trivial quasi-random components?

For C+
3 , the extremal construction was conjectured by noting that our tournament can be de-

composed into a source vertex and a C3; described another way, we begin with an arc and blow up
the head into a C3. Essentially, we ask the following: for a digraph G = (V,E) with cut C = (S,T )
and cut-set of size |S| · |T |, for what structures G[S] and G[T ] does the resulting inducibility prob-
lem have as extremal solutions constructions for which α ·100% of the vertices induce a “typical
random graph structure” for some α ∈ (0,1)? Natural candidates for consideration would include
G[T ]∼=C3 and G[S] isomorphic to any 2-vertex digraph or 3-vertex tournament.

Historically, flag algebra techniques have been leveraged to determine bounds on global graph
densities. The models developed in Claims 4.3 and 4.4, however, resulted in bounds on local-
ized information. In the case of Claim 4.3, we were able to determine something very powerful
regarding the distribution of out-degrees in extremal constructions, namely that all vertices have
normalized out-degrees in a very specific set. In the case of Claim 4.4, we were able to determine
the direction of an arc between any pair of vertices which satisfy basic constraints related to their
out-degrees.
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Finally, we want to make an observation about Conjecture 3. Let k ≥ 5 be odd, and let n > k.
Let X ⊂ V (Cn) be a set of k vertices such that Cn[X ] ∼= Ck. Observe that for every vertex v ∈
V (Cn) \X , we have Cn[X ∪{x}] ∼= Ck+1. If we now express i(Ck,T ) in a tournament T in terms
of densities of (k+ 1)-vertex graphs similarly to (1), we can easily conclude that Conjecture 3 is
true for k+ 1 if it is true for k, so it suffices to prove it for all odd k. Standard plain flag algebra
computations give sharp bounds for i(C5) and i(C7), and further show that Cn is o(n2) arc flips
away from every extremal tournament for C5 and C7 (and thus for C6 and C8 by this observation),
but we have not seriously tried to show the full conjecture for these cases, which would require to
find the exact extremal tournaments.
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