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Abstract

The famous Wegner’s Planar Graph Conjecture asserts tight upper bounds on the chromatic number
of the square G2 of a planar graph G, depending on the maximum degree ∆(G) of G. The only case
that the conjecture is resolved is when ∆(G) = 3, which was proven to be true by Thomassen, and
independently by Hartke, Jahanbekam, and Thomas. For ∆(G) = 4, Wegner’s Planar Graph Conjecture
states that the chromatic number of G2 is at most 9; even this case is still widely open, and very recently
Bousquet, de Meyer, Deschamps, and Pierron claimed an upper bound of 12.

We take a completely different approach, and show that a relaxation of properly coloring the square
of a planar graph G with ∆(G) = 4 can be achieved with 9 colors. Instead of requiring every color in the
neighborhood of a vertex to be unique, which is equivalent to a proper coloring of G2, we seek a proper
coloring of G such that at most one color is allowed to be repeated in the neighborhood of a vertex of
degree 4, but nowhere else.

1 Introduction
Given a graph G, let V (G) and E(G) denote the set of vertices and the set of edges, respectively, of G. For
each v ∈ V (G), the neighborhood of v, denoted NG(v), is the set of vertices adjacent to v, and the degree
of v, denoted dG(v), is the number of neighbors of v. A proper coloring ϕ of a graph G assigns colors to
vertices of G so that ϕ(x) 6= ϕ(y) for every edge xy of G.

Given a graph G, the square of G, denoted G2, is the graph obtained from G by adding edges between
every pair of vertices at distance 2. The famous and very popular Wegner’s Planar Graph Conjecture [22],
first raised in 1977, asserts tight upper bounds on the chromatic number of the square G2 of a planar graph
G, depending on the maximum degree ∆(G) of G. We state the conjecture below, and refer the readers
to [9] for illustrations of the tightness examples.

Wegner’s Planar Graph Conjecture 1 ([22]). If G is a planar graph, then

χ(G2) ≤


7 if ∆(G) = 3,

∆(G) + 5 if ∆(G) ∈ {4, 5, 6, 7},
3
2∆(G) + 1 if ∆(G) ≥ 8.

For sufficiently large maximum degree, Havet, van den Heuvel, McDiarmid, and Reed [12] proved that the
above conjecture is true asymptotically. For exact results, Molloy and Salavatipour [19] proved the current
best bound.
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Theorem 2 ([19]). If G is a planar graph, then χ(G2) ≤
⌈
5
3∆(G)

⌉
+ 78.

The only case that the conjecture is resolved is when ∆(G) = 3, which was proven to be true by
Thomassen [20], and independently by Hartke, Jahanbekam, Thomas [11]; the former proof uses a meticulous
induction argument, and the latter uses a simple discharging argument with a computer assisted proof of its
reducible configurations.

For planar graphs with maximum degree at least 4, Wegner’s Planar Graph Conjecture is still wide open,
and we refer the readers to the following references for various partial results, oftentimes with lower bound
constraints on the maximum degree [1, 2, 4, 14, 15, 18, 21, 23, 24]. In particular, when the maximum degree
is exactly 4, after a series of improvements in [7, 8, 25] by various authors, Bousquet, de Meyer, Deschamps,
and Pierron [3] very recently claimed to have established an upper bound of 12. Note that the conjectured
upper bound is 9.

In this paper, we take a completely different approach, and show that a relaxation of coloring the square
of a planar graph with maximum degree 4 can be achieved with 9 colors. Instead of requiring every color in
the neighborhood of a vertex to be unique, which is equivalent to a proper coloring of G2, we seek a proper
coloring of G such that at most one color is allowed to be repeated in the neighborhood of a vertex of degree
4, but nowhere else. In other words, every vertex v has at least min{2, d(v)} colors appearing exactly once
in its neighborhood. Note that requiring min{3, d(v)} unique colors in the neighborhood of every vertex v
is equivalent to a proper coloring of the square of the graph when it has maximum degree 4. We now state
our main result:

Theorem 3. Every planar graph has a proper 9-coloring such that each neighborhood of a vertex v has at
least min{2, d(v)} unique colors. In other words, every planar graph has a proper 9-coloring such that at
most one color is allowed to be repeated in the neighborhood of a vertex of degree 4, but nowhere else.

An h-PCF k-coloring ϕ of a graph G is a proper k-coloring of G such that each neighborhood of every
vertex v has at least min{h, d(v)} unique colors. This concept is a generalization of proper conflict-free
coloring, defined recently by Fabrici, Lužar, Rindošová, and Soták [10], see also [5, 13, 16, 6].

A k-vertex, k−-vertex, k+-vertex is a vertex of degree k, at least k, at most k, respectively.
Given a vertex v of a graph G with a 2-PCF coloring ϕ, the unique colors of v are the unique colors

appearing in the neighborhood of v; in particular, let ϕ1(v) and ϕ2(v) denote two unique colors of v, if they
exist. For X ⊆ V (G), we abuse the notation and define ϕ(X) = {ϕ(v) : v ∈ X}.

For S ⊆ V (G) where each vertex in S has at most two neighbors not in S, define G ∗ S to be the graph
obtained from G by removing S and adding an edge uv for u, v ∈ V (G) \ S if u and v have a common
neighbor in S and uv is not an edge already; G ∗ S is called the S-reduced graph. Note that G ∗ S is planar
whenever G is planar, and the maximum degree of G ∗ S is at most the maximum degree of G.

For a 2-PCF coloring ϕ of G ∗ S, let v ∈ S and u ∈ NG(v) \ S. If vertices in NG(u) \ S receive
distinct colors (in particular if u is a 3-vertex), then let BS(u) = {ϕ(u), ϕ1(u), ϕ2(u)}. (If either ϕ1(u) or
ϕ2(u) is not defined, then ignore it.) If there is a repeated color among vertices in NG(u) \ S, then let
BS(u) = {ϕ(u)} ∪ ϕ(NG−S(u)). Notice that for u ∈ V (G ∗ S) with a neighbor in S

|BS(u)| ≤ 3 (1)

if G has maximum degree at most 4. Let CG∗S(v) =
⋃

u∈NG(v)\S BS(u). By (1), |CG∗S(v)| ≤ 3|NG(v) \ S|
when G has maximum degree at most 4. Moreover, if ϕ assigns a color not in CG∗S(v) to v, then two unique
colors are guaranteed for vertices in NG(v) \ S and ϕ is still a (partial) proper coloring.

2 Proof of Theorem 3
Let G be a counterexample to Theorem 3 with the minimum number of vertices. We first prove a sequence
of claims regarding the structure of G.

Claim 1. G does not have a 2−-vertex.
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Proof. Let v be a vertex of minimum degree in G. Suppose v is a 2−-vertex. For S = {v}, let H be the
S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Extend ϕ to all of G by coloring v
with a color not in CH(v). Now ϕ is a 2-PCF 9-coloring of G, which is a contradiction.
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Figure 1: A 3-cycle with a 3-vertex and a 3-cycle with no 3-vertex

Claim 2. G does not have a 3-cycle with a 3-vertex.

Proof. Suppose G contains a 3-cycle T : xyz where x is a 3-vertex. Let x1, y1, z1 be neighbors of x, y, z,
respectively, not on T . Let y2 (resp. z2) be the neighbor of y (resp. z) that is neither on T nor y1 (resp. z1)
if y (resp. z) is a 4-vertex. See Figure 1(a).

Suppose x1 is a 3-vertex. For S = {x, x1}, let H be the S-reduced graph. By the minimality of
G, H has a 2-PCF 9-coloring ϕ. Now extend ϕ to all of G as follows: color x1 with a color not in
CH(x1) ∪ {ϕ(y), ϕ(z)} to guarantee two (actually three) unique colors for x, and color x with a color not in
{ϕ(x1), ϕ1(x1), ϕ2(x1), ϕ(y), ϕ(z), ϕ(y1), ϕ(z1)} to guarantee two (actually three) unique colors for x1. Thus
ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Now we know x1 is a 4-vertex. For S′ = {x, y, z}, let H ′ be the S′-reduced graph. By the minimality of
G, H ′ has a 2-PCF 9-coloring ϕ′. Since x1 has three unique colors at this point, at least two unique colors
for x1 are guaranteed regardless of the color assigned to x.

Suppose y is a 3-vertex. Then color z with a color not in CH′(z) ∪ {ϕ′(x1), ϕ′(y1)}, and color y with a
color not in CH′(y)∪ϕ′(NG(z)\S′)∪{ϕ′(x1), ϕ′(z)}. At this point x has two (actually three) unique colors.
Color x with a color not in {ϕ′(x1), ϕ′(y), ϕ′(z), ϕ′(y1)} ∪ ϕ′(NG(z) \ S′) to guarantee two unique colors for
each of y and z Thus ϕ′ is a 2-PCF 9-coloring of G, which is a contradiction.

By symmetry, we may assume both y and z are 4-vertices. Now, color y with a color not in CH′(y) ∪
{ϕ′(x1)}, and color z with a color not in CH′(z)∪{ϕ′(y), ϕ′(x1)}. This guarantees two (actually three) unique
colors for x. Color x with a color not in {ϕ′(x1), ϕ′(y), ϕ′(y1), ϕ′(y2), ϕ′(z), ϕ′(z1), ϕ′(z2)} to guarantee an
additional unique color for each of y and z. Note that each of y and z already had a unique color in
NG(y) \ {x} and NG(z) \ {x}, respectively, since H ′ is an S′-reduced graph. Then ϕ′ is a 2-PCF 9-coloring
of G, which is a contradiction.

Claim 3. G does not have a 3-cycle.

Proof. Suppose G contains a 3-cycle T : xyz. By Claim 2, all vertices on T are 4-vertices. Let x1, x2,
and y1, y2, and z1, z2 be the neighbors of x and y and z, respectively, not on T . See Figure 1(b). For
S = {x, y, z}, let H be the S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Let
C ′ = CH(x) ∪ {ϕ(y1), ϕ(y2), ϕ(z1), ϕ(z2)}.

Suppose |C ′| ≤ 8. First color x with a color not in C ′ to guarantee three unique colors for each of y and
z, so at least two unique colors are guaranteed for y and z regardless of the colors assigned to y and z.
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If |CH(y) ∪ {ϕ(x), ϕ(x1), ϕ(x2)}| ≤ 8, then color y with a color not in CH(y) ∪ {ϕ(x), ϕ(x1), ϕ(x2)},
guaranteeing three unique colors for x, so at least two unique colors are guaranteed for x regardless of the
color assigned to z. Now color z with a color not in CH(z) ∪ {ϕ(x), ϕ(y)}. Now, ϕ is a 2-PCF 9-coloring of
G, which is a contradiction.

Thus, by symmetry, we may assume |CH(y)∪{ϕ(x), ϕ(x1), ϕ(x2)}| = |CH(z)∪{ϕ(x), ϕ(x1), ϕ(x2)}| = 9.
Without loss of generality, assume ϕ(xi) = i for i ∈ {1, 2}, ϕ(x) = 3, and CH(y) = CH(z) = {4, 5, 6, 7, 8, 9}.
Delete the color on x and color y with 3 and z with 1 to guarantee two unique colors for x, y, z. Now color
x with a color not in CH(x) ∪ {ϕ(y), ϕ(z)} to obtain a 2-PCF 9-coloring of G, which is a contradiction.

Now we know, |C ′| = 9, so either ϕ(y1) or ϕ(y2) appears only once on NG({x1, x2, x, y, z}) \ S. Without
loss of generality, assume ϕ(y1) appears only once on NG({x1, x2, x, y, z}) \ S. Color x with ϕ(y1), guaran-
teeing the three unique colors for z. Color z with a color not in CH(z) ∪ {ϕ(y1), ϕ(y2)}, guaranteeing two
unique colors for y.

If ϕ(z) /∈ {ϕ(x1), ϕ(x2)}, then x has three unique colors, so coloring y with a color not in CH(y)∪{ϕ(z)}
guarantees at least two unique colors for x. If ϕ(z) ∈ {ϕ(x1), ϕ(x2)}, then color y with a color not in
CH(y) ∪ {ϕ(x1), ϕ(x2)}, guaranteeing an additional unique color for x. Note that NG(x) \ {y} already
has a unique color since H is an S-reduced graph. In all cases, ϕ is a 2-PCF 9-coloring of G, which is a
contradiction.
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x y z w

y1 z1
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w2
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uvx
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Figure 2: Figures for Claims 4, 5, 6, and 7

Claim 4. G does not have a path on three 3-vertices where the middle vertex is adjacent to a 4-vertex.

Proof. Suppose G has a path xyz on three 3-vertices where the neighbor y1 of y other than x and z is a
4-vertex. See Figure 2(a). For S = {x, y, z}, let H be the S-reduced graph. By the minimality of G, H
has a 2-PCF 9-coloring ϕ. Color x with a color not in CH(x) ∪ {ϕ(y1)}, and color z with a color not in
CH(z) ∪ {ϕ(x), ϕ(y1)} to guarantee two (actually three) unique colors for y. Since y1 is a 3-vertex in H,
ϕ(NG(y1)) consists of three distinct colors and at least two unique colors for y1 are guaranteed regardless of
the color assigned to y. Color y with a color not in ϕ((NG(x) ∪NG(z)) \ S) ∪ {ϕ(x), ϕ(y1), ϕ(z)} to obtain
a 2-PCF 9-coloring ϕ of G, which is a contradiction.

Claim 5. G does not have a path on four 3-vertices.

Proof. Suppose G has a path xyzw on four 3-vertices, and let y1 (resp. z1) be the neighbor of y (resp. z) that
is not on the path. See Figure 2(b). For S = {x, y, z, w}, let H be the S-reduced graph. By the minimality
of G, H has a 2-PCF 9-coloring ϕ. Note that |CH(x) ∪ {ϕ(y1)}| ≤ 7. If |CH(x) ∪ {ϕ(y1)}| = 7, then color
y with a color in (CH(x) ∪ {ϕ(y1)}) \ (CH(y) ∪ ϕ((NG(x) \ S) ∪ {z1})), and if |CH(x) ∪ {ϕ(y1)}| ≤ 6, then
color y with a color not in CH(y)∪ϕ((NG(x)\S)∪{z1}). This guarantees two (actually three) unique colors
for x, and in both cases, |CH(x) ∪ {ϕ(y), ϕ(y1)}| ≤ 7. Color w with a color not in CH(w) ∪ {ϕ(y), ϕ(z1)} to
guarantee two (actually three) unique colors for z, and color z with a color not in CH(z) ∪ ϕ(NG(w) \ S) ∪
{ϕ(y), ϕ(y1), ϕ(w)} to guarantee two (actually three) unique colors for w. Finally, color x with a color not
in CH(x) ∪ {ϕ(y), ϕ(y1), ϕ(z)} to guarantee two (actually three) unique colors for y, and now ϕ is a 2-PCF
9-coloring of G, which is a contradiction.
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Figure 3: Figures for Claims 8, 9, and 10

Claim 6. G does not have a 4-cycle xyzw where x and y are 3-vertices.

Proof. Suppose G has a 4-cycle F : xyzw where x and y are 3-vertices. Let x1, y1, z1, w1 be a neighbor of
x, y, z, w, respectively, that is not on F . By Claim 5, we may assume z is a 4-vertex, so let z2 be the neighbor
of z that is neither on F nor z1, and if w is a 4-vertex, then let w2 be the neighbor of w that is neither on F
nor w1. See Figure 2(c). For S = {x, y, z, w}, let H be the S-reduced graph. By the minimality of G, H has
a 2-PCF 9-coloring ϕ. Color z with a color not in CH(z) ∪ {ϕ(y1), ϕ(w1)}, and color w with a color not in
CH(w)∪{ϕ(z), ϕ(x1)}. Color y with a color not in CH(y)∪{ϕ(x1), ϕ(w), ϕ(z), ϕ(z1), ϕ(z2)} to guarantee two
unique colors for each of x and z. Finally, color x with a color not in CH(x)∪{ϕ(y), ϕ(y1), ϕ(z), ϕ(w), ϕ(w1)}
to guarantee two unique colors for each of y and w. Now, ϕ is a 2-PCF 9-coloring of G, which is a
contradiction.

Claim 7. G does not have a 3-vertex incident with two 4-faces.

Proof. Suppose G has a 3-vertex v incident with two 4-cycles xyzv and uwzv. By Claim 6, x, z, u are 4-
vertices. Let z1 be the neighbor of z that is not y, v, w. See Figure 2(d). Let H be the graph obtained from
G by removing v and adding the edge xu, if it did not exist already. Note that H is still planar and the
maximum degree did not increase. By the minimality of G, H has a 2-PCF 9-coloring ϕ, so each of ϕ(NG(x))
and ϕ(NG(u)) must consist of at least two distinct colors. Let α, β be two distinct colors in ϕ(NG(x)), and
let γ, δ be two distinct colors in ϕ(NG(u)). Note that there are three unique colors for z, so regardless of the
color assigned to v, at least two unique colors are guaranteed for z.

If ϕ(NG(v)) consists of three distinct colors, then color v with a color not in {ϕ(x), α, β, ϕ(z), ϕ(u), γ, δ} to
guarantee two unique colors for each of x and u. Now ϕ is a 2-PCF 9-coloring of G, which is a contradiction.
Thus, ϕ(NG(v)) consists of two distinct colors.

Without loss of generality, assume ϕ(x) = ϕ(z). There must be two unique colors for y, so y must be a
4-vertex and the two neighbors of y other than x and z received different colors that is also different from
ϕ(x). Thus, regardless of the color (re)assigned to z, two unique colors are guaranteed for y. Note that
since ϕ(NG(w)) contains at least three colors, there is a color a ∈ ϕ(NG(w)) \ {ϕ(u), ϕ(z)}. Let b and c be
two distinct colors in ϕ(NG(z1) \ {z}). Recolor z with a color not in {ϕ(x), ϕ(u), ϕ(y), ϕ(z1), b, c, ϕ(w), a} to
guarantee two unique colors for each of z1 and w, and color v with a color not in {ϕ(x), α, β, ϕ(z), ϕ(u), γ, δ} to
guarantee two unique colors for each of x and u. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 8. G does not have a 5-cycle with three consecutive 3-vertices.

Proof. Suppose G has a 5-cycle F : xyzuv with three consecutive 3-vertices y, z, and u. Let y1 and u1 be the
neighbor of y and u, respectively, that is not on F . By Claim 5, x, v, y1, u1 are 4-vertices. See Figure 3(a).
For S = {x, y, z, u, v}, let H be the S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ.
Color v with a color not in CH(v) ∪ {ϕ(u1)}, and color x with a color not in CH(x) ∪ {ϕ(v), ϕ(y1)}. Color
z with a color not in CH(z) ∪ {ϕ(u1), ϕ(v), ϕ(y1), ϕ(x)} to guarantee two (actually three) unique colors for
each of y and u. Color y with a color not in CH(y) ∪ ϕ((NG(x) ∪ NG(z)) \ S) ∪ {ϕ(z), ϕ(x)} to guarantee
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two unique colors for x. Note that u1 already has three unique colors, so regardless of the color assigned to
u, at least two unique colors are guaranteed for u1. Color u with a color not in ϕ((NG(v) ∪ NG(z)) \ S) ∪
{ϕ(y), ϕ(z), ϕ(v), ϕ(u1)} to guarantee two unique colors for each of z and v. Now, ϕ is a 2-PCF 9-coloring
of G, which is a contradiction.

Claim 9. If G has a 5-cycle F incident with three 3-vertices, then every 3-vertex on F has a 4-neighbor that
is not on F .

Proof. Let F : xyzuv be a 5-cycle of G incident with three 3-vertices. By Claim 8, we may assume x, z, v
are 3-vertices and y, u are 4-vertices. Let x1, z1, and v1 be the neighbor of x, z, and v, respectively, that is
not on F . See Figure 3(b). By Claim 4, x1 and v1 are 4-vertices.

Suppose z1 is a 3-vertex. For S = {x, y, z, u, v, z1}, let H be the S-reduced graph. By the minimality of
G, H has a 2-PCF 9-coloring ϕ. Color y with a color not in CH(y)∪{ϕ(x1)}, and color u with a color not in
CH(u)∪ {ϕ(y), ϕ(v1)}. Color z1 with a color not in CH(z1)∪ {ϕ(y), ϕ(u)} to guarantee two (actually three)
unique colors for z. Color z with a color not in ϕ(NG(z1)\S)∪{ϕ(y), ϕ(u), ϕ(z1)} to guarantee two (actually
three) unique colors for z1. Note that there are three unique colors for each of x1 and v1, so regardless of
the color assigned to x and v, at least two unique colors are guaranteed for x1 and v1. Color x with a color
not in ϕ(NG(y) \ S)∪ {ϕ(y), ϕ(u), ϕ(v1), ϕ(x1)} to guarantee two unique colors for each of y and v. Color v
with a color not in ϕ(NG(u) \ S) ∪ {ϕ(u), ϕ(v1), ϕ(x), ϕ(x1), ϕ(y)} to guarantee two unique colors for each
of x and u. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

A 3-vertex on a 4-cycle is bad, and a 3-vertex on no 4-cycles is good.

Claim 10. If G has a 5-cycle F incident with three 3-vertices, then every 3-vertex on F is a good 3-vertex.

Proof. Let F : xyzuv be a 5-cycle with three 3-vertices. By Claim 8, we may assume x, z, v are 3-vertices
and y, u are 4-vertices. Let x1, z1, and v1 be the neighbor of x, z, and v, respectively, that is not on F . By
Claim 9, x1, z1, and v1 are 4-vertices.

Suppose z is a bad 3-vertex. Without loss of generality, assume uzz1u1 is a 4-cycle where u1 is a neighbor
of u not on F . See Figure 3(c). For S = {x, y, z, u, v, z1, u1}, letH be the S-reduced graph. By the minimality
of G, H has a 2-PCF 9-coloring ϕ. Color z1 with a color not in CH(z1)∪ϕ(NG(u1) \S), color y with a color
not in CH(y)∪ {ϕ(x1), ϕ(z1)}, and color u with a color not in CH(u)∪ϕ(NG(u1) \ S)∪ {ϕ(v1), ϕ(y), ϕ(z1)}
to guarantee two unique colors for each of z and u1. Color u1 with a color not in CH(u1) ∪ {ϕ(z1), ϕ(u)},
and color z with a color not in ϕ(NG(z1) \ S) ∪ {ϕ(z1), ϕ(u), ϕ(y), ϕ(u1)}. At this point, two unique colors
for z1 are guaranteed if z1 /∈ {x1, v1}; if z1 ∈ {x1, v1}, then two unique colors for z1 will be guaranteed
when coloring x and v. Color x with a color not in ϕ(NG(y) \ S) ∪ {ϕ(y), ϕ(x1), ϕ(u1), ϕ(z), ϕ(v1), ϕ(u)} to
guarantee two unique colors for each of y and v, and also z1 if x1 = z1. Note that if x1 6= z1, then there are
three unique colors for x1, so regardless of the color assigned to x, at least two unique colors are guaranteed
for x1. Finally, color v with a color not in {ϕ(x), ϕ(x1), ϕ(y), ϕ(u), ϕ(u1), ϕ(z), ϕ(v1)} to guarantee two
unique colors for each of x and u, and also z1 if v1 = z1. Note that if v1 6= z1, then there are three unique
colors for v1, so regardless of the color assigned to v, at least two unique colors are guaranteed for v1. Now,
ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Suppose v or x is a bad 3-vertex. Without loss of generality, assume uvv1u1 is a 4-cycle where u1 is a
neighbor of u not on F . See Figure 3(d). For S′ = {x, y, z, u, v, u1, v1}, let H ′ be the S′-reduced graph. By
the minimality of G, H ′ has a 2-PCF 9-coloring ϕ′. Color y with a color not in CH′(y) ∪ {ϕ′(z1), ϕ′(x1)},
color v1 with a color not in CH′(v1)∪ϕ′(NG(u1) \S′), and color u with a color not in CH′(u)∪ϕ′(NG(u1) \
S′)∪{ϕ′(y), ϕ′(z1), ϕ′(v1)} to guarantee two unique colors for each of z and u1. Color u1 with a color not in
CH′(u1)∪{ϕ′(u), ϕ′(v1)}, and color v with a color not in ϕ′(NG(v1)\S′)∪{ϕ′(v1), ϕ′(u1), ϕ′(u), ϕ′(x1), ϕ′(y)}
to guarantee two unique colors for x. At this point two unique colors for v1 are guaranteed if v1 6= z1; if
v1 = z1, then two unique colors for v1 will be guaranteed when coloring z. Color x with a color not in
CH′(x) ∪ {ϕ′(v), ϕ′(v1), ϕ′(u), ϕ′(y)} to guarantee two (actually three) unique colors for v. Color z with a
color not in ϕ′(NG(y) \S′)∪ {ϕ′(y), ϕ′(z1), ϕ′(u), ϕ′(u1), ϕ′(v)} to guarantee two unique colors for each of u
and y, and also v1 if z1 = v1. Note that if z1 6= v1, then there are three unique colors for z1, so regardless of
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the color assigned to z, at least two unique colors are guaranteed for z1. Now, ϕ′ is a 2-PCF 9-coloring of
G, which is a contradiction.

Using the above claims, we now explicitly state and prove the essential reducible configurations.

Lemma 4. In G,

(1) every vertex has degree at least 3,

(2) every cycle has length at least 4,

(3) every 3-vertex is incident with at most one 4-face,

(4) if a 5-face is incident with exactly three 3-vertices, then they are all good 3-vertices.

(5) every 5+-face f is incident with at most
⌊
3d(f)

4

⌋
3-vertices.

Proof. By Claim 1, every vertex has degree at least 3 so (1) holds. By Claim 3, every cycle has length at
least 4 so (2) holds. By Claim 7, every 3-vertex is incident with at most one 4-face so (3) holds. By Claim 10,
if a 5-face is incident with exactly three 3-vertices, then they are all good 3-vertices, hence (4) holds. By
Claim 5, every 5+-face f does not have four consecutive 3-vertices, so f is incident with at most

⌊
3d(f)

4

⌋
3-vertices, hence (5) holds.

We use the well-known discharging method to finish off the proof. See [9] for a nice expository survey of the
method. Let F (G) denote the set of faces of G, and for a face f , let d(f) denote the length of a boundary walk
of f . For each z ∈ V (G)∪F (G), let the initial charge µ(z) of z be d(z)−4. By Euler’s formula the sum of all
initial charge is negative:

∑
v∈V (G)(d(v)−4)+

∑
f∈F (G)(d(f)−4) = 2|E(G)|−4|V (G)|+2|E(G)|−4|F (G)| =

−8.
Here are the discharging rules:

[R1] Every 5-face sends charge 1/3 to each incident good 3-vertex.

[R2] Every 5-face sends charge 1/2 to each incident bad 3-vertex.

[R3] Every 6+-face sends charge 1/2 to each incident 3-vertex.

We recount the charge after applying the discharging rule. We will obtain that the final charge is non-
negative for each vertex and face, to conclude that the sum of the final charge is non-negative. This is a
contradiction since the initial charge sum is negative and the discharging rule preserved the total charge
sum. We conclude that a counterexample could not have existed in the first place.

Only 3-vertices have negative initial charge since G has no 2−-vertices by Lemma 4 (1). Note that G has
no 3-faces by Lemma 4 (2).

Each good 3-vertex v is incident with three 5+-faces, each of which sends charge at least 1
3 to v by [R1]

and [R3], so the final charge of v is at least −1 + 1
3 · 3 = 0. Each bad 3-vertex v is incident with at least

two 5+-faces by Lemma 4 (3), so v receives charge 1
2 at least twice by [R2] and [R3], so the final charge

of v is at least −1 + 1
2 · 2 = 0. Each 4-vertex and 4-face is not involved in the discharging process, so the

final charge is the initial charge, which is 0. If f is a 5-face incident with a bad 3-vertex, then f is incident
with at most one other 3-vertex by Lemma 4 (4) and (5), so the final charge of f is at least 1− 1

2 · 2 = 0 by
[R1] and [R2]. If f is a 5-face not incident with a bad 3-vertex, then f is incident with at most three good
3-vertices by Lemma 4 (5), so the final charge of f is at least 1− 1

3 · 3 = 0 by [R1]. Each 6+-face f has at

most
⌊
3d(f)

4

⌋
incident 3-vertices by Lemma 4 (5). Thus, the final charge of f is at least d(f)− 4−

⌊
3d(f)

4

⌋
1
2

by [R2], which is non-negative since d(f) ≥ 6.
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3 Further discussion
As mentioned in the introduction, Wegner’s Planar Graph Conjecture is true for planar graphs with maximum
degree 3. Recall that for a graph G (not necessarily planar) with maximum degree 3, properly coloring G2

is equivalent to a 2-PCF coloring of G. One could also ask what the 1-PCF chromatic number is for planar
graphs with maximum degree 3, yet this is already known to be at most 4 by a result of Liu and Yu [17]. Their
result actually applies to all graphs (not necessarily planar) of maximum degree 3; see also the discussion in
the last section of [5]. Caro, Petruševski, and Škrekovski [5] conjectured that every graph G that is not the
5-cycle is 1-PCF (∆(G) + 1)-colorable; this conjecture is known to be true for only ∆(G) ≤ 3.

For planar graphs with maximum degree 4, Wegner’s Planar Graph Conjecture is unresolved, so we proved
a result in the flavor of 2-PCF colorings. One could also ask what the maximum 1-PCF chromatic number
is for a planar graph with maximum degree 4. By the conjecture mentioned in the previous paragraph, one
guess is that the bound is at most 5.

We also remark that in [10], Fabrici et al. constructed a planar graph that is not 1-PCF 5-colorable,
conjectured that all planar graphs are 1-PCF 6-colorable, and proved that all planar graphs are 1-PCF
8-colorable.
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