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Abstract All planar graphs are 4-colorable and 5-choosable, while some planar
graphs are not 4-choosable. Determining which properties guarantee that a planar
graph can be colored using lists of size four has received significant attention. In
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terms of constraining the structure of the graph, for any ℓ ∈ {3, 4, 5, 6, 7}, a planar
graph is 4-choosable if it is ℓ-cycle-free. In terms of constraining the list assignment,
one refinement of k-choosability is choosability with separation. A graph is (k, s)-
choosable if the graph is colorable from lists of size k where adjacent vertices have at
most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there
exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar
graphs are always (4, 2)-choosable.A chorded ℓ-cycle is an ℓ-cyclewith one additional
edge. We demonstrate for each ℓ ∈ {5, 6, 7} that a planar graph is (4, 2)-choosable if
it does not contain chorded ℓ-cycles.

Keywords Graph coloring · Planar graph ·Choosability with separation ·Discharging

1 Introduction

A proper coloring is an assignment of colors to the vertices of a graph G such that
adjacent vertices are assigned distinct colors. A (k, s)-list assignment L is a function
that assigns a list L(v) of k colors to each vertex v so that |L(v)∩ L(u)| ≤ s whenever
uv ∈ E(G). A proper coloring φ of G such that φ(v) ∈ L(v) for all v ∈ V (G) is
called an L-coloring. We say that a graph G is (k, s)-choosable if, for any (k, s)-list
assignment L , there exists an L-coloring of G. We call this variation of graph coloring
choosability with separation. Note that when a graph is (k, k)-choosable, we simply
say it is k-choosable. Observe that if G is (k, t)-choosable, then G is (k, s)-choosable
for all s ≤ t. A notable result from Thomassen [11] states that every planar graph is
5-choosable, so it follows that all planar graphs are (5, s)-choosable for all s ≤ 5.

Forbidding certain structures within a planar graph is a common restriction used in
graph coloring. Theorem 1 summarizes the current knowledge on (3, 1)-choosability
of planar graphs. Škrekovski [13] conjectured that all planar graphs are (3, 1)-
choosable; this question is still open and is presented below as Conjecture 1.

Conjecture 1 (Škrekovski [13]) If G is a planar graph, then G is (3, 1)-choosable.

Theorem 1 A planar graph G is (3, 1)-choosable if G avoids any of the following
structures:

– 3-cycles (Kratochvíl et al. [9]).
– 4-cycles (Choi et al. [4]).
– 5-cycles and 6-cycles (Choi et al. [4]).
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In this paper, we focus on 4-choosability with separation. Kratochvíl, Tuza, and
Voigt [9] proved that all planar graphs are (4, 1)-choosable, while Voigt [12] demon-
strated that there exist planar graphs that are not (4, 3)-choosable. It is not known if
all planar graphs are (4, 2)-choosable.

Conjecture 2 (Kratochvíl et al. [9]) If G is a planar graph, then G is (4, 2)-choosable.

Theorem 2 (Kratochvíl et al. [9]) If G is a planar graph, then G is (4, 1)-choosable.

Theorem 2 was strengthened by Kierstead and Lidický [8], where it is shown that
we can allow an independent set of vertices to have lists of size 3 rather than 4.

Theorem 3 (Kierstead and Lidický [8]) Let G be a planar graph and I ⊆ V (G)

be an independent set. If L assigns lists of colors to V (G) such that |L(v)| ≥ 3 for
every v ∈ I , and |L(v)| = 4 for every v ∈ V (G)\I , and |L(u) ∩ L(v)| ≤ 1 for all
uv ∈ E(G), then G has an L-coloring.

In addition to the work summarized above, there are several results regarding 4-
choosability. A graph is k-degenerate if each of its subgraphs has a vertex of degree
at most k. Euler’s formula implies a planar graph with no 3-cycles is 3-degenerate
and hence 4-choosable. This and other similar results are listed below in Theorem 4.
For the last result in Theorem 4, note that a chorded ℓ-cycle is an ℓ-cycle with an
additional edge connecting two of its non-consecutive vertices.

Theorem 4 A planar graph G is 4-choosable if G avoids any of the following struc-
tures:

– 3-cycles (folklore).
– 4-cycles (Lam et al. [10]).
– 5-cycles (Wang and Lih [14]).
– 6-cycles (Fijavz et al. [7]).
– 7-cycles (Farzad [6]).
– Chorded 4-cycles (Borodin and Ivanova [3]).

Our main results in this paper are listed below in Theorem 5.

Theorem 5 A planar graph G is (4, 2)-choosable if G avoids any of the following
structures:

– Chorded 5-cycles.
– Chorded 6-cycles.
– Chorded 7-cycles.

We prove each case of Theorem 5 separately. In Sect. 4, we forbid chorded 5-cycles
(see Theorem 8). In Sect. 5, we forbid chorded 6-cycles (see Theorem 9). In Sect. 6,
we forbid chorded 7-cycles (see Theorem 12). There are many features common to
all of these proofs, which we detail in Sects. 2 and 3.
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1.1 Preliminaries and Notation

Refer to [15] for standard graph theory terminology and notation. Let G be a graph
with a vertex set V (G) and an edge set E(G); let n(G) = |V (G)|. We use Kn , Cn ,
and Pn to denote the complete graph, cycle graph, and path graph, respectively, each
on n vertices. The open neighborhood of a vertex, denoted N (v), is the set of vertices
adjacent to v in G; the closed neighborhood, denoted N [v], is the set N (v)∪ {v}. The
degree of a vertex v, denoted dG(v), is the number of vertices adjacent to v in G; we
write d(v) when the graph G is clear from the context. If the degree of a vertex v is k,
we call v a k-vertex; if the degree of v is at least k (at most k), we call v a k+-vertex
(k−-vertex respectively). The length of a face f , denoted ℓ( f ), is the length of the
face boundary walk. If the length of a face f is k, we call f a k-face; if the length of
f is at least k, we call f a k+-face.

2 Overview of Method

All of our main results use the discharging method. We refer the reader to the surveys
by Borodin [2] and Cranston and West [5] for an introduction to discharging, which
is a method commonly used to obtain results on planar graphs. For real numbers
av, a f , b, we define initial charge values µ0(v) = avd(v) − b for every vertex v and
µ0( f ) = a f ℓ( f ) − b for every face f . If av > 0, a f > 0, b > 0, and 2av + 2a f =
b, then Euler’s formula implies that

∑
v µ0(v) +

∑
f µ0( f ) = −2b, and the total

charge on the entire graph is negative. We then define discharging rules that describe
a method for moving charge value among vertices and faces while conserving the
total charge value. We demonstrate that if G is a “minimal counterexample” to our
theorem, then every vertex and face ends with nonnegative charge after the discharging
process, which is a contradiction. Intuitively, this process works well when forbidding
a structure (such as a short chorded cycle) with low charge.

In Sect. 3, we concretely define reducible configurations. Loosely, a reducible
configuration is a structure C in a graph G with (4, 2)-list assignment L where any
L-coloring of G − C extends to an L-coloring of G. If we are looking for a minimal
example of a graph that is not (4, 2)-choosable, then none of these reducible con-
figurations appear in the graph. We define a large list of configurations, (C1)–(C21)
(see Fig. 2), and prove they are reducible using various generic constructions. The
configurations (C1)–(C10) are used when forbidding chorded 6- or 7-cycles, while
the configurations (C9)–(C21) are used when forbidding chorded 5-cycles. The use of
different configurations is due to differences in our discharging arguments.

In Sect. 4, we forbid chorded 5-cycles and every 3-face is adjacent to at most one
other 3-face. Moreover, 3-faces are not adjacent to 4-faces. Thus, our initial charge
function in this case guarantees that the only objects with negative initial charge are
4- and 5-vertices.

In Sects. 5 and 6, we use a different discharging strategy. Our initial charge values
guarantee that the only objects of negative charge are 3-faces. Thus, our discharging
rules are designed to send charge from 5+-faces and 4+-vertices to 3-faces. However,
as we forbid chorded 6-cycles or chorded 7-cycles, there may not be many 3-faces
very close to each other.
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These are all of the possible clusters with longest cycle at most six and minimum degree four. Bold edges demonstrate
separating 3-cycles. Gray regions designate cycles that are not faces. We group our clusters by the length of the longest

cycle in the cluster. Thus a configuration (Kni) has a maximum cycle length of n.

Fig. 1 Clusters with maximum cycle length at most six

If G is a plane graph and G∗ is its dual, then let F3 be the set of 3-faces of G and
let G∗

3 be the induced subgraph of G∗ with vertex set F3. A cluster is a maximal set
of 3-faces that are connected in G∗, i.e., a connected component of G∗

3. Note that two
3-faces sharing an edge are adjacent in G∗, and two 3-faces sharing only a vertex are
not adjacent in G∗. See Fig. 1 for a list of the clusters with maximum cycle length
six and every internal vertex of degree at least four. In these figures, the outer cycle
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is not necessarily a facial cycle, any area filled with gray is not a face, and a pair of
square vertices represent a single vertex. Additionally, bold edges describe separating
3-cycles, which are cycles in a plane graph whose exterior and interior regions both
contain vertices not on the cycle. These figures are based on the list of clusters used
by Farzad [6] in the proof that 7-cycle-free planar graphs are 4-choosable.

For k ∈ {1, 2}, there is exactly one way to arrange k 3-faces in a cluster. A triangle
is a cluster containing exactly one 3-face; see (K3). A diamond is a cluster containing
exactly two 3-faces; see (K4). For k ≥ 3, there are multiple ways to arrange k facial
triangles in a cluster. A k-fan is a cluster of k 3-faces all incident to a common vertex
of degree at least k + 1; see (K5a) and (K6b). A k-wheel is a cluster of k 3-faces
all incident to a common vertex of degree exactly k; see (K5b) and (K6e). Note that
the vertex incident to all faces of a 3-wheel has degree 3. A k-strip is a cluster of
k 3-faces f1, . . . , fk where the boundaries of the 3-faces are disjoint except that fi
and fi+1 share an edge for i ∈ {1, . . . , k − 1} and fi and fi+2 share a vertex for
i ∈ {1, . . . , k − 2}; see (K5a) and (K6a).

If f1, . . . , fk are the 3-faces in a cluster, then we will prove that the total charge
on f1, . . . , fk after discharging is nonnegative. Thus, some of the 3-faces may have
negative charge, but this is balanced by other 3-faces in the cluster having positive
charge. Hence, our proofs end with a list of all possible cluster types and verifying
that each has nonnegative total charge.

While there are 23 total clusters that avoid chorded 7-cycles, we do not have that
many cases to check. The clusters (K5c) and (K6g)–(K6r) have three bold edges,
demonstrating a separating 3-cycle.We avoid checking these cases by using a strength-
ened coloring statement (see Theorem 12) that allows our minimal counterexample to
not contain any separating 3-cycles.

3 Reducible Configurations

In this section, we describe structures that cannot appear in a minimal counterexample
to Theorem 5. Let G be a graph, f : V (G) → N, and s be a nonnegative integer. A
graph is f -choosable if G is L-choosable for every list assignment L where |L(v)| ≥
f (v). An ( f, s)-list-assignment is a list assignment L on G such that |L(v)| ≥ f (v)
for all v ∈ V (G), |L(v)∩ L(u)| ≤ s for all edges uv ∈ E(G), and L(u)∩ L(v) = ∅ if
uv ∈ E(G) and f (u) = f (v) = 1. A graph G is ( f, s)-choosable if G is L-colorable
for every ( f, s)-list-assignment L .

Definition 1 A configuration is a triple (C, X, ex) where C is a plane graph, X ⊆
V (C), and ex : V (C) → {0, 1, 2,∞} is an external degree function. A graph G
contains the configuration (C, X, ex) if C appears as an induced subgraph C ′ of G,
and for each vertex v ∈ V (C), there are at most ex(v) edges inG from the copy of v to
vertices not inC ′. For a triple (C, X, ex), define the list-size function f : V (C) → N as

f (v) =
{
4 − ex(v) v ∈ X
1 v /∈ X

.

A configuration (C, X, ex) is reducible if C is ( f, 2)-choosable.
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Note that if a graph G with (4, 2)-list assignment L contains a copy of a reducible
configuration (C, X, ex) and G − X is L-choosable, then G is L-choosable.

First, we note that if (C, X, ex) is a reducible configuration, then any way to add
an edge between distinct vertices of X and lower their external degree by one results
in another reducible configuration.

Lemma 1 Let (C, X, ex) be a reducible configuration, and suppose that x, y ∈ X
are nonadjacent vertices with ex(x), ex(y) ≥ 1. Let (C ′, X ′, ex′) be the configuration

where C ′ = C + xy, X ′ = X, and ex′(v) =
{
ex(v) v /∈ {x, y}
ex(v) − 1 v ∈ {x, y}, . Then the

configuration (C ′, X ′, ex′) is reducible.

Proof Let f be the list-size function for C and note that C is ( f, 2)-choosable. Simi-
larly let f ′ be the list-size function on the configuration (C ′, X ′, ex′), and let L ′ be an
( f ′, 2)-list assignment on V (C ′). Note that f ′(x) = f (x)+ 1 and f ′(y) = f (y)+ 1.
Let S = L ′(x) ∩ L ′(y). If |S| < 2, then add at most one element from each of L ′(x)
and L ′(y) to S until |S| = 2. Now let S = {a, b} such that a ∈ L ′(x) and b ∈ L ′(y),
and define a list assignment L on C by removing a from L ′(x) and removing b from
L ′(y). Observe that L is an ( f, 2)-list assignment and hence there exists an L-coloring
of C . Since L(x) ∩ L(y) = ∅, this proper L-coloring of C is also an L ′-coloring of
C ′. ⊓.

We will use Lemma 1 implicitly by assuming that C[X ] appears as an induced
subgraph in our minimal counterexample G.

3.1 Reducibility Proofs

In this section, we prove that configurations (C1)–(C21) shown in Fig. 2 are reducible.

3.1.1 Alon–Tarsi Theorem

We will use the celebrated Alon–Tarsi Theorem [1] to quickly prove that many of our
configurations are reducible. In fact, configurations that are demonstrated in this way
are reducible for 4-choosability, not just (4, 2)-choosability.

A digraph D is an orientation of a graph G if G is the underlying undirected graph
of D and D has no 2-cycles; let d+D(v) and d

−
D(v) be the out- and in-degree of a vertex

v in D. An Eulerian subgraph of a digraph D is a subset S ⊆ E(D) such that, for
every vertex v ∈ V (D), the number of outgoing edges of v in S is equal to the number
of incoming edges of v in S. Let EE(D) be the number of Eulerian subgraphs of even
size and EO(D) be the number of Eulerian subgraphs of odd size.

Theorem 6 (Alon–Tarsi Theorem [1]) Let G be a graph and f : V (G) → N a
function. Suppose that there exists an orientation D of G such that d+D(v) ≤ f (v)− 1
for every vertex v ∈ V (G) and EE(D) ̸= EO(D). Then G is f -choosable.
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(C1) (C2) (C3) (C4)

(C5) (C6) (C7) (C8)

(C9) (C10) (C11) (C12)

)51C()41C()31C(

)81C()71C()61C(

)02C()91C( (C21)

In these configurations, edges with only one endpoint are external edges. Vertices in X are filled with white.

Fig. 2 Reducible configurations
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(C1) (C2) (C4) (C5) (C10) (C11)

(C12) (C13) (C14) (C15) (C16)

Fig. 3 Alon–Tarsi orientations

We call an orientation an Alon–Tarsi orientation if it satisfies the hypotheses of Theo-
rem 6. For a configuration (C, X, ex) and the associated list-size function f , it suffices
to demonstrate an Alon–Tarsi orientation of C with respect to f . See Fig. 3 for a list
of Alon–Tarsi orientations of several configurations. One could think that for a ver-
tex v, the outneighbors are vertices that could be colored before v and v could still
pick a color not conflicting with them. If there were no cycles in the orientation, the
orientation would give an order suitable for the greedy algorithm.

Corollary 1 The following configurations have Alon–Tarsi orientations and hence
are reducible:

(C1), (C2), (C4), (C5), (C10), (C11), (C12), (C13), (C14), (C15), (C16).

3.1.2 Direct Proofs

In the proofs below, we consider a configuration (C, X, ex) with list-size function f
and assume that an ( f, 2)-list-assignment L is given for C . We will demonstrate that
each C is L-colorable. Refer to Fig. 2 for drawings of the configurations.

First recall the following fact about list-coloring odd cycles.

Fact 7 If L is a 2-list assignment of an odd cycle, then there does not exist an L-
coloring of the cycle if and only if all of the lists are identical.

In the proof in this section, we use a shorthand notation where for a vertex vi we
denote color c(vi ) by ci and list L(vi ) by Li for all i .

Lemma 2 (C3) is a reducible configuration.

Proof Let v1, . . . , v4 be the vertices of a 4-cycle with chord v2v4 and let v2 and v4
have external degree 1; the colors c1 and c3 are fixed. Each of v2 and v4 have at least
one color in their lists other than c1 and c3. Since |Li | ≥ 3 for each i ∈ {2, 4}, either
one of these vertices has at least two colors available, or L2 ∩ L4 = {c1, c3}. In either
case, we can extend the coloring. ⊓.

For the configurations (C6), (C7), and (C8), label the vertices as in Fig. 4: label
the center vertex v0 and the outer vertices v1, . . . , v5, starting with the vertex directly
above v0, moving clockwise.
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Fig. 4 Vertex labels for configurations (C6), (C7), and (C8)

Lemma 3 (C6) is a reducible configuration.

Proof The colors c1 and c4 are determined. If c1 and c4 are both in L0, then select
c5 from L5\ (L0 ∪ {c1, c4}); otherwise, select c5 ∈ L5\{c1, c4} arbitrarily. Define
L ′
0 = L0\{c1, c4, c5}, L ′

2 = L2\{c1}, and L ′
3 = L3\{c4} and note that |L ′

i | ≥ 2 for
all i ∈ {0, 2, 3}. If |L ′

0| = |L ′
2| = 2, then L ′

0 ̸= L ′
2, so the 3-cycle v0v2v3 has an

L ′-coloring by Fact 7. ⊓.

Lemma 4 (C7) is a reducible configuration.

Proof If L1 ∩ L2 = ∅, then greedily color v2 and v3; what remains is (C4) and the
coloring extends. A similar argument works if L3 ∩ L2 = ∅.

If L1 ∩ L3 = ∅, then |L1 ∩ L2| = |L3 ∩ L2| = 1. Select c1 ∈ L1\L2, c3 ∈ L3\L2.
Define L ′

0 = L0\{c1, c3}, L ′
4 = L4\{c3}, and L ′

5 = L5\{c1}. Observe that we can
L ′-color the 3-cycle v0v4v5 by Fact 7 and then select c2 ∈ L2\{c0}.

If there exists a color a ∈ L1 ∩ L3, start by assigning c1 = c3 = a and then assign
c2 ∈ L2\{a}. Define L ′

0 = L0\{a, c2}, L ′
4 = L4\{a}, and L ′

5 = L5\{a}. Observe that
the 3-cycle v0v4v5 has an L ′-coloring by Fact 7. ⊓.

Lemma 5 (C8) is a reducible configuration.

Proof If there exists a color a ∈ L1 ∩ L4, start by assigning c1 = c4 = a; then
greedily color the remaining vertices in the following order: v2, v3, v0, v5. Otherwise,
L4 ∩ L1 = ∅.

Suppose that L1 ∩ L5 = ∅. Select a color c4 ∈ L4. Considering v4 as an external
vertex and ignoring the edges v1v5 and v0v5, the 4-cycle v0v1v2v3 forms a copy of
(C4), which is reducible by Corollary 1. Thus, there exists an L-coloring of v0, . . . , v4;
this coloring extends to v5 since L1 ∩ L5 = ∅. If L4 ∩ L5 = ∅, then there exists an
L-coloring by a symmetric argument.

Otherwise, there exist colors a ∈ L1\L5 and b ∈ L4\L5; assign c1 = a and c4 = b.
Select c2 ∈ L2\{a}. Define L ′

0 = L0\{c1, c2, c4} and L ′
3 = L3\{c2, c4}. Note that if

|L ′
0| = |L ′

3| = 1, then L0 ∩ L3 = {c2, c4} and hence L ′
0 ∩ L ′

3 = ∅. Thus, the coloring
extends by greedily coloring v3, v0, and v5. ⊓.

Lemma 6 (C9) is a reducible configuration.

Proof Consider the vertex v of arbitrary external degree and let c(v) be the color
assigned to v. Let u1 and u2 be the two neighbors of v in the configuration. If we
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Dotted lines indicate special paths or extra-special paths. Vertices in X are filled with white.

Fig. 5 Templates for reducible configurations

remove c(v) from the lists on u1 and u2, observe that at least two colors remain in
every list for every vertex of the 5-cycle. If there is no L-coloring of the configuration,
then Fact 7 asserts that all lists have size two and contain the same colors; however,
this implies that L(u1) = L(u2) and |L(u1) ∩ L(u2)| = 3, a contradiction. ⊓.

3.1.3 Template Configurations

The configurations (C17)–(C21) are special cases of general constructions called tem-
plate constructions.

Let (C, X, ex) be a configuration with vertices u, v ∈ X . A uv-path P is called a
special uv-path if all internal vertices of P have degree two in C and external degree
two. A uv-path P is called an extra-special uv-path if all internal vertices v of P
have external degree ex(v) = 2 and degree in C , denoted by d(v), two, except for
a consecutive pair xy where ex(x) = ex(y) = 1, d(x) = d(y) = 3, and there is a
vertex z /∈ X such that z is a common neighbor to x and y, and z is not adjacent to
any other vertices in C . Using these special and extra-special paths, we can describe
several configurations by the following templates (see Fig. 5), consisting of

– (B1) a triangle uvw, where ex(u) = ex(w) = 2, ex(v) = 0, an extra-special
uv-path P1, and a special vw-path P2, and

– (B2) a triangle vwr , where ex(r) = ∞, ex(w) = 1, ex(v) = 0, a vertex u adjacent
to v where ex(u) = 2, an extra-special uv-path P1, and a special vw-path P2.

We make some basic observations about special and extra-special paths that will
be used to prove that these templates correspond to reducible configurations.

Let P be a special uv-path or an extra-special uv-path. For every color a ∈ L(u),
let guP(a) be the set containing each color b ∈ L(v) such that assigning c(u) = a
and c(v) = b does not extend to an L-coloring of P . Since we can greedily color P
starting at u until reaching v, there is at most one color in guP(a). Further, g

u
P(a) ̸= ∅

if and only if this greedy coloring process has exactly one choice for each vertex in
P . Thus, if guP(a) = {b} then also gvP(b) = {a}.

Since L is an ( f, 2)-list assignment, adjacent vertices have at most two colors
in common. Thus, there are at most two colors a1, a2 ∈ L(u) such that guP(ai ) ̸=
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∅. Moreover, observe that if there are two distinct colors a1, a2 ∈ L(u) such that
guP(ai ) ̸= ∅, then both a1 and a2 are in every list along P and hence {a1, a2} ⊆ L(v).

If P is an extra-special uv-path with 3-cycle xyz where xy is in the path P , then
after a color is assigned to z (as ex(z) = ∞) either one of x or y has three colors
available or |L(x)∩ L(y)| ≤ 1. Therefore, if P is an extra-special uv-path, then there
is at most one color a ∈ L(u) such that guP(a) ̸= ∅.

Lemma 7 All configurations matching the template (B1) are reducible.

Proof Let (C, X, ex) be a configuration matching the template (B1) and let L be an
( f, 2)-list assignment.

Let L(u) = {a1, a2}. Since P1 is an extra-special path, there is at least one i ∈ {1, 2}
such that guP1(ai ) = ∅. Assign c(u) = ai , select c(w) ∈ L(w)\{ai } and c(v) ∈
L(v)\({c(u), c(w)} ∪ gwP1(c(w))); the coloring extends to P1 and P2. ⊓.

Corollary 2 The configurations (C17), (C18), and (C19) match the template (B1),
and hence they are reducible.

Lemma 8 All configurations matching the template (B2) are reducible.

Proof Let (C, X, ex) be a configuration matching the template (B2) and let L be an
( f, 2)-list assignment. Let c(r)be the unique color in the list L(r). Let L(u) = {a1, a2}.
Since P1 is an extra-special path, there is at least one i ∈ {1, 2} such that guP1(ai ) = ∅.
Assign c(u) = ai .

If c(r) /∈ L(v), then select c(w) ∈ L(w), and L(v) ∈ L(v)\({c(u), c(w)} ∪
gwP2(c(w))); the coloring extends to P1 and P2.

If c(r) ∈ L(v), then select c(w) ∈ L(w)\L(v); observe c(w) ̸= c(r). There exists
a color c(v) ∈ L(v)\({c(r), c(u)} ∪ gwP2(c(w))); the coloring extends to P1 and P2.

⊓.

Corollary 3 Using Lemma 1, the configurations (C20) and (C21)match the template
(B2), and hence they are reducible.

4 No Chorded 5-Cycle

In this section we show the case of forbidding chorded 5-cycles from Theorem 5.

Theorem 8 If G is a plane graph not containing a chorded 5-cycle, then G is (4, 2)-
choosable.

Proof Let G be a counterexample minimizing n(G) among all plane graphs avoiding
chorded 5-cycles with a (4, 2)-list assignment L such that G is not L-choosable.
Observe that n(G) ≥ 4; in fact, δ(G) ≥ 4. Since G is a minimal counterexample,
G does not contain any of the reducible configurations (C9)–(C21). If (C, X, ex)
is a reducible configuration, then by Lemma 1 C does not appear as a subgraph of
G where dG(x) ≤ dC (x) + ex(x) for all x ∈ V (C). Further, the configurations
(C13)–(C21) are large enough that we must consider configurations that are formed
by identifying certain pairs of vertices in these configurations. In “Appendix”, we
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v

+ 4+ 4+ 4+ + 4+ 5+ + 5+ + 3 5+
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v v v

v v v v v

Fig. 6 Possible cyclic arrangements of 3-, 4+-, and 5+-faces incident to 4- and 5-vertices

concretely check all vertex pairs that avoid creating a chorded 5-cycle and find that all
resulting configurations are reducible.

For each v ∈ V (G) and f ∈ F(G) define initial charges µ0(v) = d(v) − 6 and
µ0µ0( f ) = 2ℓ( f ) − 6. By Euler’s Formula, the sum of initial charges is −12. After
charges are initially assigned, the only elements with negative initial charge are 4-
vertices and 5-vertices. Since chorded 5-cycles are forbidden, there is no 3-fan in G
and every 4-face is adjacent to only 4+-faces. The possible arrangements of 3-, 4+-,
or 5+-faces incident to 4- and 5-vertices are shown in Fig. 6.

Sequentially apply the following discharging rules. Note that, for a vertex v and a
face f , we define µi (v) and µi ( f ) to be the charge on v and f , respectively, after
applying rule (Ri).

(R1) Let v be a 4-vertex and f be a 4+-face incident to v. If f is adjacent to a 3-face
that is also incident to v, then f sends charge 1 to v; otherwise, f sends charge
1
2 to v.

(R2) Let v be a 5-vertex. If f is a 4+-face incident to v, then f sends charge 1
2 to v.

A face f is a needy face if µ2( f ) < 0; otherwise, f is non-needy.

(R3) If v is a 5-vertex incident to a needy 5-face f , then v sends charge 1
2 to f .

A vertex v is a needy vertex if µ3(v) < 0; otherwise, v is non-needy.

(R4) If f is a non-needy 5+-face incident to a needy 5-vertex v, then f sends charge
1
2 to v.

We show that µ4(v) ≥ 0 for each vertex v and µ4( f ) ≥ 0 for each face f .
Since the total charge was preserved during the discharging rules, this contradicts the
negative charge sum from the initial charge values.We begin by considering the charge
distribution after applying (R1) and (R2).

Let v be a vertex. If v is a 4-vertex, then µ0(v) = −2 and v receives total charge at
least 2 from its neighboring faces by (R1). Furthermore, v is not affected by any rules
after (R1), so µ4(v) ≥ 0. If v is a 6+-vertex, then µ0(v) ≥ 0 and v is not affected
by any other rules, so µ4(v) ≥ 0. If v is a 5-vertex, then µ0(v) = −1 and v receives
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total charge at least 1 from its neighboring faces by (R2). Therefore, for any vertex v,
µ2(v) ≥ 0.

Let f be a face. If f is a 3-face, then µ0( f ) = 0 and f is not affected by any rule,
so µ4( f ) = 0. If f is a 4-face, then µ0( f ) = 2. In (R1) and (R2), the only faces
that send charge 1 to a single vertex are adjacent to a 3-face. A 4-face adjacent to a
3-face is a chorded 5-cycle, which is forbidden by assumption, so f sends charge at
most 1

2 to each vertex. Since 4-faces are not affected by rules (R3)–(R4), µ4( f ) ≥ 0.
If f is a 6+-face, then f has at least as much initial charge as it has incident vertices.
If v is a 4-vertex incident to f , then f sends charge at most 1 to v by (R1) and does
not send any charge to v by rules (R2)–(R4). If v is a 5-vertex incident to f , then f
sends charge 1

2 to v by (R1), and possibly another charge
1
2 by (R4), and does not send

charge to v by (R1) or (R3). Thus f sends charge at most 1 to each incident vertex,
and µ4( f ) ≥ 0.

If f is a 5-face, thenµ0( f ) = 4 and f sends charge atmost 1 to each incident vertex
by (R1) and (R2). Observe that if µ2( f ) = −1, then f is incident to five 4-vertices
and f is adjacent to at least one 3-face; this forms (C9), a contradiction. Therefore,
we have the following claim about the structure of a needy 5-vertex.

Claim 1 If f is a needy 5-face, then µ2( f ) = − 1
2 and f is adjacent to exactly one

5-vertex.

We now consider the charge distribution after applying (R3). If f is a needy 5-face,
then µ2( f ) = − 1

2 and f is adjacent to exactly one 5-vertex, so µ3( f ) = 0. No faces
lose charge in (R3), therefore µ3( f ) ≥ 0 for any face f .

Claim 2 If v is a needy 5-vertex, then v is incident to three 3-faces, two 4+-faces, and
exactly one needy 5-face; hence µ3(v) = − 1

2 .

Proof Suppose that v is a vertex such thatµ3(v) < 0, and consider the cyclic arrange-
ment of 3- and 4+-faces about v.

Case 1 v is incident to at least four 4+-faces (Fig. 6e, f). Since µ2(v) ≥ 1 and
µ3(v) < 0, v is incident to at least three needy 5-faces. Hence two of the needy
5-faces are adjacent, forming (C13), a contradiction.

Case 2 v is incident to two non-adjacent 3-faces and three 4+-faces (Fig. 6g). Since
µ2(v) = 1

2 and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If these
two faces are adjacent, then they form (C13), a contradiction. Otherwise, they share
a 3-face t as a neighbor and all vertices incident to f1, f2, and t other than v are
4-vertices, so the vertices incident to f1 and t form (C10), a contradiction.

Case 3 v is incident to two adjacent 3-faces and three 4+-faces (Fig. 6h). Since
µ2(v) = 1

2 and µ3(v) < 0, v is incident to two needy 5-faces, f1 and f2. If f1 and f2
are adjacent then they form (C13), a contradiction. Thus, f1 and f2 are not adjacent,
but they are each adjacent to a 3-face incident to v. Since fi is needy for each i ∈ {1, 2},
fi sent charge 1 to every 4-vertex incident to fi . By (R1), every 4-vertex incident to
fi is incident to a 3-face adjacent to fi . Therefore, f1 is adjacent to a 3-face that does
not share any vertices with the the two 3-faces incident to v, forming one of (C20) or
(C21), a contradiction.
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(a) A 5-face (b) Claim 4, Case 1. (c) Claim 4, Case 2.

Fig. 7 Special cases for a 5-face f with µ4( f ) < 0

Case 4 v is incident to three 3-faces and two 4+-faces (Fig. 6i). If v is incident to
two needy 5-faces f1 and f2, then the 3-face t adjacent to both f1 and f2 is incident
to two 4-vertices, and the vertices incident to f1 and t form (C10), a contradiction.

Therefore, v is incident to exactly one needy 5-face, as claimed. ⊓.

By (R4), every needy 5-vertex receives charge 1
2 from its unique incident non-needy

5+-face, so µ4(v) ≥ 0 for every vertex v. Each needy 5-face has nonnegative charge
after (R3), so if µ4( f ) < 0 for some 5-face f , then f sends charge by (R4), and thus
is non-needy.

Consider the Fig. 7a, where f is a 5-face with µ4( f ) < 0, f is incident to vertices
v1, . . . , v5, v1 is a needy 5-vertex, and f1 is the needy 5-face incident to v1. Let t1 and
t2 be the adjacent pair of 3-faces incident to v1 with t1 adjacent to f1 and t2 adjacent
to f ; let t3 be the other 3-face incident to v1. We make two basic claims about this
arrangement.

Claim 3 The vertex v2 adjacent to v1 and incident to t3 is a 5+-vertex.

Proof If v2 is a 4-vertex, then the vertices incident to f1 and t3 form (C10), a contra-
diction. ⊓.

Claim 4 If vi and vi+1 are consecutive vertices on the border of f , then at most one
of vi and vi+1 is needy.

Proof Suppose that two consecutive vertices vi and vi+1 are needy 5-vertices. Let gi
and gi+1 be the needy 5-faces incident to vi and vi+1, respectively. Since both vi and
vi+1 have three incident 3-faces, f is adjacent to a 3-face t across the edge vivi+1.
Let u be the third vertex incident to t and consider two cases.

Case 1 t is not in a diamond (Fig. 7b). Since gi is needy, the vertex a adjacent to u
and incident to gi (with a ̸= vi ) is a 4-vertex and is incident to a 3-face ti such that
ti is adjacent to gi . The vertices incident to gi , gi+1, t , and ti form one of (C15) or
(C19), a contradiction.

Case 2 t is in a diamond (Fig. 7c). Let w be the fourth vertex in the diamond and
assume, without loss of generality, that vi is adjacent tow. Let b be the vertex incident
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Fig. 8 A non-needy 5-vertex v2
incident to a non-needy 5-face f
with µ4( f ) < 0

t1
t2 t4

t5

t3 t6
f3f1

f

v2

v1 v3

v4v5

to gi+1 that is not adjacent to u or vi+1 along the boundary of gi+1; since gi+1 is
needy, there is a 3-face ti+1 incident to b and adjacent to gi+1. The vertices vi and w

and those incident to gi+1 and ti+1 form one of (C17) or (C18), a contradiction.
⊓.

By Claim 4, f is incident to at most two needy vertices, and by Claim 3, v2 is
non-needy. If f is incident to exactly one needy 5-vertex, then v3, v4, and v5 are
4-vertices since µ2( f ) = 0, but then the vertices incident to f and f1 form (C14), a
contradiction.

Therefore, f is incident to two needy vertices, and since v2 is a 5+-vertex by
Claim 3, f is incident to exactly two 4-vertices. Each of these receives charge 1, so
µ4( f ) = − 1

2 . By Claim 4, the needy vertices incident to f consist of v1 and exactly
one of v3 or v4. The needy 5-vertex vi other than v1 is also incident to three 3-faces
t4, t5, and t6, where t4 and t5 form a diamond with t4 adjacent to f . By Claim 3,
the vertex adjacent to vi and incident to both f and t6 is a non-needy 5+-vertex.
The only non-needy 5+-vertex incident to f is v2, and hence v3 is a needy 5-vertex
and t4 is incident to v4. If v2 is a 6+-vertex, then µ4( f ) ≥ 0. Therefore, there is a
unique arrangement of needy vertices, 4-vertices, and a 5-vertex about a 5-face f with
µ4( f ) < 0 (Fig. 8). For i ∈ {1, 3}, let fi be the needy 5-face incident to the needy
5-vertex vi .

The vertices incident to f , f1, f3, t3, and t6 form (C16), so this arrangement does
not appear within G; hence µ4( f ) ≥ 0 for all 5-faces f . Therefore, every vertex and
face has nonnegative charge after (R4), contradicting the negative initial charge sum.
Thus, a minimal counterexample does not exist and every plane graph with no chorded
5-cycle is (4, 2)-choosable. ⊓.

5 No Chorded 6-Cycle

In this section we show the case of forbidding chorded 6-cycles from Theorem 5.

Theorem 9 If G is a plane graph not containing any chorded 6-cycle, then G is
(4, 2)-choosable.

We prove the following strengthened statement.
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Theorem 10 Let G be a plane graphwith no chorded 6-cycle, and let P be a subgraph
of G, where P is isomorphic to one of P1, P2, P3, or K3, and all vertices in V (P)
are incident to a common face f . Let L be a (4, 2)-list assignment of G − P and let
c be a proper coloring of P. There exists an extension of c to a proper coloring of G
such that c(v) ∈ L(v) for all v ∈ V (G − P).

Proof Suppose that there exists a counterexample. Select a counterexample (G, P,
L , c) by minimizing n(G) − 1

4n(P) and subject to that by minimizing the number of
edges among all chorded 6-cycle free plane graphs, G, with a subgraph P isomorphic
to a graph in {P1, P2, P3, K3}, a proper coloring c of P , and a (4, 2)-list assignment
L of G − P such that c does not extend to an L-coloring of G. We will refer to the
vertices of P as precolored vertices. ⊓.
Claim 5 G is 2-connected.

Proof IfG is disconnected, then each connected component can be colored separately
by the minimality of G. Suppose that G has a cut-vertex v. Then there exist connected
subgraphsG1 andG2 whereG = G1∪G2 and V (G1)∩V (G2) = {v}, n(G1) < n(G),
and n(G2) < n(G). We can assume without loss of generality that G1 contains at
least one vertex of P , so let S1 be the subgraph of P contained in G1. Let S2 =
{v} ∪ (V (G2) ∩ V (P)).

Since (G, P, L , c) is a minimal counterexample, there is an L-coloring c1 of G1
that extends the coloring on S1. Using the color prescribed by c1 on v, there exists an
L-coloring c2 of G2 that extends the coloring on S2. The colorings c1 and c2 form an
L-coloring of G, a contradiction. ⊓.
Claim 6 G has no separating 3-cycles.

Proof Suppose that P ′ = v1v2v3 is a separating 3-cycle of G. Let G1 be the subgraph
of G given by the exterior of P ′ along with P ′, and let G2 be the subgraph of G
given by the interior of P ′ along with P ′. Since P ′ is separating, n(G1) < n(G) and
n(G2) < n(G).

Since the vertices in P share a common face, we can assume without loss of
generality that V (P) ⊆ V (G1). Since (G, P, L , c) is a minimal counterexample,
there exists an L-coloring c1 of G1. Assign the colors from c1 to P ′. Then there
exists an L-coloring of G2 extending the colors on P ′, and together c1 and c2 form an
L-coloring of G, a contradiction. ⊓.
Claim 7 If v ∈ V (P) such that V (P) ⊆ N [v], then the subgraph of G induced by
N (v) is not isomorphic to any graph in {P1, P2, P3, K3}.
Proof Suppose that there exists a vertex v ∈ V (P) where all precolored vertices are
in N [v] and the subgraph G[N (v)] is isomorphic to a subgraph in {P1, P2, P3, K3}.
Since |NG [v]| ≤ 4, there exists an L-coloring c′ of G[N [v]]. Since (G, P, L , c) is a
minimal counterexample, c′ extends to an L-coloring of G ′, which in turn extends to
an L-coloring of G, a contradiction. ⊓.
Claim 8 If v ∈ V (P) has dG(v) ≤ 2, then dG(v) = 2 and P is isomorphic to P1, P2,
or P3.
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Proof By Claim 5, dG(v) ̸= 1. If dG(v) = 2 and P ∼= K3, then G[NG(v)] is
isomorphic to P2, contradicting Claim 7. ⊓.

Claim 9 P is isomorphic to P3.

Proof Suppose that P is not isomorphic to either P3 or K3. If P is isomorphic to P1,
then the vertex v of P has two distinct neighbors u1 and u2 that are on the same face as
v; let U = {u1, u2}. If P is isomorphic to P2, then some vertex v in P has a neighbor
u1 not in P that shares a face with the edge in P; let U = {u1}. Let P ′ be induced
by V (P) ∪ V (U ). Notice |P ′| = 3 hence it is isomorphic to P3 or K3. There exists
a proper coloring c′ of P ′ that extends the coloring on P . But then (G, P ′, L , c′) has
n(G) − 1

4n(P
′) < n(G) − 1

4n(P), so there exists an L-coloring of G that extends c′,
a contradiction.

If P is isomorphic to K3, we can remove any edge e with both vertices in P . By
minimality of G, there exists an L-coloring extending c in G − e but it is also an
L-coloring of G since both endpoints of e have different color in c, a contradiction. ⊓.

Claim 10 If v ∈ V (G − P), then dG(v) ≥ 4.

Proof Suppose that v ∈ V (G− P) has degree d(v) ≤ 3. Then G−v is a planar graph
with no chorded 7-cycle containing a precolored subgraph P and a list assignment L .
Since (G, P, L , c) is a minimum counterexample, G−v has an L-coloring. However,
v has at most three neighbors and at least four colors in the list L(v). Thus, there is an
extension of the L-coloring of G − v to an L-coloring of G, a contradiction. ⊓.

Claim 6 helps us to prove the following adjacencies of faces.

Claim 11 If a 5-face f5 is adjacent to a triangle face f3 then there is a 2-vertex incident
to both of them. Moreover, every 5-face is adjacent to at most one triangle face.

Proof Let f5 be a 5-face bounded by a cycle v1, v2, v3, v4, v5. Let f3 be a 3-face
with vertices v1v2x . Since G has no chorded 6-cycle, x ∈ {v3, v4, v5}. If x = v4,
then Claim 6 implies v1v4v5 and v2v3v4 are also triangular faces and we obtain a
contradiction with Claim 10 since G is a graph on 5 vertices and only one 4+-vertex.
By symmetry between v3 and v5 suppose that x = v3. Then v2 is the desired 2-vertex
and we are done.

Suppose that f5 is adjacent to two triangle faces. Each of them has a 2-vertex in
common with f5. By symmetry assume these 2-vertices are v3 and v5. Then v1v4 and
v2v4 are edges and v1v2v4 is a triangle face adjacent to f5 not sharing any 2-vertex
with f5, which is a contradiction. ⊓.

Claim 12 If two 4-faces are adjacent then they are both incident to the same 2-vertex

Proof Let f1 and f2 be adjacent 4-faces bounded by cycles v1, v2, v3, v4 and
v1, v2, x2, x1 respectively. Since G does not contain chorded 6-cycles, f1 and f2
must share at least three vertices. If they share four vertices, we get a contradiction
with Claim 10. By symmetry we assume x1 is v3 or v4. If x1 = v3 then v2, x2, v3
and v1, v3, v4 are triangular faces and we obtain a contradiction with Claim 10. Hence
x1 = v4 and v1 has degree two. ⊓.
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Claim 13 If a 4-face f shares two or more edges with triangular faces, then it shares
edges with exactly two. Moreover, there is a 3-vertex v ∈ V (P) incident to both
triangular faces and to f .

Proof Let f be a 4-face bounded by a cycle v1, v2, v3, v4 and assume that v1, v2, x is
a triangular face. If x ∈ {v3, v4} then G would violate Claim 6 or Claim 10. Hence x
is not a vertex of the cycle.

Suppose for contradiction v3, v4, y is also a triangular face. Since G does not
contain chorded 6-cycles, x = y. By Claim 6, G has only five vertices and contradicts
Claim 10. Hence f is adjacent to at most two triangles.

Assume that v4, v1, y is a triangular face. Since G does not contain chorded 6-
cycles, x = y. Then v1 is the desired 3-vertex since by Claim 10, v1 ∈ V (P). ⊓.
Claim 14 Every 3-vertex is adjacent to at most two triangular faces.

Proof Let v be a 3-vertex adjacent to three triangular faces. Note that these are all the
faces containing v. This contradicts that P = P3. ⊓.

Since G is a minimal counterexample, G does not contain any of the reducible
configurations. Specifically, we use the fact that G avoids (C3) and (C4) (see Fig. 2),
where no removed vertex is precolored.

For each v ∈ V (G) − V (P), p ∈ V (P), and f ∈ F(G) define initial charge
µ0(v) = d(v)−4,µ0(p) = d(p)−4+ 22

9 andµ0( f ) = ℓ( f )−4. ByEuler’s Formula,
the initial charge sum is −8 + 22

3 = − 2
3 . Since δ(G − P) ≥ 4, the only elements

of negative charge are 3-faces. Since a chorded 6-cycle is forbidden, δ(G − P) ≥ 4,
and Claim 6, the clusters (see Fig. 1) are triangles (K3), diamonds (K4), 3-fans (K5a),
4-wheels (K5b), and 4-fans with end vertices identified (K5c). Specifically note that
the 4-fan (K6b) contains a chorded 6-cycle, so at most three 3-faces in a cluster share
a common vertex, unless they form a 4-wheel (K5b) and the common vertex is the
4-vertex in the center of the wheel.

Apply the following discharging rules, as shown in Fig. 9.

(R1) If p is a 2-vertex incident with two 4-faces, then p sends charge 2
9 to each of

them.
(R2) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f

across e.
(R2a) If g is a 5+-face, then f pulls charge 1

3 from g “through” the edge e.
(R2b) If g is a 4-face adjacent to one 3-face, then let e1, e2, and e3 be the other edges

incident to g. For each i ∈ {1, 2, 3}, let hi be the face adjacent to g across ei .
For each i ∈ {1, 2, 3}, the face f pulls charge 1

9 from the face hi “through”
the edges e and ei .

(R2c) If g is a 4-face adjacent to two 3-faces, then let e1 and e2 be edges of g not
incident to 3-faces. For each i ∈ {1, 2}, let hi be the face adjacent to g across
ei . For each i ∈ {1, 2}, the face f pulls charge 1

18 from the face hi “through”
the edges e and ei . Let v be the vertex shared by g, f and the other 3-face.
Then v send charge 2

9 to f through e.
(R3) Let v be a 5+-vertex or precolored, and let f be an incident 3-face.
(R3a) If v is a 5-vertex that is not precolored , then v sends charge 1

3 to f .
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Fig. 9 Discharging rules in the proof of Theorem 9

(R3b) If v is a 6+-vertex or precolored, then v sends charge 4
9 to f .

(R4) If X is a cluster, then every 3-face in X is assigned the average charge of all
3-faces in X .

Notice that precolored vertices behave similarly to 6+-vertices.
Notice that the rules preserve the sum of the charges. Let µi (v) and µi ( f ) denote

the charge on a vertex v or a face f after rule (Ri). We claim that µ4(v) ≥ 0 for every
vertex v and µ4( f ) ≥ 0 for every face f ; since the total charge sum is preserved by
the discharging rules, this contradicts the negative charge sum from the initial charge
values.

If v is a 6+-vertex, then by (R3b) v loses charge 4
9 to each incident 3-face. Since G

avoids chorded 6-cycles, v is incident to at most ⌊ 3
4d(v)⌋ 3-faces. Thusµ4(v) satisfies

µ4(v) ≥ d(v) − 4 − 4
9

⌊
3
4
d(v)

⌋
≥ d(v) − 4 − 4

9
· 3
4
d(v) = 2

3
d(v) − 4 ≥ 0.

Let v be a 5−-vertex not in P . If v is a 4-vertex, then v is not involved in any rule, so
the resulting charge is 0. If v is a 5-vertex, then by (R3a) v loses charge 1

3 to each inci-
dent 3-face. SinceG avoids chorded 6-cycles, v is incident to at most three 3-faces, so

µ4(v) ≥ d(v) − 4 − 1
3
· 3 = d(v) − 5 = 0.

Therefore, µ4(v) ≥ 0 for every vertex v not in P .
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Let v be a 5−-vertex in P . If v is a 5-vertex or 4-vertex then rule (R3b) applies at
most d(v) times and

µ4(v) ≥ d(v) − 4+ 22
9

− 4
9
· d(v) > 0.

If v is a 3-vertex then by Claim 14 (R2c) and (R3b) apply at most twice and

µ4(v) ≥ d(v) − 4+ 22
9

− 6
9
· 2 > 0.

If v is a 2-vertex, then at most one of (R1) and (R3b) apply and if (R3b) applies, it
applies only once. Hence

µ4(v) ≥ d(v) − 4+ 22
9

− 4
9
= 0.

Therefore all vertices v ∈ V (G) have µ4(v) ≥ 0.
Let f be a 4-face. If (R2b) or (R2c) applies to f then it must be adjacent to another

4-face and by Claim 12 and they share a 2-vertex v. Hence (R1) applies to f and v

and the charge lost in (R2b) and (R2c) is at most the charge gained in (R1). Thus,
µ4( f ) ≥ 0 for every 4-face f .

If f is a 6+-face, then f loses charge at most 1
3 through each edge by (R2a), (R2b),

or (R2c), so

µ4( f ) ≥ ℓ( f ) − 4 − 1
3
ℓ( f ) = 2

3
ℓ( f ) − 4 ≥ 0.

Therefore, µ4( f ) ≥ 0 for every 6+-face f .
Let f be a 5-face. If f is not adjacent to a 3-face, f loses no charge by (R2a), but

could lose charge using (R2b) and (R2c), so

µ4( f ) ≥ ℓ( f ) − 4 − 1
9
ℓ( f ) = 8

9
ℓ( f ) − 4 ≥ 0.

If f is adjacent to a 3-face, by Claim 11 it is adjacent to at most one and it shares at
most two edges with it, so (R2a) is applies at most twice while at most 1

9 charge is lost
through each of the remaining three edges by (R2b) and (R2c) and we obtain

µ4( f ) ≥ ℓ( f ) − 4 − 1
9
· 3 − 1

3
· 2 = 0.

Therefore, µ4( f ) ≥ 0 if f is a 5-face.
All objects that start with nonnegative charge have nonnegative charge after the

discharging process. It remains to show that each cluster of 3-faces receives enough
charge to result in a nonnegative charge sum. Observe that the rules (R2a), (R2b), and
(R2c) guarantee that if a triangle f is sharing an edge ewith a 4+-face, then f receives
total charge 1

3 trough e.
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Case 1 (K3) Let f be an isolated 3-face. The three adjacent faces g1, g2, and g3 are
all 4+-faces. By (R2), f receives charge 1

3 through each incident edge, so µ4( f ) =
−1+ 3 · 1

3 = 0.

Case 2 (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). Then f1 is adjacent
to two 4+-faces g1 and g2, and f2 is adjacent to two 4+-faces h1 and h2. By (R2),
the cluster receives charge 1

3 through each of the four edges on the boundary of the
diamond. Since µ0( f1) + µ0( f2) = −2, the charge value on the diamond after rule
(R2) is − 2

3 . Since G contains no (C3), there is a 5+-vertex v incident to both f1 and
f2. If v is a 5-vertex, then by (R3a), f1 and f2 each receive charge 1

3 , and the resulting
charge on the diamond is zero. If v is a 6+-vertex, then by (R3b), f1 and f2 each
receive charge 4

9 , and the resulting charge on the diamond is positive.

Case 3 (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is adjacent
to both f1 and f3. The initial charge on this cluster is −3. There are five edges on the
boundary of this cluster, so by (R2) the cluster receives charge 5

3 , resulting in charge
− 4

3 after (R2). Note that the face f2 is adjacent to both f1 and f3. Since G contains no
(C3), there exists a 5+-vertex v incident to both f1 and f2, and there exists a 5+-vertex
u incident to both f2 and f3. If v ̸= u, then by (R3) v sends charge at least 13 to each of
f1 and f2 and u sends charge at least 13 to each of f2 and f3, resulting in a nonnegative
charge on the 3-fan. If v = u and v is a 6+-vertex, then by (R3b) v sends charge 4

9 to
each face f1, f2, and f3, resulting in a nonnegative charge on the 3-fan. Otherwise,
suppose that v = u and v is a 5-vertex. Since G contains no (C4), there exists another
5+-vertex w incident to at least one of f1 and f2. By (R3a) v sends charge 1

3 to each
of f1, f2, and f3, and by (R3) w sends charge at least 1

3 to at least one of f1 and f2,
resulting in a nonnegative charge on the 3-fan.

Case 4 (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). The initial charge
on this cluster is −4. There are four edges on the boundary of this cluster, so by (R2)
the cluster receives charge 4

3 , resulting in charge − 8
3 after (R2). Let v be the 4-vertex

incident to all four 3-faces. Let u1, u2, u3, and u4 be the vertices adjacent to v, ordered
cyclically such that vuiui+1 is the boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1
is the boundary of f4. Since G contains no (C3) and d(v) = 4, each ui is a 5+-vertex.
By (R3), each ui sends charge at least 2

3 to the cluster, resulting in a nonnegative total
charge.

Case 5 (K5c) Let f1, f2, f3, and f4 be 3-faces in a 4-strip with identified vertices
as in (K5c). The initial charge on this cluster is −4. Let v, u1, u2, u3, and u4 be the
vertices in the 4-strip, where v is incident to only f1 and f4, u1 is incident to only
f1 and f2, u2 is incident to f2, f3, and f4, u3 is incident to f1, f2, and f3, and u4 is
incident to only f3 and f4. There are six edges on the boundary of this cluster, so by
(R2) the cluster receives charge 6

3 , resulting in charge − 6
3 = −2 after (R2).

Since f2 and f3 form a diamond, and G contains no (C3), one of u2 and u3 is a
5+-vertex.Without loss of generality, assume u3 is a 5+-vertex. Since f3 and f4 form a
diamond, andG contains no (C3), one of u2 and u4 is a 5+-vertex. If u2 is a 5+-vertex,
then by (R3), the cluster receives charge at least 3

3 + 3
3 from u2 and u3, which results

in nonnegative total charge. Otherwise, u2 is a 4-vertex and u4 is 5+-vertex. If u3 is a
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6+-vertex, then by (R3), the cluster receives charge at least 4
3 + 2

3 from u3 and u4. If
u3 is a 5-vertex, then since f1 and f2 form a diamond and G contains no (C4), one of
v and u1 is a 5+-vertex. By (R3), the cluster receives charge at least 3

3 + 2
3 + 2

3 from
u3 and u4 and one of v and u1. In either case, the final charge is nonnegative.

We have verified that the total charge after discharging is nonnegative, contradicting
the negative initial charge sum. Thus, a minimal counterexample does not exist and
every planar graph with no chorded 6-cycle is (4, 2)-choosable. ⊓.

6 No Chorded 7-Cycle

Theorem 11 If G is a plane graph not containing a chorded 7-cycle, then G is (4, 2)-
choosable.

We prove the following strengthened statement:

Theorem 12 Let G be a plane graphwith no chorded 7-cycle, and let P be a subgraph
of G, where P is isomorphic to one of P1, P2, P3, or K3, and all vertices in V (P)
are incident to a common face f . Let L be a (4, 2)-list assignment of G − P and let
c be a proper coloring of P. There exists an extension of c to a proper coloring of G
such that c(v) ∈ L(v) for all v ∈ V (G − P).

Proof Suppose that there exists a counterexample. Select a counterexample (G, P,
L , c) by minimizing n(G)− 1

4n(P) among all chorded 7-cycle free plane graphs, G,
with a subgraph P isomorphic to a graph in {P1, P2, P3, K3}, a proper coloring c of P ,
and a (4, 2)-list assignment L of G − P such that c does not extend to an L-coloring
of G. We will refer to the vertices of P as precolored vertices.

Claim 15 G is 2-connected.

Proof IfG is disconnected, then each connected component can be colored separately.
Suppose that G has a cut-vertex v. Then there exist connected subgraphs G1 and G2
where G = G1 ∪G2 and V (G1)∩V (G2) = {v}, n(G1) < n(G), and n(G2) < n(G).
We can assume without loss of generality that G1 contains at least one vertex of P , so
let S1 be the subgraph of P contained in G1. Let S2 = {v} ∪ (V (G2) ∩ V (P)).

Since (G, P, L , c) is a minimal counterexample, there is an L-coloring c1 of G1
that extends the coloring on S1. Using the color prescribed by c1 on v, there exists an
L-coloring c2 of G2 that extends the coloring on S2. The colorings c1 and c2 form an
L-coloring of G, a contradiction. ⊓.

Claim 16 G has no separating 3-cycles.

Proof Suppose that P ′ = v1v2v3 is a separating 3-cycle of G. Let G1 be the subgraph
of G given by the exterior of P ′ along with P ′, and let G2 be the subgraph of G
given by the interior of P ′ along with P ′. Since P ′ is separating, n(G1) < n(G) and
n(G2) < n(G).

Since the vertices in P share a common face, we can assume without loss of
generality that V (P) ⊆ V (G1). Since (G, P, L , c) is a minimal counterexample,
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there exists an L-coloring c1 of G1. Assign the colors from c1 to P ′. Then there
exists an L-coloring of G2 extending the colors on P ′, and together c1 and c2 form an
L-coloring of G, a contradiction. ⊓.

Claim 17 If v ∈ V (P) such that V (P) ⊆ N [v], then the subgraph of G induced by
N (v) is not isomorphic to any graph in {P1, P2, P3, K3}.

Proof Suppose that there exists a vertex v ∈ V (P)where all precolored vertices are in
N [v] and the subgraphG[N (v)] is isomorphic to a subgraph in {P1, P2, P3, K3}. Then
consider the graph G ′ = G − v. Since |NG[v]| ≤ 4, there exists an L-coloring c′ of
G[N [v]]. Since (G, P, L , c) is a minimal counterexample, c′ extends to an L-coloring
of G ′, which in turn extends to an L-coloring of G, a contradiction. ⊓.

Claim 18 If v ∈ V (P) has dG(v) ≤ 2, then dG(v) = 2 and P is isomorphic to P1,
P2, or P3.

Proof By Claim 15, dG(v) ̸= 1. If dG(v) = 2 and P ∼= K3, then G[NG(v)] is
isomorphic to P2, contradicting Claim 17. ⊓.

Claim 19 P is isomorphic to one of P3 or K3.

Proof Suppose that P is not isomorphic to either P3 or K3. If P is isomorphic to P1,
then the vertex p of P has two neighbors u1 and u2 that are on the same face as p;
let U = {u1, u2}. If P is isomorphic to P2, then some vertex v in P has a neighbor
u1 not in P that shares a face with the edge in P; let U = {u1}. Let P ′ be induced
by V (P) ∪ V (U ). Notice |P ′| = 3 hence it is isomorphic to P3 or K3. There exists
a proper coloring c′ of P ′ that extends the coloring on P . But then (G, P ′, L , c′) has
n(G) − 1

4n(P
′) < n(G) − 1

4n(P), so there exists an L-coloring of G that extends c′,
a contradiction. ⊓.

Claim 20 If v ∈ V (G − P), then dG(v) ≥ 4.

Proof Suppose that v ∈ V (G− P) has degree d(v) ≤ 3. Then G−v is a planar graph
with no chorded 7-cycle containing a precolored subgraph P and a list assignment L .
Since (G, P, L , c) is a minimum counterexample, G−v has an L-coloring. However,
v has at most three neighbors and at least four colors in the list L(v). Thus, there is an
extension of the L-coloring of G − v to an L-coloring of G, a contradiction. ⊓.

Observe that n(G) ≥ 4. Recall that in a configuration (C, X, ex), an L-coloring of
V (C)\X extends to all of C . Because of this fact, if G contains a reducible config-
uration (C, X, ex), then there is a precolored vertex in the set X , or else G − X has
an L-coloring that extends to all of G. Specifically, we will use the fact that G avoids
(C2), (C3), (C4), (C5), (C6), (C7), and (C8).

For each v ∈ V (G) and f ∈ F(G) define

µ0(v) = d(v) − 4+ 2δ(v) and µ0( f ) = ℓ( f ) − 4+ ε( f ),

where δ(v) ∈ {0, 1} has value 1 if and only if v ∈ V (P), and ε( f ) ∈ {0, 1} has value
1 if and only if the boundary of f is the set of precolored vertices, V (P). By Euler’s
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Fig. 10 Discharging rules (R1) and (R2) in the proof of Theorem 11

Formula, the initial charge sum is at most −1. Claims 18 and 20 assert that the only
negatively-charged objects are 3-faces.

For a vertex v, let tk(v) denote the number of k-faces incident to v. Apply the
following discharging rules. Let µi (v) and µi ( f ) denote the charge on a vertex v or
a face f after rule (Ri) (Fig. 10).

(R0) If v is a precolored vertex and f is an incident 3-face with negative initial charge,
then v sends charge 1

2 to f .
(R1) If f is a 3-face and e is an incident edge, then let g be the face adjacent to f

across e.
(R1a) If g is a 5+-face, then f pulls charge 3

8 from g “through” the edge e.
(R1b) If g is a 4-face and f is the only 3-face adjacent to g, then let e1, e2, and e3 be

the other edges incident to g. For each i ∈ {1, 2, 3}, let hi be the face adjacent
to g across ei . For each i ∈ {1, 2, 3}, the face f pulls charge 1

8 from the face
hi “through” the edges e and ei .

(R1c) If g is a 4-face and g is adjacent to two 3-faces f1 and f2 (say f1 = f ), then let
e1 and e2 be the other edges incident to g, where the faces h1 and h2 sharing
these edges are 6+-faces. For each i ∈ {1, 2}, the face f pulls charge 3

16 from
the face hi “through” the edges e and ei .

(R2) Let v be a 5+-vertex with v /∈ V (P) and let f be an incident 3-face.
(R2a) If v is a 5-vertex, then v sends charge 1

a to f , when a = max{3, t3(v)}.
(R2b) If v is a 6+-vertex, then v sends charge 1

2 to f .
(R3) If f is a 6-face with µ2( f ) < 0 and v is an incident 5+-vertex or an incident

vertex in V (P) with µ0(v) > 0, then v sends charge 1
4 to f .
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We claim that µ3(v) ≥ 0 for every vertex v and µ3( f ) ≥ 0 for every face f . Since
the total charge sum was preserved during the discharging rules, this contradicts the
negative charge sum from the initial charge values.

Note that 6-faces are not incident to 3-faces since G does not contain a chorded
7-cycle and separating 3-cycles. Observe that a 6-face f has µ1( f ) < 0 if and only if
all faces adjacent to f are 4-faces, and each of those 4-faces has two adjacent 3-faces.

Claim 21 Let v be a vertex in V (P). Then µ3(v) ≥ 0. In addition, if v is incident to
a 6-face f with µ1( f ) < 0, then µ0(v) > 0.

Proof By Claims 18 and 19, we have µ0(v) = d(v) − 2 ≥ 0. Note that if µ0(v) ≥
1
2 t3(v)+ 1

4 t6(v), then the final chargeµ3(v) is nonnegative. Since d(v) ≥ t3(v)+t6(v),
it suffices to show that µ0(v) ≥ 1

4d(v)+ 1
4 t3(v).

Case 1 P ∼= P3. Let v1, v2, and v3 be the vertices in the 3-path P . For i ∈ {1, 2, 3},
µ0(vi ) = d(vi )−2. Since P is not isomorphic to K3, these vertices do not form a cycle,
and the face to which all vertices are incident is not a 3-face. Hence t3(vi ) ≤ d(vi )−1.
If d(vi ) ≥ 4, then µ0(vi ) = d(vi ) − 2 ≥ 1

2d(vi ) >
1
4d(vi )+ 1

4 t3(vi ).
If d(v2) = 2, then µ0(vi ) = 0. Vertex v2 is not incident to any 3-faces since v1 and

v3 are not adjacent. Moreover, v2 is not incident to any 6-face f with µ1( f ) < 0. If
such face f existed, v2 would be incident also to a 4-face f ′ that is incident to two
triangles. This configuration of faces results in a separating triangle, chorded 7-cycle
or contradiction with Claim 20.

If d(vi ) = 2 for i ∈ {1, 3}, thenµ0(vi ) = 0. If vi is adjacent to a 3-face, then let v′
i be

the neighbor of vi not in V (P). Let P ′ be the subgraph induced by (V (P)∪{v′
i })\{vi },

which forms a copy of P3 or K3 in G − vi . For any color c(v′
i ) ∈ L(v′

i )\{c(vi )}, there
exists an L-coloring of G − vi as (G − vi , P ′, L , c) is not a counterexample; this
coloring extends to an L-coloring of G. Thus, t3(vi ) = 0. If vi is incident to a 6-face
f with µ1( f ) < 0, then the other face incident to vi is a 4-face that is adjacent to two
3-faces. This results in a chorded 7-cycle, a contradiction; thus (R3) does not apply to
vi .

If d(vi ) = 3, Claim 16 asserts that G has no separating 3-cycles, so then vi loses
charge at most 1 in (R0). If vi is incident to a 6-face f with µ1( f ) < 0, then the
other two faces incident to vi are 4-faces and these 4-faces are each adjacent to two
3-faces. This creates a chorded 7-cycle, a contradiction, so (R3) does not apply to vi
and µ3(vi ) ≥ 0.

Case 2 P ∼= K3. Let v1, v2, and v3 be the vertices in the 3-cycle P , so µ0(vi ) =
d(vi )− 2 for each vi . By Claim 16, G has no separating 3-cycle, so the three vertices
are incident to a common 3-face f with µ0( f ) = 0. Therefore, each vertex vi sends
charge 1

2 to at most d(vi ) − 1 incident 3-faces by (R0). Recall that d(vi ) ≥ 3 by
Claim 18. Suppose that d(vi ) = 3. If t3(vi ) > 1, the subgraph of G induced by the
neighborhood of vi is isomorphic to P3 or K3, contradicting Claim 17. If d(vi ) ≥
4, then µ0(vi ) = d(vi ) − 2 ≥ 1

2d(vi ) ≥ 1
4d(vi ) + 1

4 t3(vi ). Therefore, µ3(vi ) ≥
0.

Thus, in all cases a precolored vertex v has µ3(v) ≥ 0. ⊓.
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We will now show that all objects that start with nonnegative charge also end with
nonnegative charge.

If f is a 4-face, then (R1b) and (R1c) do not pull charge from f , since this would
require f to be adjacent to a 4-face g that is adjacent to a 3-face t , but then f , g, and
t contain a chorded 7-cycle. Thus, µ3( f ) = 0 for every 4-face f .

If f is a 5-face, then since G contains no chorded 7-cycles, f is not adjacent to
two 3-faces and f is not adjacent to a 4-face. Therefore, f loses charge at most 3

8 by
(R1a), but loses no charge using (R1b), so µ3( f ) > 0 for every 5-face f .

If f is a 6-face, then f is not adjacent to a 3-face since G contains no chorded
7-cycle. Observe that by Claim 15 the boundary of f is a simple 6-cycle. So if f sends
charge through an edge e during (R1), it can send charge 1

8 through e by (R1b), or it
can send charge 3

8 through e by (R1c). The only way that this will result in a negative
charge after (R1) and (R2) is for f to send charge 3

8 through each of its six edges by
(R1c); this will cause µ2( f ) = 2 − 6 · 3

8 = − 1
4 . If f has a precolored vertex v on

its boundary, then by Claim 21, v has positive charge after (R0); by (R3), f receives
charge at least 1

4 , resulting in µ3( f ) ≥ 0. If f has no incident precolored vertices,
then since G contains no (C2), some vertex v on the boundary of f is a 5+-vertex.
By (R3) v sends charge 1

4 to f and hence µ3( f ) ≥ 0. Observe the following claim
concerning the structure about a vertex that loses charge by (R3).

Claim 22 Let v be a 5+-vertex with the three incident faces f1, f2, and f3, in cyclic
order. If v sends charge to f2 by (R3), then f1 and f3 are 4-faces and f2 is a 6-face.

If f is a 7+-face, then by (R1) f loses charge at most 3
8 through each edge. Thus,

µ3( f ) ≥ ℓ( f ) − 4 − 3
8
ℓ( f ) = 5

8
ℓ( f ) − 4 > 0.

Therefore, µ3( f ) > 0 for every 7+-face f .
Next, we will consider a vertex v not in V (P).
If v is a 4-vertex, then v does not lose charge by any rule, so the resulting charge is

0.
If v is a 5-vertex, let a = max{3, t3(v)} and v loses charge 1

a t3(v) to incident 3-
faces by (R2a). If (R3) does not apply to v, then v sends charge at most 1 to incident
3-faces and µ3(v) ≥ 0. If (R3) applies to v, then v is incident to faces f1, f2, and
f3 where f1 and f3 are 4-faces and f2 is a 6-face. Since d(v) = 5 and G has no
chorded 7-cycle, the rule (R3) applies at most once. Indeed, if (R3) would apply
twice, then v would be incident to two 4-faces sharing an edge and each of these
two 4-faces shares two edges with triangles and this gives a chorded 7-cycle. If (R3)
applies once, then t3(v) ≤ 2 and v loses charge at most 2

3 by (R2) and charge 1
4 by

(R3), so µ3(v) ≥ 0.
If v is a 6+-vertex, then let k = t3(v) and ℓ be the number of times (R3) applies

to v. Notice that k ≤ ⌊ 4
5d(v)⌋ since G avoids chorded 7-cycles. Further, notice that

k + 2ℓ ≤ d(v), since each 6-face that gains charge from v by (R3) is preceded by a
4-face in the cyclic order of faces around v. By (R2b), v can lose charge 1

2 to each
incident 3-face, and v can lose charge at most 1

4 to each incident 6-face by (R3). Then
v ends with charge
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Fig. 11 Clusters (K3), (K4), and (K5a)

µ3(v) ≥ d(v) − 4 − 1
2
k − 1

4
ℓ.

If d(v) = 6, then observe k + ℓ ≤ 4 and hence µ3(v) ≥ 0. If d(v) = d ≥ 7, then d,
k, and ℓ satisfy the following linear program with dual on variables a1, a2, and a3:

min d − 1
2k − 1

4ℓ

s.t. d ≥ 7
4d − 5k ≥ 0
d − k − 2ℓ ≥ 0
d, k, ℓ ≥ 0

max 7a1
s.t. a1 + 5a2 + a3 ≤ 1

− 5a2 − a3 ≤ − 1
2

− 2a3 ≤ − 1
4

a1, a2, a3 ≥ 0

The dual-feasible solution (a1, a2, a3) =
( 23
40 ,

1
20 ,

1
4

)
demonstrates that d− 1

2k− 1
4ℓ ≥

7 · 23
40 > 4, and thus µ3(v) > 0 for every 7+-vertex.
It remains to be shown that the clusters receive enough charge to become nonneg-

ative. Since G contains no separating 3-cycle, G does not contain the cluster (K5c)
or the clusters (K6g)–(K6r). Observe that there is no precolored vertex v of degree at
most three where all faces incident to v have length three. Finally, it is worth noting
again that ifG contains a reducible configuration (C, X, ex), then there is a precolored
vertex in the set X .

If a vertex v is a 5+-vertex or v ∈ V (P), we say v is full; if v is a 6+-vertex or
v ∈ V (P), then v is heavy. Note that a heavy vertex v sends charge 1

2 to each incident
negatively-charged 3-face by (R0) or (R2b). If P ∼= K3, we call P the precolored face
(Fig. 11).

Case 1 (K3) Let f be the isolated 3-face in (K3). If f is the precolored face, then
µ3( f ) = µ0( f ) = 0. Otherwise, the initial charge on f is −1. By (R1), f receives
charge 9

8 through its boundary edges, resulting in a nonnegative final charge.

Case 2 (K4) Let f1 and f2 be 3-faces in a diamond cluster (K4). First, suppose without
loss of generality that f1 is the precolored face. The initial charge of the cluster is −1.
Then f2 receives charge 1 by (R0) and charge 2 · 38 by (R1), resulting in a positive final
charge. Otherwise, the initial charge on the cluster is −2. By (R1), f1 and f2 receive
charge 3

8 through each of the two edges on the boundary of the cluster, resulting in
charge − 1

2 . If the cluster contains a precolored vertex u, then it receives charge 1
2 by

(R0). Otherwise, since G contains no (C3), there is a 5+-vertex v incident to both f1
and f2. By (R2), this vertex sends charge at least 1

3 to each of the faces, resulting in a
nonnegative final charge.

123



Graphs and Combinatorics (2017) 33:751–787 779

v

u2u1

u4 u3

f1

f2

f3

f4 f1
f2

f3
f4

v u5

u4u3

u2

u1

f1

f2
f3

f4

(K5b) (K6a) (K6b)

Fig. 12 Clusters (K5b), (K6a), and (K6b)

Case 3 (K5a) Let f1, f2, and f3 be 3-faces in a 3-fan cluster (K5a), where f2 is
adjacent to both f1 and f3. Suppose that the cluster contains a precolored face, so the
initial charge on the cluster is −2. If f2 is precolored, then the cluster receives charge
4 · 1

2 by (R0); if f1 or f3 is precolored, then the cluster receives charge 3 · 1
2 by (R0)

and charge 3 · 3
8 by (R1). In either case, the final charge is nonnegative.

If P ! K3 or the cluster does not contain the precolored face, then the initial charge
on the cluster is −3. By (R1), the cluster receives charge 5 · 3

8 , resulting in charge
− 9

8 . Note that the faces f1 and f2 form a diamond and the faces f2 and f3 form a
diamond. Since G contains no (C3), there exists a full vertex v incident to both f1
and f2. Similarly, there exists a full vertex u incident to f2 and f3. If u ̸= v, then
by (R0) or (R2), v sends charge at least 1

3 to each of f1 and f2 and u sends charge at
least 1

3 to each of f2 and f3, resulting in nonnegative charge on the cluster. If u = v

and v is a heavy vertex, then v sends charge 1
2 to each face f1, f2, and f3, resulting in

nonnegative charge on the cluster. Otherwise, suppose that u = v /∈ V (P) and v is a
5-vertex. Since G contains no (C4), there exists another full vertex w that is incident
to at least one of f1 and f2. By (R2a), v sends charge 1

3 to f1, f2, and f3, and by (R0)
or (R2),w sends charge at least 1

3 to one of f1 and f2, resulting in nonnegative charge
on the cluster (Fig. 12).

Case 4 (K5b) Let f1, f2, f3, and f4 be 3-faces in a 4-wheel (K5b). If the cluster
contains a precolored face, then the initial charge on the cluster is −3; the cluster
receives charge 5 · 1

2 by (R0) and charge 3 · 3
8 by (R1), resulting in a positive final

charge. Otherwise, the initial charge on this cluster is−4. By (R1), the cluster receives
charge 4 · 38 , resulting in charge − 5

2 . Let v be the 4-vertex incident to all four 3-faces.
Let u1, u2, u3, and u4 be the vertices adjacent to v, ordered cyclically such that vuiui+1
is the boundary of the 3-face fi for i ∈ {1, 2, 3} and vu4u1 is the boundary of f4.
Since the cluster does not contain the precolored face, v is not a precolored vertex.
Since G contains no (C3), each ui is a full vertex. When ui is a 5-vertex, it is incident
to two 7+-faces, so ui sends charge 1

3 to each incident 3-face by (R2). Thus, each ui
sends charge at least 2 · 1

3 to the cluster by (R0) or (R2), resulting in a nonnegative
final charge.

Case 5 (K6a) Let f1, f2, f3, and f4 be 3-faces in a 4-strip cluster (K6a). If the cluster
contains the precolored face, then the initial charge on the cluster is −3. If f1 or f4 is
precolored, then the cluster receives charge 3 · 1

2 by (R0) and charge 4 · 3
8 by (R1); if

f2 or f3 is precolored, then the cluster receives charge 5 · 1
2 by (R0) and charge 5 · 3

8
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Fig. 13 Clusters (K6c) and
(K6d)

u5

u6

u4

u2

u3

u1

f1

f2f3
f4

v

u3u2

u1 u4

w

f1

f2

f3

f4 g

(K6c) (K6d)

by (R1). In either case, the resulting final charge is nonnegative. If the cluster does not
contain the precolored face, then the initial charge on this cluster is −4. By (R1), the
cluster receives charge 6 · 3

8 , resulting in charge − 7
4 . Note that for i ∈ {1, 2, 3}, the

faces fi and fi+1 form a diamond. Since G contains no (C3), there exists a full vertex
v incident to both fi and fi+1. Let u1 be a full vertex incident to f2 and f3. Without
loss of generality, u1 is not incident to f4, so there is a full vertex u2 incident to f1
and f2. If u1 is a heavy vertex, the cluster receives charge 3 · 1

2 from u1 by (R0) or
(R2b), and charge at least 2 · 1

3 from u2 by (R0) or (R2), resulting in a positive final
charge. Otherwise, u1 is a 5-vertex, so u1 sends charge 3 · 1

3 by (R2a), resulting in
charge − 3

4 . If u2 is incident to f3, then u2 sends charge at least 3 · 1
3 by (R0) or (R2),

resulting in a positive final charge. Otherwise, u2 is incident with f1 and f2 but not
f3. If u2 is a large vertex, it sends charge 2 · 1

2 by (R0) or (R2b). Otherwise, since G
contains neither a (C3) or a (C4), there is a third full vertex u3. The cluster receives
charge 2 · 1

3 from u2 by (R2a) and charge at least 1
3 from u3 by (R0) or (R2). In each

case, the resulting final charge is nonnegative.

Case 6 (K6b) Let f1, f2, f3, and f4 be 3-faces in a 4-fan cluster (K6b). Let v be the
center of the fan, with neighbors u1, u2, u3, u4, and u5 where for i ∈ {1, 2, 3}, fi
and fi+1 are adjacent on the edge vui+1. If the cluster contains the precolored face,
then the initial charge on the cluster is −3. If f1 or f4 is precolored, then the cluster
receives charge 4 · 1

2 by (R0) and charge 4 · 3
8 by (R1); if f2 or f3 is precolored, then

the cluster receives charge 5 · 1
2 by (R0) and charge 5 · 3

8 by (R1). In either case, the
resulting final charge is positive.

If the cluster does not contain the precolored face, then the initial charge on this
cluster is −4. By (R1), the cluster receives charge 6 · 38 , resulting in charge − 7

4 . If v is
a heavy vertex, then by (R0) or (R2b) v sends charge 4 · 1

2 to the cluster, resulting in
positive charge. Otherwise, v /∈ V (P) and v is a 5-vertex, so v sends charge 1 to the
cluster by (R2a), resulting in charge− 3

4 . If there is a heavy vertex in {u2, u3, u4}, then
that vertex contributes charge 2 · 12 to the cluster, resulting in a positive charge. If there
is no heavy vertex in {u2, u3, u4}, then there is at least one 5-vertex in {u2, u3, u4}
since G contains no (C4). If there are multiple 5-vertices in {u2, u3, u4}, then each
sends charge 2 · 13 to the cluster by (R2a), resulting in positive charge. If there is only
5-vertex w among u2, u3, and u4, then there is a full vertex z ∈ {u1, u5} since G does
not contain (C4) or (C5); the cluster receives charge 2 · 13 fromw by (R2a) and at least
1
3 from z by (R0) or (R2), resulting in positive final charge (Fig. 13).
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Fig. 14 Clusters (K6e) and
(K6f)
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u3 u2
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(K6e) (K6f)

Case 7 (K6c) Let f1, f2, f3, and f4 be the 3-faces of this cluster (K6c) where f4
is adjacent to each fi for i ∈ {1, 2, 3}. If the cluster contains the precolored face,
then the initial charge on the cluster is −3. If one of f1, f2 or f3 is precolored, the
cluster receives charge 4 · 12 by (R0) and charge 4 · 38 by (R1). If f4 is precolored, then
the cluster receives charge 6 · 1

2 by (R0). In either case, the resulting final charge is
nonnegative.

If the cluster does not contain the precolored face, then the initial charge on the
cluster is−4. By (R1), the cluster receives charge 6 · 38 , resulting in charge− 7

4 . Let u1,
u2, u3, u4, u5, and u6 be the vertices on the boundary of the cluster ordered such that
u2, u4, u6 are the vertices incident to f1 and f2, f2 and f3, and f3 and f1, respectively.
Since G contains no (C3), there are at least two full vertices in {u2, u4, u6}. By (R0)
or (R2), these vertices each send charge at least 1 to the cluster, resulting in a positive
total charge.

Case 8 (K6d) Let f1, f2, f3, and f4 be cyclically-ordered 3-faces in a 4-wheel with
center vertex v where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4}, where
indices are taken modulo 4; let g be a 3-face adjacent to f4 but not incident to v,
completing our cluster (K6d). If the cluster contains the precolored face, then the
initial charge on the cluster is −4. If f1 or f3 is precolored, then the cluster receives
charge 6 · 1

2 by (R0) and charge 4 · 3
8 by (R1). If f2 is precolored, then the cluster

receives charge 5 · 1
2 by (R0) and charge 4 · 3

8 by (R1). If f4 is precolored, then the
cluster receives charge 7· 12 by (R0) and charge 5· 38 by (R1). In each of the above cases,
the final charge is nonnegative. If g is precolored, then the cluster receives charge 4 · 12
by (R0) and charge 3 · 38 by (R1), resulting in charge − 7

8 . Let N (v) = {u1, u2, u3, u4}
where ui is incident to fi and fi+1 for all i ∈ {1, 2, 3, 4}. Since G does not contain
(C3), u1 and u2 are full vertices. Each of u1 and u2 sends charge at least 2 · 1

3 to the
cluster by (R2), resulting in nonnegative charge.

If the cluster does not contain the precolored face, then the initial charge on this
cluster is −5 and v /∈ V (P). By (R1), the cluster receives charge 5 · 3

8 , resulting in
charge − 25

8 . Since G does not contain (C3), u1, u2, u3, and u4 are full vertices. By
(R0) or (R2), the cluster receives charge at least 2 · 13 from each of u1 and u2 and charge
at least 3 · 1

3 from each of u3 and u4, resulting in a positive final charge (Fig. 14).

Case 9 (K6e) Let f1, f2, f3, f4, and f5 be the cyclically-ordered 3-faces in a 5-wheel
with center vertex v where fi and fi+1 share a common edge for i ∈ {1, 2, 3, 4, 5},
where indices are takenmodulo 5. Let N (v) = {u1, u2, u3, u4, u5}where ui is incident
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to fi and fi+1 for i ∈ {1, 2, 3, 4, 5}. If the cluster contains the precolored face, then
the initial charge on the cluster is −4. The cluster receives charge 6 · 1

2 by (R0) and
charge 4 · 3

8 by (R1), resulting in a positive final charge.
If the cluster does not contain the precolored face, then the initial charge is −5 and

v /∈ V (P). By (R1), the cluster receives charge 5 · 38 , and by (R2), the cluster receives
charge 1 from v, resulting in charge− 17

8 . Since G does not contain (C4) or (C6), there
are at least three full vertices in N (v). If N (v) contains at least three heavy vertices,
then the cluster receives charge at least 6 · 1

2 by (R0) or (R2b), resulting in a positive
final charge. If N (v) contains exactly two heavy vertices, then the cluster receives
charge 4 · 12 by (R0) or (R2b) and charge 2 · 13 from a full vertex by (R2a), resulting in
positive charge. If N (v) contains exactly one heavy vertex, then the cluster receives
charge 2 · 12 by (R0) or (R2b) and charge 2 · 13 from each of two full vertices by (R2a),
resulting in positive final charge.

If N (v) contains no heavy vertices, then there are at least three full vertices in
N (v). Since G does not contain (C4), there are at least two nonadjacent 5-vertices in
N (v). Further, since G does not contain (C6), (C7), or (C8), there are at least four
5-vertices in N (v). The cluster receives charge 2 · 1

3 from each of these vertices by
(R2a), resulting in a positive final charge.

Case 10 (K6f) Let f1 and f2 be the interior 3-faces in the two overlapping 4-wheels
that make up the cluster (K6f). Let u1 and u2 be the shared vertices of f1 and f2 and
let z andw be the vertices incident with f1 and f2, respectively, that have not yet been
labeled. Since G contains no (C3), at least one of u1 and u2 is in V (P). Then since all
the precolored vertices lie on a common face, the cluster contains the precolored face,
so the initial charge is −5. If f1 or f2 is precolored, then the cluster receives charge
8 · 12 by (R0) and charge 4 · 38 by (R1), resulting in a positive final charge. If one of the
other 3-faces is precolored, then the cluster receives charge 6 · 1

2 by (R0) and charge
3 · 3

8 by (R1), resulting in charge − 7
8 . Since G contains no (C3), one of w and z is

a non-precolored 5+-vertex. This vertex sends charge at least 3 · 1
3 to the cluster by

(R2), resulting in a positive final charge.
We have verified that the total charge after discharging is nonnegative, contradicting

the negative initial charge sum. Thus, a minimal counterexample does not exist and
every planar graph with no chorded 7-cycle is (4, 2)-choosable. ⊓.

7 Conclusion and Future Work

We proved that, for each k ∈ {5, 6, 7}, planar graphs with no chorded k-cycles are
(4, 2)-choosable. Our methods for proving reducible configurations created several
large classes of reducible configurations, such as templates; naturally, there are many
more reducible configurations than the ones we explicitly used. Unfortunately, we
were unable to extend these results to prove Conjecture 2, that all planar graphs are
(4, 2)-choosable.
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the manuscript. We thank Ryan R. Martin, Alex Nowak, Alex Schulte, and Shanise Walker for participation
in the early stages of the Project.
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Appendix: Large Reducible Configurations

In the proof of Theorem 8, we demonstrated that nominimal counterexample exists by
showing that there exists a reducible configuration (C, X, ex)whereG contains a copy
of C[X ] as an induced subgraph (and also the copy agrees with the external degrees).
In this appendix, we provide the details that clarify this assumption. By Lemma 1,
we can relax the condition that C[X ] is an induced subgraph. We will demonstrate
that the configurations that appear after some vertices in X are merged (while also
preserving the face lengths, vertex degrees, and lack of chorded 5-cycle) result in
reducible configurations.

Let (C, X, ex) be a reducible configuration and let {x1, x ′
1}, . . . , {xt , x ′

t } be a list
of vertex pairs in X . For these configurations, we may identify some 3-cycles and
5-cycles that are required to be 5-faces (in the context of the proof of Theorem 8).
The resulting configuration (C ′, X ′, ex) where C ′ and X ′ are modified from C and X
by merging xi with x ′

i and removing any multiedges or loops that result. We say a list
{x1, x ′

1}, . . . , {xt , x ′
t } is valid for (C, X, ex) if the resulting configuration (C ′, X ′, ex)

may appear in a planar graph of minimum degree at least four containing no chorded
5-cycle. There are three situations that can occur when we perform this action.
Pairs too close: If some pair {xi , x ′

i } have d(xi , x ′
i ) ≤ 2, then either we create a loop

or a multiedge when merging xi and x ′
i . This will reduce the degree of the resulting

vertex, in addition to possibly shortening known 3- and 5-cycles. Since distances only
decrease as vertices are merged, a pair failing this property will not appear in any valid
list of pairs.
Pairs creating chord If merging xi and x ′

i creates a chorded 5-cycle, then this con-
figuration would not appear in the minimal counterexample from Theorem 8. Since
distances only decrease as vertices are merged, a pair failing this property will not
appear in any valid list of pairs.
Reducible pairs If merging xi and x ′

i does not fit in the above two cases, then we will
demonstrate that the resulting configuration is reducible. Even if merging one pair of
vertices creates a reducible configuration, we need to check all possible lists of pairs
that contain that pair.

After considering all pairs that could be identified, observe that in each case there
is no set of three or more vertices where every pair can be identified.

In the following tables, we list one of the configurations (C10)–(C21), label the
vertices, and list all pairs of vertices into the three categories above. In the case of
reducible pairs, we present the contracted graph. Most of these contracted graphs
contain a copy of (C1), (C2), (C10), (C11), or (C12). The only exceptions are the
contracted graphs derived from (C16), but each of these configurations has an Alon–
Tarsi orientation and hence is reducible.

(C10)

ab

c
d

e

f Pairs too close: ab, ac, ad, ae, af , bc, bd, be, cd, ce, cf , de, df , ef .

Pairs creating chord: bf

Reducible pairs: None remain.
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(C11)

a

b

c

d

e

f

g

Pairs too close: ab, ac, ad, ae, af , ag, bc, bd, bf , bg, cd, ce, cg, de, df , dg, ef ,
eg, fg.

Pairs creating chord: be, cf

Reducible pairs: None remain.

(C12)

a

b

c

de

f

Pairs too close: ab, ac, ad, ae, af , bc, bd, be, bf , cd, ce, cf , de, df , ef .

Pairs creating chord: None remain.

Reducible pairs: None remain.

(C13)

g

h

a

b

c

d

e

f

Pairs too close: ab, ac, ad, ag, ah, bc, bg, bh, cf , cg, ch, de, df , dg, dh, ef ,
eg, eh.

Pairs creating chord: ae, af , bf , bd, cd. ce.

Reducible pairs: be (contains (C1))

g

h

a be

c

d

f

Contains (C1) on 4-cycle be, f, g, c.

(C14)

ab

c d

i

e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ci, de, dh, di, ef ,
eg, eh, ei, fg, fg, fi, gh, gi, hi.

Pairs creating chord: af , be, ce, ch, df , dg.

Reducible pairs: bg (contains (C11)), cf (contains (C11)), bg and cf (con-
tains (C12)).

a

bgc

d

i

e

f

h

a

b cf

d

i

e

g

h

a

bg

cf

d

i

eh

)21C(sniatnoC)11C(sniatnoC)11C(sniatnoC
after deleting vertex h. after deleting vertex d. after deleting vertex h.
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(C15)

ab

c
d

i
e

f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bd, bh, bi, cd, ce, ci, de, df , dh,
di, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , ag, be, bf (bf, a, i, h, g, bf), bh, cg (cg, d, i, e, f, cg),
ch, dg.

Reducible pairs: bg (contains (C2)), cf (contains (C1)), bg and cf (contains
(C1)).

a

bgc

d

i

e

f

h

a

b

cf

d

i

e

g

h

a

bg

cf

d

i

eh

)1C(sniatnoC)1C(sniatnoC)2C(sniatnoC
on 6-cycle bf, f, e, i, d, c. on 4-cycle cf, e, i, d. on 4-cycle cf, e, i, d.

(C16)

a
b

c d

e

j fk

ℓ
m

g

h
i

Pairs too close: ab, ac, ad, ae, af , ag, ai, aj, ak, am, bc, bd, be, bf ,bj, bk,
bℓ, bm, cd, ce, cj, cm, de, df , di, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh, gi, hi,
jk, jℓ, jm, kℓ, km, ℓm.

Pairs creating chord: ah, aℓ, bh, bg, bi, cf , ck, cg, ci, cℓ, dg, dh, dj, dk, dm,
ek, eℓ, em, fk, fℓ, fm, gj,gk, gm, hj, ij, ik, im.

Reducible pairs: ch (has Alon-Tarsi orientation), dℓ (symmetric to ch), hk
(has Alon-Tarsi orientation), hm (has Alon-Tarsi orientation), hℓ (has Alon-
Tarsi orientation), gℓ (symmetric to hk), iℓ (symmetric to hm).

a
b

ch

d
e

j
f

k

ℓ
m gi

a
b

c d

e

j
f

ℓ

m

g

hk

i

a
b

c d

e

j f

k

m

ghℓ

i

a
b

c d

e

j
f

k

ℓ

ghm

i

(C17)

ab

c

d

h

e

f
g

Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce, cf , ch, de,
df , dg, ef , eg, fg.

Pairs creating chord: bf , bg, cg, dh, fh, gh.

Reducible pairs: None remaining.
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(C18)

ab

c
d

h

e

f

g
Pairs too close: ab, ac, ad, ae, af , ag, ah, bc, bd, be, bh, cd, ce, cf , ch, de,
df , dg, dh, ef , eg.

Pairs creating chord: bf , bg, cg, eg.

Reducible pairs: None remaining.

(C19)

ab

c

d

j

i
e f

gh

Pairs too close: ab, ac, ad, ae, ag, ah, ai, bc, bc, bh, bi, bj, cd, ci, cj, de, dh,
di, dj, ef , eg, eh, ei, fg, fh, fi, gh, gi, hi.

Pairs creating chord: af , aj, be, ce, cf (cf, e, i, d, j), cg (cg, h, i, d, j), ch, df ,
dg.

Reducible pairs: bf (contains (C10)), bg (contains (C2)).

a

bfc

d

i

e

gh
a

bgc

d

j

i e

f

h

)2C(sniatnoC)01C(sniatnoC
on 5-cycle h, g, bf, e, i and vertex

a. on 6-cycle bg, f, e, i, d, c.

(C20)

ab

c d

k

i

j
e f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd, ci, cj, ck, de,
dh, di, dj, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh, gi, hi, hj, ij, ik.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be, bf (bf, a, i, j, e),
bg (bg, h, i, a, k), bh, bj, ce, cf (cf, d, i, j, e), cg (cg, h, i, j, d), ch, df , dg, dk, ek
(ek, j, d, i, a), fk (fk, e, j, i, a), gj, gk (gk, h, i, a, b), jk (jk, d, c, b, a).

Reducible pairs: hk (contains (C10)).

a

b

c d

hk

i
e f

g

Contains (C10) on 5-cycle hk, g, f, e, i and vertex a.
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(C21)

ab

c
d

k

i

j
e

f

gh

Pairs too close: ab, ac, ad, ae, ah, ai, aj, ak, bc, bd, bi, bk, cd, ci, cj, ck, de,
dh, di, dj, dk, ef , eg, eh, ei, ej, fg, fh, fi, fj, gh, gi, hi, hj, ij.

Pairs creating chord: af (af, e, j, d, i), ag (ag, f, e, j, i), be, bf (bf, a, i, j, e),
bh, bj, ce, cf (cf, d, i, j, e), cg (cg, h, i, j, d), ch, df , dg, dk, ek (ek, j, i, d, c), gj,
hk (hk, i, a, b, c), ik, jk (jk, i, a, b, c).

Reducible pairs: fk (Contains (C11)), gk (Contains (C11)), bg and fk (Con-
tains (C12)). (Note: if we identify only bg, then k must be identified with f in
order to preserve that g has total degree four.)

a

bc

d

fk

i
e

g

h a

b

c

d

gk

i
e

f

h
a

bg

c

d

i
e

fk

h

Contains (C11) Contains (C11) Contains (C12)
after deleting vertices c

and d.
after deleting vertices c

and d.
after deleting vertices c

and d.
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