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Preface

The 25th International Workshop on Combinatorial Algorithms (IWOCA) was held
during October 15–17, 2014, in the picturesque harbor town Duluth, located in the
south-west corner of Lake Superior in Minnesota, USA. Autumn is a favorite time
of the year for visiting Duluth, owing to the amazing range of colors of tree and shrub
folliage on display at this time of the year. The IWOCA 2014 Organizing Committee
timed the event perfectly!

IWOCA – the workshop that originated 25 years ago as the (Australasian) AWOCA
– has over the years established itself as a truly international conference. The name
change (to IWOCA) reflected the expanse of the conference beyond local boundaries,
motivated by the growing global interest in the conference. The first IWOCA events
were still held in Australia in 2007, and the subsequent years brought it to Japan
(2008), the Czech Republic (2009), the UK (2010), Canada (2011), India (2012),
France (2013), and to the USA this year. During the last six years the proceedings have
been published by Springer in the LNCS series.

IWOCA 2014 received 68 submissions, most of them of very high quality. The
Program Committee was faced with hard work and sometimes difficult decisions and
we regretted that some good papers had to be rejected because of the limited capacity
of the conference schedule. In the end, 32 contributed talks were presented during the
conference.

We would like to thank all who have sent their submissions and to congratulate all
the authors of the accepted papers. We extend special thanks to the distinguished
invited speakers Josep Domingo-Ferrer, Pinar Heggernes, Saketh Saurab, and Xuding
Zhu. We also thank all the authors who submitted posters for the poster session (which
are, however, not included in these proceedings).

Finally, we thank all the members of the Program Committee, all external reviewers,
and all the members of the Organizing Committee for all the hard work they have done.
While all committee members worked well as a team, some names must be singled out:
Special thanks go to Sergei Bezrukov for tirelessly updating the website and running
the technology support during the workshop, and to Xiaofeng Gu for handling tech-
nical issues of papers included in both the pre-workshop proceedings and this volume.

March 2015 Dalibor Froncek
Jan Kratochvíl
Mirka Miller
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3-Coloring Triangle-Free Planar Graphs
with a Precolored 9-Cycle

Ilkyoo Choi1, Jan Ekstein2, Přemysl Holub2, and Bernard Lidický3(B)

1 Korea Advanced Institute of Science and Technology, Daejeon, South Korea
ilkyoo@kaist.ac.kr

2 University of West Bohemia, Pilsen, Czech Republic
{ekstein,holubpre}@kma.zcu.cz

3 Iowa State University, Ames, USA
lidicky@iastate.edu

Abstract. Given a triangle-free planar graph G and a cycle C of length
9 in G, we characterize all situations where a 3-coloring of C does not
extend to a proper 3-coloring of G. This extends previous results for the
length of C up to 8.

1 Introduction

Let [n] = {1, 2, . . . , n}. Graphs in this paper are finite and may have loops or
parallel edges. Given a graph G, let V (G) and E(G) denote the vertex set and
the edge set of G, respectively. We will also use |G| for the size of E(G). A proper
k-coloring of a graph G is a function ϕ : V (G) → [k] such that ϕ(u) ̸= ϕ(v) for
each edge uv ∈ E(G). A graph is k-colorable if there exists a proper k-coloring
of the graph, and the minimum k where a graph is k-colorable is the chromatic
number of the graph.

Garey and Johnson [15] proved that deciding if a graph is k-colorable is NP-
complete even when k = 3. Moreover, deciding if a graph is 3-colorable is still
NP-complete when restricted to planar graphs [9]. Therefore, even though planar
graphs are 4-colorable by the celebrated Four Color Theorem [4,5,19], finding
sufficient conditions for a planar graph to be 3-colorable has been an active area
of research. A landmark result in this area is Grötzsch’s Theorem [17], which is
the following:

Theorem 1 ([17]). Every triangle-free planar graph is 3-colorable.

Ilkyoo Choi—Supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2011-0011653).
Jan Ekstein—Supported by P202/12/G061 of the Czech Science Foundation
and by the European Regional Development Fund (ERDF), project NTIS -
New Technologies for the Information Society, European Centre of Excellence,
CZ.1.05/1.1.00/02.0090.
Přemysl Holub—Supported by NSF grants DMS-1266016.

c⃝ Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 98–109, 2015.
DOI: 10.1007/978-3-319-19315-1 9
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We direct readers to a nice survey by Borodin [7] for more results and conjectures
regarding 3-coloring planar graphs.

A graph G is k-critical if it is not (k−1)-colorable but every proper subgraph
of G is (k − 1)-colorable. Critical graphs are important since they are (in a
certain sense) the minimal obstacles in reducing the chromatic number of a
graph. Numerous coloring algorithms are based on detecting critical subgraphs.
Despite its importance, there is no known characterization of k-critical graphs
when k ≥ 4. On the other hand, there has been some success regarding 4-critical
planar graphs. Extending Theorem1, the Grünbaum–Aksenov Theorem [1,6,18]
states that a planar graph with at most three triangles is 3-colorable, and we
know that there are infinitely many 4-critical planar graphs with four triangles.
Borodin, Dvořák, Kostochka, Lidický, and Yancey [8] were able to characterize
all 4-critical planar graphs with four triangles.

Given a graph G and a proper subgraph C of G, we say G is C-critical fork-
coloring if for every proper subgraph H of G where C ⊆ H, there exists a proper
k-coloring of C that extends to a proper k-coloring of H, but does not extend to
a proper k-coloring of G. Roughly speaking, a C-critical graph for k-coloring is
a minimal obstacle when trying to extend a proper k-coloring of C to a proper
k-coloring of the entire graph. Note that (k + 1)-critical graphs are exactly the
C-critical graphs for k-coloring with C being the empty graph.

In the proof of Theorem1, Grötzsch actually proved that any proper coloring
of a 4-cycle or a 5-cycle extends to a proper 3-coloring of a triangle-free planar
graph. This implies that there are no triangle-free planar graphs that are C-
critical for 3-coloring when C is a face of length 4 or 5. This sparked the interest
of characterizing triangle-free planar graphs that are C-critical for 3-coloring
when C is a face of longer length. Since we deal with 3-coloring triangle-free
planar graphs in this paper, from now on, we will write “C-critical” instead of
“C-critical for 3-coloring” for the sake of simplicity.

The investigation was first done on planar graphs with girth 5. Walls [22]
and Thomassen [20] independently characterized C-critical planar graphs with
girth 5 when C is a face of length at most 11. The case when C is a 12-face
was initiated in [20], but a complete characterization was given by Dvořák and
Kawarabayashi in [11]. Moreover, a recursive approach to identify all C-critical
planar graphs with girth 5 when C is a face of any given length is given in [11].
Dvořák and Lidický [10] implemented an algorithm and used a computer to
generate all C-critical graphs with girth 5 when C is a face of length at most
16. The graphs generated were then used to reveal some structure of 4-critical
graphs on surfaces without short contractible cycles.

The situation for planar graphs with girth 4, which are triangle-free planar
graphs, is more complicated since the list of C-critical graphs is not finite when
C has size at least 6. We already mentioned that there are no C-critical triangle-
free planar graphs when C is a face of length 4 or 5. An alternative proof of the
case when C is a 5-face was given by Aksionov [1]. Gimbel and Thomassen [16]
not only showed that there exists a C-critical triangle-free planar graph when C
is a 6-face, but also characterized all of them. Aksenov, Borodin, and Glebov [2]
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independently proved the case when C is a 6-face using the discharging method,
and also characterized all C-critical triangle-free planar graphs when C is a
7-face in [3]. Dvořák and Lidický [14] used properties of nowhere-zero flows to
give simpler proofs of the case when C is either a 6-face or a 7-face, and also
characterized C-critical triangle-free planar graphs when C is an 8-face. The case
where C is a 7-face was used in [8].

In this paper, we push the project further and characterize all C-critical
triangle-free planar graphs when C is a face of length 9. For a plane graph G, let
S(G) denote the set of multisets of possible lengths of internal faces of G with
length at least 5.

Theorem 2. Let G be a connected plane triangle-free graph with outer face
bounded by a cycle C of length 9. The graph G is C-critical for 3-coloring if
and only if G contains no separating cycles of length at most five, the interior
of every non-facial 6-cycle contains only faces of length four and one of the
following propositions is satisfied (see Fig. 1 for an illustration):

(a) S(G) = {5} and the 5-face of G intersects C in a path of length at least two.
(b) S(G) = {7} and the 7-face of G intersects C in a path of length at least three.
(c) S(G) = {5, 6} and the 5-face, 6-face, of G intersects C in a path of length

at least two, and four, respectively.
(d) S(G) = {5, 6} and G is depicted as (d1) or (d2) in Fig. 1.
(e) S(G) = {5, 5, 5} and G is depicted as (Bij) in Fig. 1 for all i, j.

2 Preliminaries

Our proof of Theorem2 uses the same method as Dvořák and Lidický [14]. The
main idea is to use the correspondence between coloring of a plane graph G and
flows in the dual of G. In this paper, we give only a brief description of the
correspondence and the lemmas useful in our case. A more detailed and general
description can be found in [14].

Let G⋆ denote the dual of a plane graph G. Let ϕ be a proper 3-coloring
of the vertices of G by colors {1, 2, 3}. For every edge uv of G, we orient the
corresponding edge e in G⋆ in the following way. Let e have endpoints f, h in
G⋆, where f ,v,h is in the clockwise order from vertex u in the drawing of G. The
edge e will be oriented from f to h if (ϕ(u),ϕ(v)) ∈ {(1, 2), (2, 3), (3, 1)}, and
from h to f otherwise.

Since ϕ is a proper coloring, every edge of G⋆ has an orientation. Tutte [21]
showed that this orientation of G⋆ defines a nowhere-zero Z3-flow, which means
that the in-degree and the out-degree of every vertex in G⋆ differ by a multiple of
three. Conversely, every nowhere-zero Z3-flow in G⋆ defines a proper 3-coloring
of G up to the rotation of colors.

Let h be the vertex in G⋆ corresponding to the outer face of G. Edges oriented
away from h are called source edges and the edges oriented towards h are called
sink edges. The orientations of edges incident to h depend only on the coloring
of C, where C is the cycle bounding the outer face of G.
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Fig. 1. All C-critical triangle-free plane graphs where C is an outer 9-face. Note that
each figure actually represents infinitely many graphs, including ones that can be
obtained by identifying some of the depicted vertices. The arrows correspond to source
edges and sink edges that are defined in Preliminaries.

For a vertex f of G⋆, let δ(f) denote the difference of the out-degree and in-
degree of f . Possible values of δ(f) depend on the size of the face corresponding
to f , denoted by |f |. Clearly |δ(f)| ≤ |f | and δ(f) has the same parity as |f |.
Hence if |f | = 4, then δ(f) = 0. Similarly, if |f | ∈ {5, 7}, then δ(f) ∈ {−3, 3}
and if |f | = 6 then δ(f) ∈ {−6, 0, 6}.

Next we convert the problem of extending a proper 3-coloring of C to the
existence of a Z-flow in an auxiliary graph obtained from G⋆. We call a function
q assigning an integer to every internal face f of G a layout if q(f) ≤ |f |, q(f)
is divisible by 3, and q(f) has the same parity as |f |. Notice that q(f) satisfies
the same conditions as δ(f). Therefore it is sufficient to specify the q-values for
faces of size at least 5, since q(f) = 0 if f is a 4-face.

Let ψ be a proper 3-coloring C. The coloring ψ gives an orientation of the
edges corresponding to the edges of C in G⋆. Denote by ns the number of source
edges and by nt the number of sink edges. A layout q is ψ-balanced if ns+m = nt,
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where m is the sum of the q-values over all internal faces of G. A graph Gq,ψ is
obtained from G⋆ by removing the vertex h corresponding to the outer face of G
and by adding two new vertices s and t. For every edge hf in G⋆ we add one edge
sf if hf is a source edge and we add one edge tf if it is a sink edge. Moreover,
for every internal face f with q(f) > 0, we add q(f) parallel sf edges and for
every internal face f with q(f) < 0, we add −q(f) parallel tf edges. Note that
q is ψ-balanced if and only if s and t have the same degree.

For a ψ-balanced layout q of G, let c(q,ψ) denote the degree of the source
vertex s (and also the sink vertex t) of Gq,ψ. For an edge cut K in Gq,ψ sepa-
rating s from t, the component of Gq,ψ \K containing s, or t, is called a source
component, or a sink component, respectively.

For a set of faces F , let ℓ(F ) denote the smallest length of a cycle in a
critical graph that may contain all faces of F . Denote a face of size i by fi. It is
known [13] that ℓ({fi}) = i and ℓ({f5, f6}) = 9.

The next lemma describes interiors of cycles in critical graphs.

Lemma 1 ([12]). Let G be a plane graph with outer face K. Let C be a cycle
in G that does not bound a face, and let H be the subgraph of G drawn in the
closed disk bounded by C. If G is K-critical for k-coloring, then H is C-critical
for k-coloring.

Lemma2 is the key lemma that gives the correspondence between 3-colorings of
C and flows. It implies that if a 3-coloring of C extends to the entire graph, then
there is a Z-flow from s to t of value c(q,ψ).

Lemma 2 ([14]). Let G be a connected plane triangle-free graph with the outer
face C bounded by a cycle and let ψ be a 3-coloring of C. The coloring ψ extends
to a 3-coloring of G if and only if there exists a ψ-balanced layout q such that
the terminals of Gq,ψ are not separated by an edge cut smaller than c(q,ψ).

The cuts showing that a 3-coloring of C does not extend are described by the
following lemma.

Lemma 3 ([14]). Let G be a connected plane triangle-free graph with the outer
face C bounded by a cycle and let ψ be a 3-coloring of C that does not extend to
a 3-coloring of G. If q is a ψ-balanced layout in G, then there exists a subgraph
K0 ⊆ G such that either

(i) K0 is a path with both ends in C and no internal vertex in C, and if P is a
path in C joining the end vertices of K0, ns is the number of source edges
of P , nt is the number of the sink edges of P and m is the sum of the values
of q over all faces of G drawn in the open disk bounded by the cycle P +K0,
then |ns +m − nt| > |K0|. In particular, |P |+ |m| > |K0|.
Or,

(ii) K0 is a cycle with at most one vertex in C, and if m is the sum of the
values of q over all faces of G drawn in the open disk bounded by K0, then
|m| > |K0|.
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3 Proof of Theorem2

Let Sk be the set of possible multisets of sizes of faces of length at least five
in a graph of girth at least 4 where the length of the precolored face is k. The
result of Dvořák, Král’, and Thomas [13] implies among others that S6 = {∅},
S7 = {{5}}, S8 = {∅, {6}, {5, 5}}, and S9 = {{7}, {5}, {6, 5}, {5, 5, 5}}.

From now on, G is always a C-critical triangle-free plane graph and C is
always the outer face of length 9. By the previous paragraph, we have four cases
to consider when C has length 9. The case of one 7-face was already resolved
by Dvořák and Lidický [14], and it is described in Theorem2(b). We resolve the
remaining three cases in Lemmas 4, 5, and 6. The proof of Lemma 6 is omitted
due to the page limit. In order to simplify the cases, we first solve the case when
C has a chord.

If G is C-critical and C has a chord, then Lemma1 implies that G can be
obtained by identifying two edges of the outer faces of two different smaller
critical graphs. It is not difficult to show that the converse is also true.

Therefore, we can enumerate C-critical graphs G where C has a chord and
has length 9 by identifying edges from two smaller critical graphs with outer
faces of length either 4 and 7 or 5 and 6. The resulting graphs are depicted in
Fig. 1 (a) and (b), where some of the vertices must be identified.

In the following we assume that C has no chords. In the rest of the paper,
ψ will always be a 3-coloring of C. Also, for a subset Z of the edges of C, we
will use ns

Z and nt
Z to denote the number of source edges and sink edges of Z,

respectively.

Lemma 4. If G contains one 5-face f5 and one 6-face f6, and all other faces are
4-faces, then G is described by Theorem2(c),(d) and depicted in Fig. 1(c),(d1),
and (d2).

Proof. Let G be a C-critical graph containing one 5-face f5 and one 6-face f6.
Let e ∈ E(G) \ E(C). We want to find a 3-coloring ψ of C that does not

extend to a proper 3-coloring of G but extends to a proper 3-coloring of G − e.
Note that G−e has either one 5-face and one 8-face, or one 6-face and one 7-face,
or one 9-face, or two 6-faces and and one 5-face. We know that the smallest k
such that Sk contains any of {5, 8}, {6, 7}, {9}, or {5, 6, 6} is at least 11. Hence
every precoloring of C extends to G − e. In particular, ψ extends to G − e.
Therefore, we only need to characterize ψ that does not extend to G.

Let ψ be a proper 3-coloring of C that does not extend to a proper 3-coloring
of G. By symmetry, we assume that C has more source edges than sink edges.
Hence C has either 9 or 6 source edges. Let q be a ψ-balanced layout of G. By
Lemma2, there exists an edge-cut K in Gq,ψ separating s from t such that |K|
is smaller than c(q,ψ). Let K0 ⊂ G be obtained by Lemma3 and let k0 = |K0|.

First suppose that K0 is a cycle. Let m denote the sum of the q-values of
the faces in the interior of K0. By Lemma 3, |m| > k0. If both f5, f6 are in
the interior of K0, then |m| ≤ 9, contradicting the fact that |m| > k0 since
k0 ≥ ℓ({f5, f6}) = 9. If f5 is in the interior of K0, but f6 is not, then |m| = 3,
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while ℓ({f5}) = 5, a contradiction again. Similarly, we obtain a contradiction
when f6 is in the interior of K0 but f5 is not, since ℓ({f6}) = 6 and |m| ≤ 6.
Therefore K0 is always a path joining two distinct vertices of C.

The graph G bounded by C is divided by K0 into two closed disks X and Y
intersecting at K0, where faces in X correspond to the vertices in the component
containing s in Gq,ψ −K. For Z ∈ {X,Y }, denote by PZ the subpath of C such
that Z is bounded by PZ + K0. Recall that ns

Z and nt
Z denote the number of

source edges and sink edges in PZ , respectively. The described structure is shown
in Fig. 2.

YX k0
K0

nt
X

PX

ns
X

nt
Y

PY

ns
Y

s t

Fig. 2. Structure of a cut in G.

Claim 1. There are 6 source edges in C.

Proof. Suppose for a contradiction that C contains 9 source edges. Hence there
is just one ψ-balanced layout q with q(f5) = −3, q(f6) = −6, and c(q,ψ) = 9.
Note that ns

X +ns
Y = 9 and nt

X +nt
Y = 0. If both f5, f6 belong to X then |K| =

k0+ns
Y +9 < 9, a contradiction. If both f5, f6 belong to Y then |K| = k0+ns

Y < 9,
while the length of the boundary cycle of Y is k0+ns

Y ≥ ℓ({f5, f6}) = 9, which is
a contradiction again. Now suppose that exactly one of f5, f6 belongs to X and
let fX denote such a face and fY the other one. Then |K| = k0+ns

Y +|q(fX)| < 9
and k0 + ns

Y ≥ |fY |. If fX = f5 then k0 + ns
Y + 3 < 9 and k0 + ns

Y ≥ 6, which
is a contradiction. If fX = f6 then k0 + ns

Y + 6 < 9 and k0 + ns
Y ≥ 5, a

contradiction. ⊓+

Claim 2. If q is a ψ-balanced layout with q(f5) = −3 and q(f6) = 0, then f5
belongs to Y and f6 belongs to X.

Proof. Assume that q(f5) = −3 and q(f6) = 0. Hence the six source edges are
the only edges incident to s, thus c(q,ψ) = 6. Note that ns

X + ns
Y = 6 and

nt
X +nt

Y = 3. First suppose that both f5, f6 belong to X. Then ns
X +nt

X +k0 ≥
ℓ({f5, f6}) = 9, and the size of the cut K is 3 + k0 + nt

X + ns
Y < c(q,ψ) = 6.

By subtracting the two previous inequalities we get ns
X − ns

Y > 6, contradicting
the fact that ns

X + ns
Y = 6. Now suppose that both f5, f6 belong to Y . Then

ns
Y + nt

Y + k0 ≥ ℓ({f5, f6}) = 9 and |K| = k0 + nt
X + ns

Y < 6. By subtracting
them we get nt

Y −nt
X > 3, a contradiction with nt

Y +nt
X = 3. Finally we suppose

that f5 belongs to X and f6 belongs to Y . Then ns
Y + nt

Y + k0 ≥ ℓ({f6}) = 6
and |K| = 3+ k0 + nt

X + ns
Y < 6. But then nt

Y − nt
X > 3, a contradiction again.

Therefore f5 is in Y and f6 is in X. ⊓+
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Claim 3. If q is a ψ-balanced layout with q(f5) = 3 and q(f6) = −6, then f5
belongs to X and f6 belongs to Y .

Proof. Assume that q(f5) = 3 and q(f6) = −6. Since there are six source edges
on C and three edges from s to f5 in Gq,ψ, c(q,ψ) = 9. Note that ns

X + ns
Y =

6 and nt
X + nt

Y = 3. First suppose that both f5 and f6 belong to X. Then
k0 + ns

X + nt
X ≥ ℓ({f5, f6}) = 9 and |K| = 6+ k0 + ns

Y + nt
X < c(q,ψ) = 9. But

then we obtain ns
X − ns

Y > 6, contradicting the fact that ns
X + ns

Y = 6. Now
suppose that both f5 and f6 belong to Y . Then k0 + ns

Y + nt
Y ≥ ℓ({f5, f6}) = 9

and the size of K is 3 + k0 + ns
Y + nt

X < 9. But then we get nt
Y − nt

X > 3,
contradicting nt

X + nt
Y = 3. Finally we suppose that f6 belongs to X and f5

belongs to Y . Then |K| = 9 + k0 + ns
Y + nt

X < 9, a contradiction. ⊓+

Since C has 6 source edges, we have two different ψ-balanced layouts. Let q1 and
q2 be the layouts where q1(f5) = −3, q1(f6) = 0, and q2(f5) = 3, q2(f6) = −6,
respectively. Let K and L be the subgraphs of G obtained by Lemma3 applied to
q1 and q2, respectively, and let k = |K| and l = |L|. Note that we already showed
that each of K and L is a path joining pairs of distinct vertices of C. Denote
these vertices by v1, v2 for K and by w1, w2 for L. The prescribed structure is
depicted in Figs. 3 and 4.

ZYX

lk

nt
Yns

Y

nt
X nt

Z

ns
X ns

Zf6 f5

w1

w2

v2

v1

Fig. 3. A structure for two non-crossing cuts.

If we can choose the labels of the endpoints of K and L so that the clockwise
order along C is v1, v2, w1, w2, then we call K and L non-crossing, and we call K
and L crossing otherwise. Notice that K and L are always non-crossing if they
have a vertex of C in common.

We treat the cases of K and L being crossing and non-crossing separately.

Claim 4. If K and L are non-crossing, then G is depicted in Fig. 1(c).

Proof. Assume that K and L are non-crossing. See Fig. 3. Note that K, L are
not necessarily disjoint. The cuts K and L partition G into three parts. Denote
by X the region of G containing f6, by Z the region of G containing f5, and by
Y the rest of G. For an edge cut K ′ of Gq1,ψ corresponding to K, f6 belongs to
the source subdisk of G while f5 belongs to the sink subdisk of G by Claim 2.
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Analogously, for an edge cut L′ of Gq2,ψ corresponding to L, f5 belongs to the
source subdisk of G while f6 belongs to the sink subdisk of G by Claim3. For
the edge cut K ′, |K ′| = k + nt

X + ns
Y + ns

Z < c(q1,ψ) = 6. For the edge cut
L′, |L′| = l + ns

X + ns
Y + nt

Z < c(q2,ψ) = 9. By the assumptions that C has
no chord, k ≥ 2 and l ≥ 2. Since X contains f6, k + ns

X + nt
X ≥ ℓ({f6}) = 6

and even, and since Z contains f5, l + ns
Z + nt

Z ≥ ℓ({f5}) = 5 and odd. Clearly
ns
X +ns

Y +ns
Z = 6 and nt

X +nt
Y +nt

Z = 3. Integer solutions to these constraints
are in the following table:

From these solutions we obtain the graphs depicted in Fig. 1(c). ⊓+

Claim 5. If K and L are crossing, then G is depicted in Fig. 1(d1) or (d2).

Proof. Assume that K and L cross, hence G is divided by K and L into four
regions. Let X be the region of G containing f6, Z be the region containing f5,
and let W ,Y be the two remaining regions. Since K and L cross, they have a
common internal vertex v. Note that K ∩L is a path and v can be any vertex on
the path. Denote by k1 the length of the subpath of K between X and Y up to
v, and denote by k2 the length of the rest of K. Denote by l1 the length of the
subpath of L between Y and Z up to v, and denote by l2 the length of the rest
of L. The prescribed structure is depicted in Fig. 4.

Z

Y

W

X l1

k2

k1

l2

nt
Yns

Y

nt
Wns

W

nt
X nt

Z

ns
X ns

Z

f6 f5
v

w1

v2

v1

w2

Fig. 4. A structure for two crossed cuts.

Note that min{k1, k2, l1, l2} ≥ 1 since v is an internal vertex. For an edge cut
K ′ of Gq1,ψ corresponding to K, f6 belongs to the source component while f5
belongs to the sink component by Claim 2. Analogously, for an edge cut L′ of
Gq2,ψ corresponding to L, f5 belongs to the source component while f6 belongs
to the sink component by Claim 3.
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We obtain the following set of constraints that must be satisfied in this
subcase.

|K ′| = k1 + k2 + nt
X + ns

Y + ns
Z + nt

W < c(q1,ψ) = 6 (1)

|L′| = l1 + l2 + ns
X + ns

Y + nt
Z + nt

W < c(q2,ψ) = 9 (2)

k1 + l2 + ns
X + nt

X ≥ ℓ({f6}) = 6 and even (3)

l1 + k2 + ns
Z + nt

Z ≥ ℓ({f5}) = 5 and odd (4)

l2 + k2 + ns
X + nt

X + ns
Y + nt

Y + ns
Z + nt

Z ≥ ℓ({f5, f6}) = 9 and odd (5)

min{k1, l1}+ ns
Y + nt

Y > max{k1, l1} (6)

min{k2, l2}+ ns
W + nt

W > max{k2, l2} (7)
ns
X + ns

Y + ns
Z = 6 (8)

nt
X + nt

Y + nt
Z = 3 (9)

Inequalities (1) and (2) come from the size of the cut being smaller than
c(q1,ψ) and c(q2,ψ), respectively. Inequalities (3)–(5) come from the fact that
interior of cycles are also critical graphs. Finally, if any of the inequalities (6)–(7)
are violated then the cuts K and L can be taken as non-crossing.

We solve the system of constraints by computer programs. From these solu-
tions we get graphs depicted in Fig. 1(d1) and (d2). ⊓+

This finishes the proof of Lemma4. ⊓+

Lemma 5. If G contains one 5-face f5 and all other faces are 4-faces, then G
is described by Theorem2(a) and depicted in Fig. 1(a).

Proof. Let G be a C-critical graph containing one 5-face f5. Let e ∈ E(G)\E(C).
We want to find a 3-coloring ψ of C that does not extend to a proper 3-coloring
of G but extends to a proper 3-coloring of G − e. Note that either G − e has a
5-face and a 6-face or G − e has a 7-face. This gives us two cases to consider.

Case 1: G − e contains a 5-face and a 6-face.
Let ψ be a 3-coloring of C containing 9 source edges (i.e. the colors
around C are 1, 2, 3, 1, 2, 3, 1, 2, 3). Then ψ extends to a 3-coloring of
G− e by Claim 1. However, ψ does not extend to a 3-coloring of G since
it is not possible to create a ψ-balanced layout for G.

Case 2: G − e contains a 7-face f7.
By Theorem 9 from [14], if ψ is a 3-coloring of C containing 9 source
edges, then ψ does not extend to a proper 3-coloring of G − e and if ψ
is a 3-coloring of C containing 6 source edges and 3 sink edges, then ψ
always extends to a proper 3-coloring of G − e. Since ψ must extend to
G − e, we know that ψ contains 6 source edges and 3 sink edges. Now
we need to construct such a proper 3-coloring ψ that does not extend
to a proper 3-coloring of G.
Let q be a ψ-balanced layout of G. The only possibility is q(f5) = −3 and
c(q,ψ) = 6. By Lemma2, there exists an edge-cut K in Gq,ψ separating



108 I. Choi et al.

s from t such that |K| is smaller than 6. By a proof of Lemma3 (for
details see [14]), there is a subgraph K0 of G containing edges of G,
which are crossed by edges of K that are not adjacent to any of the
terminals in Gq,ψ. Denote |K0| by k0. First suppose that K0 is a cycle.
Let m denote the sum of the q-values of the faces in the interior of K0.
By Lemma 3 |m| > k0. If f5 is in the interior of K0, then |m| = 3, while
ℓ({f5}) = 5, a contradiction. Therefore K0 is a path joining two distinct
vertices of C.
From a ψ-balanced layout q we obtain that ns

X+ns
Y = 6 and nt

X+nt
Y =

3. This structure is the same as in the proof of Lemma 4 (see Fig. 2).
The following two possibilities can occur:
Let f5 belong to X. For the edge cut K, |K| = k0 + ns

Y + nt
X + 3 <

c(q,ψ) = 6. Hence k0 = 2, ns
Y = 0, nt

X = 0, ns
X = 6, and nt

Y = 3. The
cycle bounding X has length 8. However, it contains only one face of
odd size, which is a contradiction.
Let f5 belong to Y . For the edge-cut K, |K| = k0+ns

Y +nt
X < c(q,ψ) =

6. For X we have k0+ns
X+nt

X ≥ ℓ({f4}) = 4 and even. Since Y contains
f5, k0 + ns

X + nt
X ≥ ℓ({f5}) = 5 and odd. We solve the system of these

constraints by computer programs.
From these solutions we obtain that either Y is a 5-face f5 sharing at
least two sink edges with C (the first three solutions) or Y is bounded
by a 7-cycle sharing at least three sink edges with C (the last three
solutions). The situation is depicted in Fig. 1(a)(b). ⊓+

Lemma 6. If G contains three 5-faces and all other faces are 4-faces, then G
is described by Theorem2(e) and depicted in Fig. 1(Bij) for all i and j.

The proof of Lemma6 is omitted due to the page limit. The proof goes along
similar lines as the proof of Lemma4.
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6. Borodin, O.V.: A new proof of Grünbaum’s 3 color theorem. Discrete Math.
169(1–3), 177–183 (1997). http://dx.doi.org/10.1016/0012-365X(95)00984-5

http://dx.doi.org/10.1016/0012-365X(95)00984-5


3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 109

7. Borodin, O.V.: Colorings of plane graphs: A survey. Discrete Math. 33(4), 517–539
(2013). http://dx.doi.org/10.1016/j.disc.2012.11.011
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