Martin Böhm, Jan Ekstein, Jiří Fiala, Přemek Holub, Sandi Klavžar, Lukáš Lánský and Bernard Lidický

Charles University University of Ljubljana and University of West Bohemia

7th Slovenian International Conference on Graph Theory -Bled'11

Packing Chromatic Number

Definition Graph G = (V, E), $X_d \subseteq V$ is *d*-packing if $\forall u, v \in X_d$: distance(u, v) > d.

1-packing is an independent set

Definition *Packing chromatic number* is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

Also known as the *broadcast chromatic number*.

Example with path P_{∞}

Definition *Packing chromatic number* is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

informally, density of X_d is $|X_d|/|V|$

Example with path P_{∞}

Definition *Packing chromatic number* is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

informally, density of X_d is $|X_d|/|V|$

Definition *Packing chromatic number* is the minimum *k* such that $V = X_1 \cup X_2 \cup ... \cup X_k$; denoted by $\chi_{\rho}(G)$.

Complexity of χ_{ρ}

Theorem (Goddard, Hedetniemi, Hedetniemi, Harris, Rall '08)

Let G be a graph.

- Decide if $\chi_{\rho}(G) \leq k$ is \mathcal{NP} -complete (k on input).
- Decide if $\chi_{\rho}(G) \leq 3$ is in \mathcal{P} .
- Decide if $\chi_{\rho}(G) \leq 4$ is \mathcal{NP} -complete.

Theorem (Fiala, Golovach '09)

Decide if $\chi_{\rho}(G) \leq k$ for trees is \mathcal{NP} -complete (k on input).

Triangular lattice ${\cal T}$

Theorem (Finbow, Rall '07)

Infinite triangular lattice \mathcal{T} cannot be colored by a finite number of colors.

We use notation $\chi_{\rho}(\mathcal{T}) = \infty$.

Hexagonal Lattice ${\mathcal H}$

Theorem (Brešar, Klavžar, Rall '07) For hexagonal lattice $\mathcal{H}: 6 \leq \chi_{\rho}(\mathcal{H}) \leq 8$

Theorem (Vesel '07) $7 \le \chi_{\rho}(\mathcal{H})$ Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(\mathcal{H}) \le 7$

$\chi_{\rho}(\mathcal{H}) \leq 7$

Square lattice $\mathbb{Z}^2 (= \mathbb{Z} \Box \mathbb{Z})$

Theorem (Goddard et al. '08) For infinite planar square lattice \mathbb{Z}^2 : $9 \le \chi_{\rho}(\mathbb{Z}^2) \le 23$

Theorem (Schwenk '02) $\chi_{\rho}(\mathbb{Z}^2) \leq 22$

Theorem (Fiala, Klavžar, L. '09) $10 \le \chi_{\rho}(\mathbb{Z}^2)$

Theorem (Holub, Soukal '09) $\chi_{\rho}(\mathbb{Z}^2) \leq 17$

Theorem (Ekstein, Holub, Fiala, L. '10) $12 \leq \chi_{\rho}(\mathbb{Z}^2)$

 $\chi_{
ho}(\mathbb{Z}^2) \leq 17$

З З з з З з З 1 10 З З з 1 11 з З

$\chi_{ ho}(\mathbb{Z}^2) \leq 12$

Wish (Conjecture)

If $\chi_{\rho}(\mathbb{Z}^2) = k$ then exist X_1, \ldots, X_k such that $\forall i X_i$ has maximum possible density after fixing $\bigcup_{1 \le j < i} X_j$.

Wish implies the lower bound 12.

No wish implies brute force computer search (backtracking).

Find a (small) part of \mathbb{Z}^2 that cannot be colored by 11 colors.

$\chi_{ ho}(\mathbb{Z}^2) \leq 12$

Wish (Conjecture)

If $\chi_{\rho}(\mathbb{Z}^2) = k$ then exist X_1, \ldots, X_k such that $\forall i X_i$ has maximum possible density after fixing $\bigcup_{1 \le j < i} X_j$.

Wish implies the lower bound 12.

No wish implies brute force computer search (backtracking).

Find a (small) part of \mathbb{Z}^2 that cannot be colored by 11 colors.

Layers of the square lattice - going 3D

Theorem (Finbow, Rall '07) $\chi_{\rho}(\mathbb{Z}^3) = \infty$

Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(P_2 \Box \mathbb{Z}^2) = \infty$

Layers of the hexagonal lattice - going 3D

Theorem (Fiala, Klavžar, L. '09) $\chi_{\rho}(P_6 \Box \mathcal{H}) = \infty$

Theorem (Böhm, Lánský, L. '10) $\chi_{\rho}(P_2 \Box \mathcal{H}) \leq 526$ (large but finite)

Layers summary

Lattice	Triangular	Square (\mathbb{Z}^2)	Hexagonal (\mathcal{H})
Colorable layers /	0	1	2 ≤ <i>l</i> < 6

Distance graphs

- $\mathcal{C} \subset \mathbb{N}$
- A distance graph D(C) is a graph on vertices Z, uv adjacent if |u − v| ∈ C.
- $D(\{1\}) = P_{\infty}$

• D({1,2})

• *D*({1,3})

Distance graphs - general bound

Theorem (Goddard et al. '08) Let *G* be finite. Then $\chi_{\rho}(P_{\infty} \Box G) < \infty$.

Corollary $\chi_{\rho}(D(C)) < \infty$ for any *C*.

Distance graphs - $D(\{1, k\})$

Theorem (Togni '10)

$$\chi_{\rho}(D(\{1,t\})) \leq \begin{cases} 174 & t even, \\ 86 & t odd \end{cases}$$
if $t \geq 224$
special constructions

```
Theorem (Ekstein, Holub, L. '11)

\chi_{\rho}(D(\{1,t\})) \leq \begin{cases} 56 & t even, \\ 35 & t odd \end{cases}

if t \geq 648

using \mathbb{Z}^2
```


Distance graphs - $D(\{1, k\})$

Theorem (Togni '10)

$$\chi_{\rho}(D(\{1,t\})) \leq \begin{cases} 174 & t even, \\ 86 & t odd \end{cases}$$
if $t \geq 224$
special constructions

Theorem (Ekstein, Holub, L. '11) $\chi_{\rho}(D(\{1,t\})) \leq \begin{cases} 56 & t even, \\ 35 & t odd \end{cases}$ if $t \geq 648$ using \mathbb{Z}^2

 $D(\{1,5\})$

Open problems

- Is $\chi_{\rho}(\mathcal{H} \Box P_3)$ finite?
- What is χ_ρ(ℤ²)? (12 − 17)
- Is there *c* such that every cubic graph *G* has $\chi_{\rho}(G) \leq c$?
 - if G is planar?
 - if G has large girth?

Open problems

• Is there *c* such that every cubic graph *G* has $\chi_{\rho}(G) \leq c$?

- if G is planar?
- if G has large girth?

Theorem (Sloper '02)

3-regular infinite tree T_3 : $\chi_{\rho}(T_3) = 7$

Theorem (Sloper '02)

4-regular infinite tree T₄: $\chi_{\rho}(T_4) = \infty$

Thank you for your attention!

