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The problem

F (n) := max over all 3-edge-colorings of Kn

Conjecture (Erdős, Sós)

This construction is the best possible. In other words,

F (n) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 +
∑

i
F (xi ),

where x1 + x2 + x3 + x4 = n, and |xi − xj | ≤ 1.

This talk: The conjecture is true for n large and for any n = 4k .
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Known extremal problems with iterated constructions

Theorem (Falgas-Ravry, Vaughan)

Density of , and is maximized by .

Theorem (Huang)

Density of ... is maximized by .

Theorem (Hladký, Krá
,
l, Norin)

Density of is maximized by .

Theorem (Pikhurko)

Iterated blow-up of r -graph is extremal for π(F) for some family F .
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Proof strategy for n large

• pick

a4 a3

a2a1

typical copy of , classify vertices via

• Xi := clones of ai T := V \ ∪Xi W wrong Xi ↔ Xj edges

• parts |Xi | = (1/4± 10−2) · n

• trash |T | < 10−2 · n

• wrong edges |W | < 10−4 · n2

• correct edges in W

• vertex in T is in few

• show that the parts are balanced
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Proof strategy:
a4 a3

a2a1

typical copy of

• Xi := clones of ai T := V \ ∪Xi W wrong Xi ↔ Xj edges

• Goal: ·
(

+ +

)
− · ≥

• =⇒ ·
(∑

i 6=j |Xi ||Xj | − 2|W |
)
− ·

∑
i |Xi |2 ≥ · n2

• =⇒ 24.4% < |Xi | < 25.6% |T | < 1.5% |W | < 0.1%

• Claim: 4
15 ·

(
+ +

)
− 26

45 · ≥ 9
3500

• Claim: ≈ 2
21 . Then average has value 9/3500

2/21 = 27
1000
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Flag Algebras and Semidefinite Method

• framework developed by Razborov

• consider 3-edge-colored graphs G1,G2, . . . (|Gk | → ∞)

• pk(F ) := probability that random |F | vertices of Gk induces F

• sequence (Gk) is convergent if pk(F ) converge for all F

• limit object – function q: all finite 3-edge-colored graphs → [0, 1]

• q yields homomorphism from linear combinations of graphs to R

• the set of limit objects LIM = homomorphisms q: q(F ) ≥ 0

• semidefinite method: relaxing optimization problems on LIM

• we optimize on LIMEXT = {q ∈ LIM : q( ) ≥ 0.4}

min
q∈LIMEXT

q

(
4

15
·
(

+ +

)
− 26

45
·

)
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Thank you for listening!
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