Rainbow triangles in 3-edge-colored graphs

Bernard Lidický

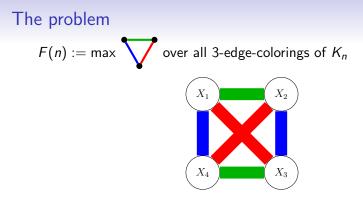
Iowa State University

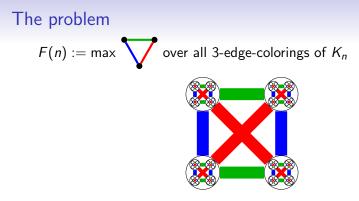
AMS Sectional Meeting #1102 Sep 21, 2014

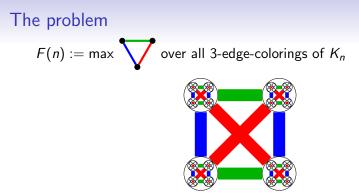
joint work with József Balogh, Ping Hu, Florian Pfender, Jan Volec, Michael Young

The problem

$$F(n) := \max \bigvee$$
 over all 3-edge-colorings of K_n



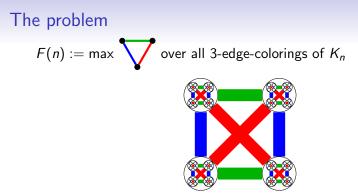




Conjecture (Erdős, Sós)

This construction is the best possible. In other words,

 $F(n) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 + \sum_i F(x_i),$ where $x_1 + x_2 + x_3 + x_4 = n$, and $|x_i - x_j| \le 1$.



Conjecture (Erdős, Sós)

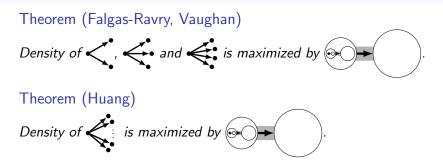
This construction is the best possible. In other words,

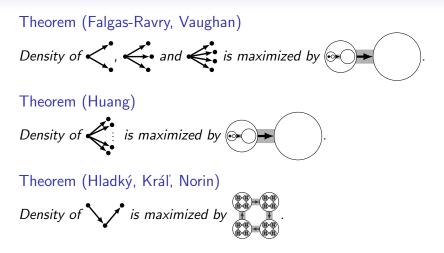
$$F(n) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 + \sum_i F(x_i),$$

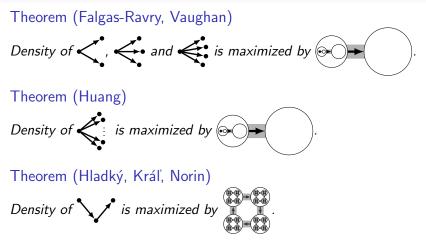
where $x_1 + x_2 + x_3 + x_4 = n$, and $|x_i - x_j| \le 1$.

This talk: The conjecture is true for *n* large and for any $n = 4^k$.

Theorem (Falgas-Ravry, Vaughan)

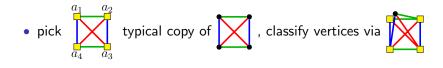


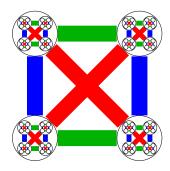


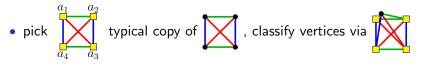


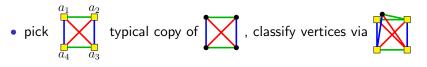
Theorem (Pikhurko)

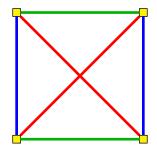
Iterated blow-up of r-graph is extremal for $\pi(\mathcal{F})$ for some family \mathcal{F} .

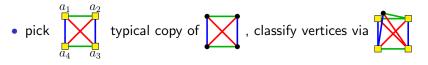


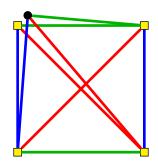


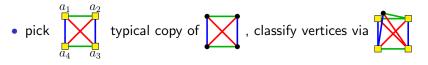


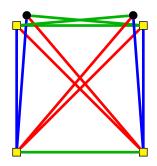


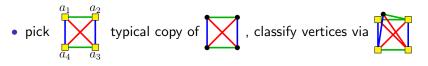


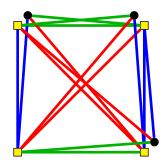


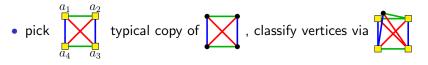


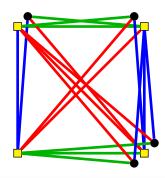


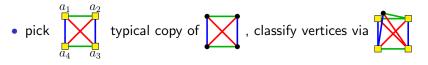


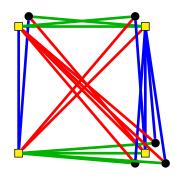


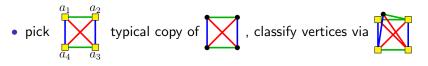


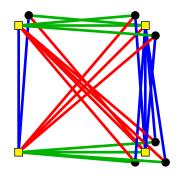


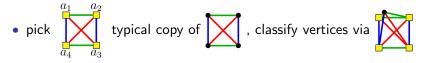




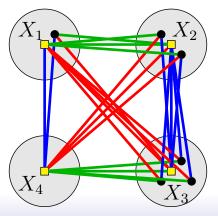




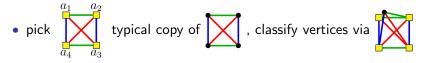


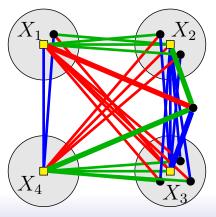


• $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges

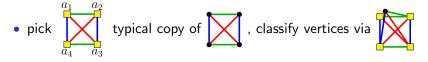


• parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

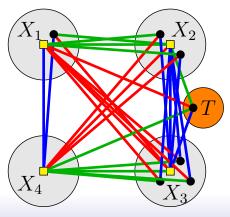




- parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

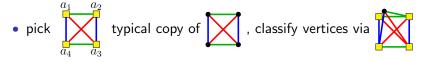


• $X_i :=$ clones of a_i **T** := **V** \ \cup **X**_i *W* wrong $X_i \leftrightarrow X_i$ edges

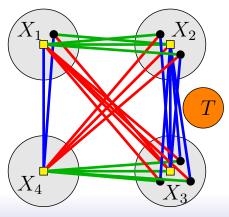


• parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

• trash
$$|T| < 10^{-2} \cdot n$$

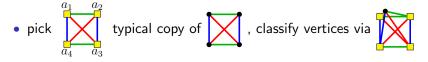


• $X_i :=$ clones of a_i $T := V \setminus \bigcup X_i$ W wrong $X_i \leftrightarrow X_i$ edges

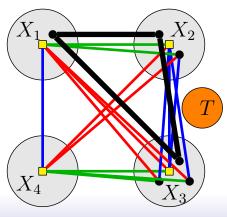


• parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

• trash
$$|T| < 10^{-2} \cdot n$$



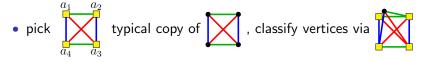
• $X_i :=$ clones of a_i $T := V \setminus \bigcup X_i$ **W** wrong $X_i \leftrightarrow X_i$ edges



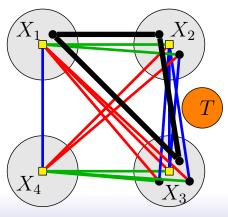
- parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

• trash
$$|T| < 10^{-2} \cdot n$$

• wrong edges $|W| < 10^{-4} \cdot n^2$



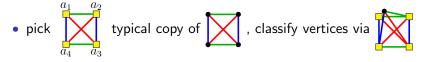
• $X_i :=$ clones of a_i $T := V \setminus \bigcup X_i$ W wrong $X_i \leftrightarrow X_i$ edges



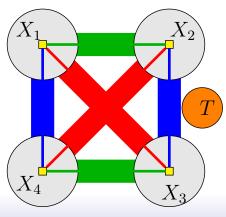
• parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

• trash
$$|T| < 10^{-2} \cdot n$$

- wrong edges $|W| < 10^{-4} \cdot n^2$
- correct edges in W



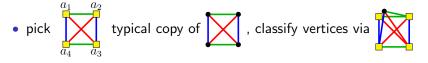
• $X_i :=$ clones of a_i $T := V \setminus \bigcup X_i$ W wrong $X_i \leftrightarrow X_i$ edges

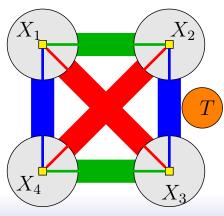


• parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$

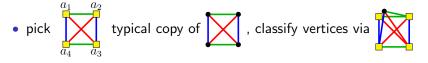
• trash
$$|T| < 10^{-2} \cdot n$$

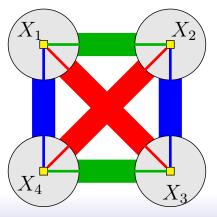
- wrong edges $|W| < 10^{-4} \cdot n^2$
- correct edges in W



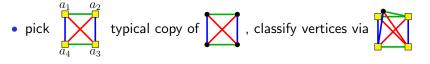


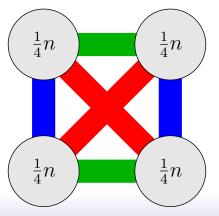
- parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$
- trash $|T| < 10^{-2} \cdot n$
- wrong edges $|W| < 10^{-4} \cdot n^2$
- correct edges in W
- vertex in *T* is in few



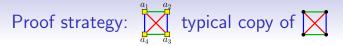


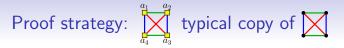
- parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$
- trash $|T| < 10^{-2} \cdot n$
- wrong edges $|W| < 10^{-4} \cdot n^2$
- correct edges in W
- vertex in *T* is in few



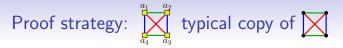


- parts $|X_i| = (1/4 \pm 10^{-2}) \cdot n$
- trash $|T| < 10^{-2} \cdot n$
- wrong edges $|W| < 10^{-4} \cdot n^2$
- correct edges in W
- vertex in *T* is in few
- show that the parts are balanced

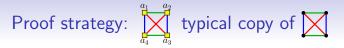


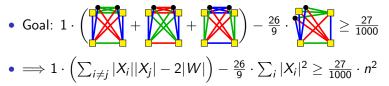


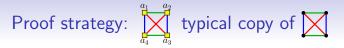
- $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges
- Goal: $\alpha \cdot \left(\boxed{} + \boxed{} + \boxed{} + \boxed{} + \boxed{} \right) \beta \cdot \boxed{} \geq \delta \text{ for } \alpha, \beta, \delta$

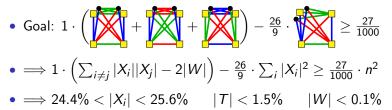


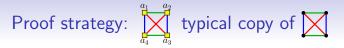
- $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges
- Goal: $\alpha \cdot \left(\boxed{X_i} + \boxed{X_i} + \boxed{X_i} \right) \beta \cdot \boxed{X_i} \ge \delta$ for α, β, δ • $\Rightarrow \alpha \cdot \left(\sum_{i \neq j} |X_i| |X_j| - 2|W| \right) - \beta \cdot \sum_i |X_i|^2 \ge \delta \cdot n^2$

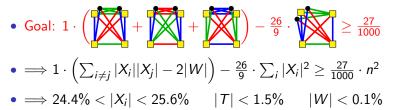


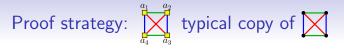




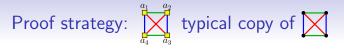




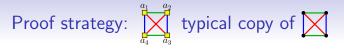




- $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges
- Goal: $1 \cdot \left(\sum_{i \neq j} |X_i| |X_j| 2|W| \right) \frac{26}{9} \cdot \left(\sum_{i \neq j} |X_i| |X_j| 2|W| \right) \frac{26}{9} \cdot \sum_i |X_i|^2 \ge \frac{27}{1000} \cdot n^2$
- \implies 24.4% < $|X_i|$ < 25.6% |T| < 1.5% |W| < 0.1%
- Claim: $\frac{4}{15} \cdot \left(\sqrt{24} + \sqrt{24} + \sqrt{24} \right) \frac{26}{45} \cdot \sqrt{2} \ge \frac{9}{3500}$



- $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges
- Goal: $1 \cdot \left(\sum_{i \neq j} |X_i| |X_j| 2|W| \right) \frac{26}{9} \cdot \sum_i |X_i|^2 \ge \frac{27}{1000}$ • $\implies 1 \cdot \left(\sum_{i \neq j} |X_i| |X_j| - 2|W| \right) - \frac{26}{9} \cdot \sum_i |X_i|^2 \ge \frac{27}{1000} \cdot n^2$ • $\implies 24.4\% < |X_i| < 25.6\% \quad |T| < 1.5\% \quad |W| < 0.1\%$ • Claim: $\frac{4}{15} \cdot \left(\sqrt[4]{45} + \sqrt[4]{45} + \sqrt[4]{45} \right) - \frac{26}{45} \cdot \sqrt[4]{5} \ge \frac{9}{3500}$
- Claim: $\frac{15}{15}$ (15 + 10 +



- $X_i := \text{clones of } a_i$ $T := V \setminus \cup X_i$ W wrong $X_i \leftrightarrow X_j$ edges
- Goal: $1 \cdot \left(\sum_{i \neq j} |X_i| |X_j| 2|W| \right) \frac{26}{9} \cdot \sum_i |X_i|^2 \ge \frac{27}{1000}$ • $\implies 1 \cdot \left(\sum_{i \neq j} |X_i| |X_j| - 2|W| \right) - \frac{26}{9} \cdot \sum_i |X_i|^2 \ge \frac{27}{1000} \cdot n^2$ • $\implies 24.4\% < |X_i| < 25.6\%$ |T| < 1.5% |W| < 0.1%
- Claim: $\frac{4}{15} \cdot \left(\sqrt[4]{21} + \sqrt[4]{21} + \sqrt[4]{21} \right) \frac{26}{45} \cdot \sqrt[4]{2} \ge \frac{9}{3500}$ • Claim: $\boxed{2} \approx \frac{2}{21}$. Then average $\boxed{2}$ has value $\frac{9/3500}{2/21} = \frac{27}{1000}$

• framework developed by Razborov

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: all finite 3-edge-colored graphs ightarrow [0,1]

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: all finite 3-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: all finite 3-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$

- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: all finite 3-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$
- semidefinite method: relaxing optimization problems on LIM

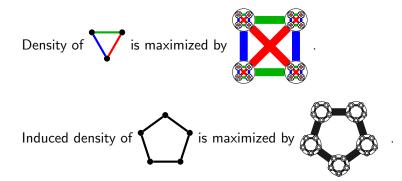
- framework developed by Razborov
- consider 3-edge-colored graphs G_1, G_2, \dots $(|G_k| \to \infty)$
- $p_k(F) :=$ probability that random |F| vertices of G_k induces F
- sequence (G_k) is convergent if $p_k(F)$ converge for all F
- limit object function q: all finite 3-edge-colored graphs ightarrow [0,1]
- q yields homomorphism from linear combinations of graphs to ${\mathbb R}$
- the set of limit objects LIM = homomorphisms $q: q(F) \ge 0$
- semidefinite method: relaxing optimization problems on LIM

• we optimize on
$$\mathsf{LIM}^{\mathrm{EXT}} = \{q \in \mathsf{LIM}: q(\bigvee) \geq 0.4\}$$

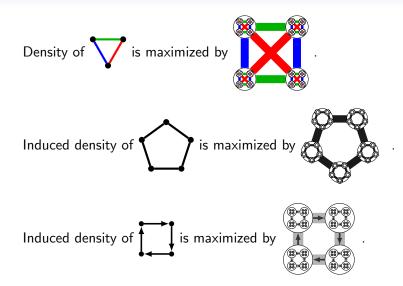
$$\min_{q \in \mathsf{LIM}^{\mathrm{EXT}}} q \left(\frac{4}{15} \cdot \left(\mathbf{15} + \mathbf{15} + \mathbf{15} \right) - \frac{26}{45} \cdot \mathbf{15} \right)$$

Conclusion and related problems

Conclusion and related problems



Conclusion and related problems



Thank you for listening!

