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Conjecture (Erdds, Sés)
This construction is the best possible. In other words,
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This talk: The conjecture is true for n large and for any n = 4.
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Theorem (Pikhurko)
Iterated blow-up of r-graph is extremal for w(F) for some family F.
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e parts [Xi| = (1/4+£1072) - n
e trash |T| <1072 n

e wrong edges |W| < 107* - n?

e show that the parts are balanced



ay as

Proof strategy: E typical copy of

ay as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges



ay as

Proof strategy: E typical copy of

[ as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges

oo ([ TR R B 20




ay as

Proof strategy: E typical copy of

ay as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges

e Goal: «- m m m EZ&]‘N&,B,&

« — a- (Z,¢J|xy|xy 2yvv\ B X2 =6




ay as

Proof strategy: E typical copy of

ay as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges

BB R 8

e —1- (Z,;AJ | Xil| Xj] — 2|W| =B IXiPP = 5l -




ay as

Proof strategy: E typical copy of

ay as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges
o B R) 6
=L (Z:;«éj [ Xil| X — 2|W| T IXi = 15 P

o = 24.4% < |X;| < 25.6% |T] <15% |W|<0.1%



ay as

Proof strategy: E typical copy of

ay as

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges
e Goal: 1- m m m @ = %
=L (Z:;«éj [ Xil| X — 2|W| T IXi = 15 P

o = 24.4% < |X;| < 25.6% |T] <15% |W|<0.1%



ay as

Proof strategy: E typical copy of

e X; := clones of a; T:=V\UX; W wrong X; <> X; edges
o B R) 6
=L (Z:;«éj [ Xil| X — 2|W| T IXi = 15 P

o = 24.4% < |X;| < 25.6% |T] <15% |W|<0.1%

o - (G R



ay as

Proof strategy: E typical copy of

ay as

X; := clones of a; T:=V\UX; W wrong X; <> X; edges

- R R) +$ s

— 1 (Z:;«éj [ Xil| X — 2|W| T IXi = 15 P
= 24.4% < |Xj| < 25.6% |T] <15% |W|<0.1%

o (G R+ R

e Claim: ~ % Then average E has value 795;2(1)0 = 71%0




ay as

Proof strategy: E typical copy of

ay as

X; := clones of a; T:=V\UX; W wrong X; <> X; edges

- R R) +$ s

— 1 (Z:;«éj [ Xil| X — 2|W| T IXi = 15 P
= 24.4% < |Xj| < 25.6% |T] <15% |W|<0.1%

o+ (B0 AR

e Claim: ~ % Then average E has value 795;;(1)0 = 713(7,0

N




Flag Algebras and Semidefinite Method

e framework developed by Razborov



Flag Algebras and Semidefinite Method

e framework developed by Razborov

e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)



Flag Algebras and Semidefinite Method

e framework developed by Razborov
e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

e pk(F) := probability that random |F| vertices of Gy induces F



Flag Algebras and Semidefinite Method

e framework developed by Razborov
e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

e pk(F) := probability that random |F| vertices of Gy induces F

e sequence (Gg) is convergent if px(F) converge for all F



Flag Algebras and Semidefinite Method

e framework developed by Razborov

e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

pk(F) := probability that random |F| vertices of Gy induces F

sequence (Gy) is convergent if px(F) converge for all F

limit object — function g: all finite 3-edge-colored graphs — [0, 1]



Flag Algebras and Semidefinite Method

e framework developed by Razborov

e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

pk(F) := probability that random |F| vertices of Gy induces F

sequence (Gy) is convergent if px(F) converge for all F

limit object — function g: all finite 3-edge-colored graphs — [0, 1]

q yields homomorphism from linear combinations of graphs to R



Flag Algebras and Semidefinite Method

e framework developed by Razborov
e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

e pk(F) := probability that random |F| vertices of Gy induces F

e sequence (Gg) is convergent if px(F) converge for all F
e limit object — function g: all finite 3-edge-colored graphs — [0, 1]
e g yields homomorphism from linear combinations of graphs to R

e the set of limit objects LIM = homomorphisms q: q(F) >0



Flag Algebras and Semidefinite Method

e framework developed by Razborov

e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)

e pk(F) := probability that random |F| vertices of Gy induces F

e sequence (Gg) is convergent if px(F) converge for all F

e limit object — function g: all finite 3-edge-colored graphs — [0, 1]
e g yields homomorphism from linear combinations of graphs to R
e the set of limit objects LIM = homomorphisms q: q(F) >0

e semidefinite method: relaxing optimization problems on LIM



Flag Algebras and Semidefinite Method

e framework developed by Razborov

e consider 3-edge-colored graphs Gi, Go, ... (|Gk| = o0)
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e semidefinite method: relaxing optimization problems on LIM

o we optimize on LIMEXT = {g ¢ LIM : q(V) > 0.4}
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Thank you for listening!




