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Main definition

Definition

For a graph G and C C V/(G) we say G is C-critical for k-coloring if for
each e € E(G), there exists a k-coloring . of C that extends to G — e
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Observation
If G is (k + 1)-critical, then G is ()-critical for k-coloring.
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Focus: plane graphs that are C-critical for 3-coloring where C is a cycle.

Theorem (Grotzsch 1959, Aksenov 1974)

If G is a plane graph of girth 4, then a pre-coloring of either a 4-cycle or
a b-cycle extends to 3-coloring of G.

Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Easier goal: Characterize all C-critical plane graphs of girth 5. SOLVED!
e |C| <11 by Thomassen 2003 and Walls 1999
e |C| = 12 by Dvotak—Kawarabayashi 2011
e |C| < 16 by Dvorak-Lidicky 2014

Recursive description for all |C| by Dvorék—Kawarabayashi 2011

(a) (b) () ()



C-critical plane graphs of girth 5 with |C| < 10
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Goal: Characterize all C-critical plane graphs of girth 4. STILL OPEN!

Known characterizations:
e |C| € {4,5} by Aksenov 1974
e |C| = 6 by Gimbel-Thomassen 1997
|C| = 6 by Aksenov—Borodin—Glebov 2003
|C| =7 by Aksenov—Borodin—Glebov 2004
|C| = 8 by Dvorak-Lidicky 2013+
|C| =9 by Choi—Ekstein—Holub—Lidicky 2014+

C-critical for girth 4 are more difficult since there are infinitely many of
them of |C| > 6
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Theorem (Aksenov—Borodin—-Glebov 2004)

If G is a “nice” plane graph of girth 4 bounded by a 7-cycle C, then G is
C-critical if and only if G “looks like” a graph below.
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Theorem (Dvoték-Lidicky 2013+)

If G is a “nice” plane graph of girth 4 bounded by an 8-cycle C, then G
is C-critical if and only if G “looks like" a graph below.
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Proof Idea

Theorem (Tutte 1954)

A plane graph G has a 3-coloring if and only if its dual G* has a
nowhere-zero Z3-flow.

Fh

(In-edges - out-edges) of every face is a multiple of 3!
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Theorem (Gimbel-Thomassen 1997, Aksenov—Borodin—Glebov
2003)

If G is a “nice” plane graph of girth 4 bounded by a cycle C of length 6,
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(=) done!

Corollary (Dvorak—Kral-Thomas 2014+)
If G is a "nice” plane graph of girth 4 bounded by a cycle C and G is
C-critical, then

[Cl=6: 0

ICl=7: {5}

[C|=8: 0,{6},{5,5}

|C]=9: {7},{5,6},{5,5,5}, {5}

are the only possible multisets of faces of length at least 5.
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