PRECOLORING EXTENSION FOR PLANAR GRAPHS

Zdeněk Dvořák Bernard Lidický

Charles University in Prague Iowa State University

AMS Sectional Meeting #1112 Oct 3, 2015 THEOREM (THE FOUR COLOR THEOREM) Every planar graph can be colored by 4 colors. Are 4 colors enough for planar plus one edge?

Is it possible to precolor 2 vertices?

THEOREM (ALBERTSON)

Let G be a planar graph and $S \subset V(G)$. If $\forall u, v \in S$ dist $(u, v) \ge 4$ then any precoloring of S extends to a 5-coloring of G.

THEOREM (DVOŘÁK, L., POSTLE, MOHAR)

Let G be a planar graph and $S \subset V(G)$. If $\forall u, v \in S$ dist $(u, v) \ge 50000$ then any precoloring of S extends to a 5-list-coloring of G.

THEOREM (POSTLE, THOMAS)

If G is planar, $S \subset V(G)$ and a precoloring of S extends to all vertices at distance $\Omega(\log |S|)$ from S, then it extends to a 5-coloring of G.

THEOREM (GRÖTZSCH)

Every triangle-free planar graph is 3-colorable.

THEOREM (AKSENOV; JENSEN AND THOMASSEN) Precoloring of any two vertices in triangle-free planar graph extends to a 3-coloring.

THEOREM (AKSENOV)

Every planar graph with at most 3 triangles is 3-colorable.

THEOREM (BORODIN, DVOŘÁK, KOSTOCHKA, L., YANCEY) Precise description of 4-critical planar graphs with exactly 3 triangles.

DEFINITION (*k*-CRITICAL GRAPHS)

Graph G is a *k*-critical graph if G is not (k - 1)-colorable but every $H \subset G$ is (k - 1)-colorable.

Theorem (Borodin, Dvořák, Kostochka, L., Yancey)

All plane 4-critical graphs with 4 triangles and no 4-faces can be obtained from the Thomas-Walls sequence

by replacing dashed edges by edges or by Havel's quasiedge:

THEOREM (BORODIN, DVOŘÁK, KOSTOCHKA, L., YANCEY) All plane 4-critical graphs with 4 triangles and no 4-faces C can be obtained from the Thomas-Walls sequence by replacing dashed edges by edges or by Havel's quasiedge.

THEOREM (BORODIN, DVOŘÁK, KOSTOCHKA, L., YANCEY) All plane 4-critical graphs with 4 triangles and no 4-faces C can be obtained from the Thomas-Walls sequence by replacing dashed

edges by edges or by Havel's quasiedge.

THEOREM (BORODIN, DVOŘÁK, KOSTOCHKA, L., YANCEY) All plane 4-critical graphs with 4 triangles and no 4-faces C can be

obtained from the Thomas-Walls sequence by replacing dashed edges by edges or by Havel's quasiedge.

THEOREM (BORODIN, DVOŘÁK, KOSTOCHKA, L., YANCEY) All plane 4-critical graphs with 4 triangles and no 4-faces C can be

obtained from the Thomas-Walls sequence by replacing dashed edges by edges or by Havel's quasiedge.

Conjecture (Grunbaum 63)

Planar graphs without intersecting triangles are 3-colorable. Disproved by Havel

Conjecture (Havel)

If G is planar and mutual distance of triangles is $\geq O(1)$, then G is 3-colorable.

Proved by Dvořák, Kráľ, Thomas.

THEOREM (DVOŘÁK, KRÁL, THOMAS)

If G is planar and mutual distance of triangles is $\geq O(1)$, then G is 3-colorable.

But triangles cannot be precolored.

Winding number in quadrangulation.

THEOREM (DVOŘÁK, KRÁL, THOMAS)

If G is planar of girth 5, $S \subset V(G)$ and a precoloring of S extends to all vertices at distance $\Omega(|S|)$ from S, then it extends to a 3-coloring of G.

Girth 5 needed:

Postle: distance 100|S| is siffucient.

Conjecture (Dvořák, Král, Thomas)

If G is planar of girth 4, $S \subset V(G)$ and $\forall u, v \in S$ dist $(u, v) \geq \Omega(1)$ then any precoloring of S extends to a 3-coloring of G.

Conjecture (Dvořák, Král, Thomas)

If G is planar of girth 4, $S \subset V(G)$, S consists of a vertex v and 4-cycle C, and distance of v and C is $\geq \Omega(1)$ then any precoloring of S extends to a 3-coloring of G.

THEOREM (DVOŘÁK, KRÁL, THOMAS)

Second conjecture implies the first one.

- We prove the second conjecture

THEOREM (DVOŘÁK, L.)

If G is planar of girth 4, $S \subset V(G)$, S consists of a vertex v and 4-cycle C and distance of v and C is $\geq \Omega(1)$ then any precoloring of S extends to a 3-coloring of G.

Characterize when a precoloring of two 4-cycles extend.

G is *S*-critical graph for 3-coloring if for every $S \subset H \subset G$ exists a 3-coloring φ of *S* such that

- φ extends to a 3-coloring of H
- φ does not extend to a 3-coloring of *G*.

G is *S*-critical graph for 3-coloring if for every $S \subset H \subset G$ exists a 3-coloring φ of *S* such that

- φ extends to a 3-coloring of H
- φ does not extend to a 3-coloring of *G*.

G is *S*-critical graph for 3-coloring if for every $S \subset H \subset G$ exists a 3-coloring φ of *S* such that

- φ extends to a 3-coloring of H
- φ does not extend to a 3-coloring of *G*.

G is *S*-critical graph for 3-coloring if for every $S \subset H \subset G$ exists a 3-coloring φ of *S* such that

- φ extends to a 3-coloring of H
- φ does not extend to a 3-coloring of G.

THEOREM (DVOŘÁK, L.)

Let G be planar graph with two 4-faces C_1 and C_2 in distance $\geq \Omega(1)$. If all triangles in G are disjoint, non-cotractible, and G is (C_1, C_2) -critical,

• G is obtained from framed patched Thomas-Walls, or

• G is near 3, 3-quadrangulation.

PROOF SKETCH

Main tool - collapse 4-faces

Few separating \leq 4-cycles

Many separating \leq 4-cycles

Proof sketch - creating separating \leq 4-cycles

LEMMA

If C_1 and C_2 are in distance d, then it is possible to create separating 4-cycle and decrease d by one.

Proof sketch - many separating \leq 4-cycles

• collapse 4-faces without destroying separating \leq 4-cycles

- describe *basic* graphs between separating \leq 4-cycles
 - with 4-faces (21 graphs)
 - without 4-faces (94 graphs)
- gluing of at least \geq 1056 (or \geq 40 with computer) basic graphs
 - extends any precoloring of outer cycles, or
 - is Thomas-Walls, or
 - is almost 3, 3-quadrangulation.

EXEPTIONS WITHOUT 4-FACES

LEMMA (DVOŘÁK, L.)

Let G be a plane graph and C_1 and C_2 faces of G. If G is $(C_1 \cup C_2)$ -critical and C_1 and C_2 are the only ≤ 4 cycles and the distance between C_1 and C_2 is at most 4 then G is one of 22 graphs.

Results in a planar F-critical graph of girth 5 (outer face F). THEOREM (DVOŘÁK, L.)

There are 7969 F-critical planar graphs of girth 5 with outer face F of size 16.

EXEPTIONS WITH 4-FACES

CHAINS OF SMALL GRAPHS

More consequences

COROLLARY (DVOŘÁK, L.)

If G is an n-vertex triangle-free planar graphs with maximum degree Δ then G has at least $(3^{1/\Delta^D})^n$ distinct colorings, where D is constant.

Pick n/Δ^D vertices S of G in mutual distance $\geq D$. All $3^{|S|}$ precolorings of S extend to different 3-colorings of G.

More consequences

Let G be a graph with a face C and t triangles. (3 coloring)

- if |C| = 4 and $t \le 1$, any precoloring of C extends
- if |C| = 5 and $t \le 1$, the only C-critical graph is

• if |C| = 6 and t = 0, the only C-critical graph is

• if $|C| \leq 9$ and t = 0, C-critical graphs known

THEOREM (DVOŘÁK, L.)

Let G be a graph with a 4-face C and 2 triangles. If G is C-critical the G is

or framed patched Thomas-Walls, where the dashed edge is a normal edge or Havel's quaziedge.

(C is the outer face, vertices of degree 2 have different colors)

Thank you for your attention!