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Theorem (The Four Color Theorem)

Every planar graph can be colored by 4 colors.

Are 4 colors enough for planar plus one edge?

uv uv

Is it possible to precolor 2 vertices?

uv · · ·
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Theorem (Albertson)

Let G be a planar graph and S ⊂ V (G ). If ∀u, v ∈ S
dist(u, v) ≥ 4 then any precoloring of S extends to a 5-coloring of
G .

Theorem (Dvořák, L., Postle, Mohar)

Let G be a planar graph and S ⊂ V (G ). If ∀u, v ∈ S
dist(u, v) ≥ 50000 then any precoloring of S extends to a
5-list-coloring of G .

Theorem (Postle, Thomas)

If G is planar, S ⊂ V (G ) and a precoloring of S extends to all
vertices at distance Ω(log |S |) from S , then it extends to a
5-coloring of G .

S
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Theorem (Grötzsch)

Every triangle-free planar graph is 3-colorable.

Theorem (Aksenov; Jensen and Thomassen)

Precoloring of any two vertices in triangle-free planar graph
extends to a 3-coloring.

Theorem (Aksenov)

Every planar graph with at most 3 triangles is 3-colorable.

Theorem (Borodin, Dvořák, Kostochka, L., Yancey)

Precise description of 4-critical planar graphs with exactly 3
triangles.
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Definition (k-critical graphs)

Graph G is a k-critical graph if G is not (k − 1)-colorable
but every H ⊂ G is (k − 1)-colorable.

3-critical 4-critical 5-critical
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Theorem (Borodin, Dvořák, Kostochka, L., Yancey)

All plane 4-critical graphs with 4 triangles and no 4-faces can be
obtained from the Thomas-Walls sequence

...

by replacing dashed edges by edges or by Havel’s quasiedge:

.
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Theorem (Borodin, Dvořák, Kostochka, L., Yancey)

All plane 4-critical graphs with 4 triangles and no 4-faces C can be
obtained from the Thomas-Walls sequence by replacing dashed
edges by edges or by Havel’s quasiedge.

Theorem (Borodin, Dvořák, Kostochka, L., Yancey)

Every 4-critical plane graph with 4-triangles can be obtained from
G ∈ C by expanding some vertices of degree 3. (called patching)
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Conjecture (Grunbaum 63)

Planar graphs without intersecting triangles are 3-colorable.

Disproved by Havel

Conjecture (Havel)

If G is planar and mutual distance of triangles is ≥ O(1), then G is
3-colorable.

Proved by Dvǒrák, Krá
,
l, Thomas.
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Theorem (Dvořák, Krá ,l, Thomas)

If G is planar and mutual distance of triangles is ≥ O(1), then G is
3-colorable.

But triangles cannot be precolored.
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Winding number in quadrangulation.
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Theorem (Dvořák, Krá ,l, Thomas)

If G is planar of girth 5, S ⊂ V (G ) and a precoloring of S extends
to all vertices at distance Ω(|S |) from S , then it extends to a
3-coloring of G .

S

Girth 5 needed:

1 2

3

1 2

3

Postle: distance 100|S | is siffucient.
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Conjecture (Dvořák, Krá ,l, Thomas)

If G is planar of girth 4, S ⊂ V (G ) and ∀u, v ∈ S
dist(u, v) ≥ Ω(1) then any precoloring of S extends to a 3-coloring
of G .

Conjecture (Dvořák, Krá ,l, Thomas)

If G is planar of girth 4, S ⊂ V (G ), S consists of a vertex v and
4-cycle C , and distance of v and C is ≥ Ω(1) then any precoloring
of S extends to a 3-coloring of G .

vC

Theorem (Dvořák, Krá ,l, Thomas)

Second conjecture implies the first one.

- We prove the second conjecture
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Theorem (Dvořák, L.)

If G is planar of girth 4, S ⊂ V (G ), S consists of a vertex v and
4-cycle C and distance of v and C is ≥ Ω(1) then any precoloring
of S extends to a 3-coloring of G .

vC

Characterize when a precoloring of two 4-cycles extend.
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Definitions (S-critical graphs)
graph G = (V ,E ), S ⊂ G

G is S-critical graph for 3-coloring if for every S ⊂ H ⊂ G exists a
3-coloring ϕ of S such that

• ϕ extends to a 3-coloring of H

• ϕ does not extend to a 3-coloring of G .

Note that ∅-critical graph is 4-critical.
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Theorem (Dvořák, L.)

Let G be planar graph with two 4-faces C1 and C2 in distance
≥ Ω(1). If all triangles in G are disjoint, non-cotractible, and G is
(C1,C2)-critical,

• G is obtained from framed patched Thomas-Walls, or

. . .

• G is near 3, 3-quadrangulation.
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Proof sketch

Main tool - collapse 4-faces

→

Few separating ≤ 4-cycles

C2 C1

Many separating ≤ 4-cycles

C2 C1
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Proof sketch - creating separating ≤ 4-cycles

Lemma
If C1 and C2 are in distance d , then it is possible to create
separating 4-cycle and decrease d by one.

R

C1
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Proof sketch - many separating ≤ 4-cycles

C1 C2

• collapse 4-faces without destroying separating ≤ 4-cycles

C1 C2

• describe basic graphs between separating ≤ 4-cycles
• with 4-faces (21 graphs)
• without 4-faces (94 graphs)

• gluing of at least ≥ 1056 (or ≥ 40 with computer) basic graphs
• extends any precoloring of outer cycles, or
• is Thomas-Walls, or
• is almost 3, 3-quadrangulation.
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Exeptions without 4-faces
Exceptional graphs
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Z. Dvořák Structure of 4-critical graphs
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Lemma (Dvořák, L.)

Let G be a plane graph and C1 and C2 faces of G . If G is
(C1 ∪ C2)-critical and C1 and C2 are the only ≤ 4 cycles and the
distance between C1 and C2 is at most 4 then G is one of 22
graphs.

C1

C2 F

Results in a planar F -critical graph of girth 5 (outer face F ).

Theorem (Dvořák, L.)

There are 7969 F -critical planar graphs of girth 5 with outer face
F of size 16.
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Exeptions with 4-faces

EV1 EV2 T1 T′
1 T2 T′

2 S1

S2 Q1 Q2 Q3 Q4 Q5 X1

X2 X3 X4 X5 X6 X7 J1

I4
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Chains of small graphs

T1 Q1 T1 O6 Q1

1 3

2

1 3
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T1 Q1 T1 EV1 S1

1 3
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3 1
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More consequences

Corollary (Dvořák, L.)

If G is an n-vertex triangle-free planar graphs with maximum

degree ∆ then G has at least
(

31/∆D
)n

distinct colorings, where

D is constant.

Pick n/∆D vertices S of G in mutual distance ≥ D.
All 3|S| precolorings of S extend to different 3-colorings of G .
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More consequences

Let G be a graph with a face C and t triangles. (3 coloring)

• if |C | = 4 and t ≤ 1, any precoloring of C extends

• if |C | = 5 and t ≤ 1, the only C -critical graph is
1

2 1

2

3 3

• if |C | = 6 and t = 0, the only C -critical graph is
1

2 1

2

3 3

• if |C | ≤ 9 and t = 0, C -critical graphs known
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Theorem (Dvořák, L.)

Let G be a graph with a 4-face C and 2 triangles. If G is C -critical
the G is

1

2 1

2

3 3

or framed patched Thomas-Walls, where the dashed edge is a
normal edge or Havel’s quaziedge.

. . .

(C is the outer face, vertices of degree 2 have different colors)

25



Thank you for your attention!
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