INDEPENDENT SETS NEAR THE LOWER BOUND IN BOUNDED DEGREE GRAPHS

Zdeněk Dvořák Bernard Lidický

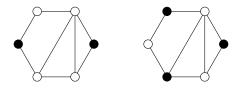
Charles University

Iowa State University

AMS Sectional Meeting #1123 Minneapolis, MN Oct 29, 2016

DEFINITION

An *independent set* in a graph G is an induced subgraph with no edges.



 $\alpha(G)$ is the size of a maximum independent set in G. $\omega(G)$ is the size of a maximum clique in G.

TRIVIAL LOWER BOUND

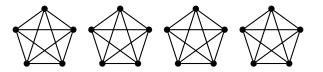
 $\Delta(G)$ is the maximum degree of G. *n* is the number of vertices of G.

If $\Delta(G) \leq \Delta$, then $\alpha(G) \geq \frac{n}{\Delta+1}$.

TRIVIAL LOWER BOUND

 $\Delta(G)$ is the maximum degree of G. n is the number of vertices of G.

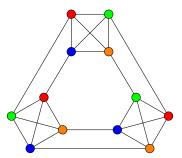
If $\Delta(G) \leq \Delta$, then $\alpha(G) \geq \frac{n}{\Delta+1}$. (tight)



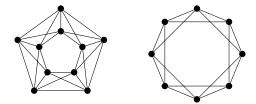
What is $\omega(G) \leq \Delta$?

FORBIDDING LARGEST CLIQUES

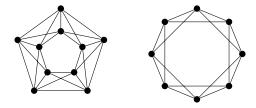
THEOREM (BROOKS 1941) If $\Delta(G) \geq 3$ and $\max(\Delta(G), \omega(G)) \leq \Delta$ then G is Δ -colorable.



Implies $\alpha(G) \geq \frac{n}{\Delta}$. Tight. THEOREM (ALBERTSON, BOLLOBÁS, TUCKER 1976) If G is connected, $\Delta(G) \leq \Delta$ and $\omega(G) \leq \Delta - 1$, then $\alpha(G) > \frac{n}{\Delta}$ unless G is one of the following two exceptions:



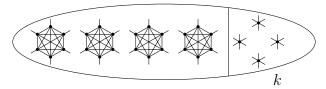
THEOREM (ALBERTSON, BOLLOBÁS, TUCKER 1976) If G is connected, $\Delta(G) \leq \Delta$ and $\omega(G) \leq \Delta - 1$, then $\alpha(G) > \frac{n}{\Delta}$ unless G is one of the following two exceptions:



THEOREM (KING, LU, PENG 2012)

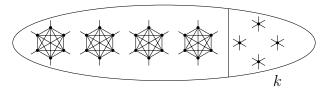
If G is connected, $\Delta(G) \leq \Delta$ and $\omega(G) \leq \Delta - 1$, then $\alpha(G) > \frac{n}{\Delta - \frac{2}{67}}$ unless G is one of the two exceptions above.

SMALL SURPLUS kIf G with $\max(\Delta(G), \omega(G)) \leq \Delta$ is



then $\alpha(G) \leq \frac{n-k}{\Delta} + k$.

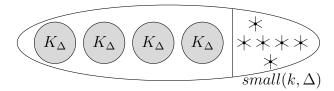
SMALL SURPLUS kIf G with max $(\Delta(G), \omega(G)) \leq \Delta$ is



then $\alpha(G) \leq \frac{n-k}{\Delta} + k$.

PROBLEM

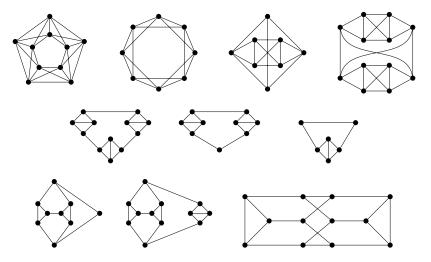
If $\alpha(G) \leq \frac{n}{\Delta} + k$ and $\max(\Delta(G), \omega(G)) \leq \Delta$, does G look like



Are there other candidates for K_{Δ} ?

Δ -TIGHT GRAPHS

A graph is \triangle -*tight* if it is K_{\triangle} or one of



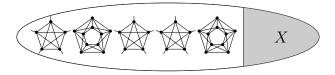
If G is Δ -tight, then $\alpha(G) = \frac{n}{\Delta}$.

THEOREM (DVOŘÁK, L.)

Let $\Delta \geq 3$ and $k \geq 0$.

Let G be an *n*-vertex graph with $\max(\Delta(G), \omega(G)) \leq \Delta$.

If $\alpha(G) < \frac{n}{\Delta} + k$, then there exists $X \subseteq V(G)$ of size $< 34\Delta^2 k$ such that G - X is Δ -tightly partitioned.



We will try a sketch for $\Delta = 5$.

DEFINITION A vertex v of G is \triangle -free if v is not in \triangle -tight subgraph.

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$.

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains $C_5 \boxtimes P_2$ (hence $\Delta = 5$)

Let $H = G - C_5 \boxtimes P_2$ $\alpha(G) = \alpha(C_5 \boxtimes P_2) + \alpha(H) = 2 + \frac{n-10}{\Delta} + \frac{1}{34\Delta^2}m = \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

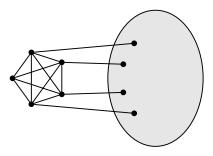
• $\omega(G) \leq \Delta - 1$ then $\alpha(G) \geq \frac{n}{\Delta} + \frac{n}{34\Delta^2}$ by King, Lu, Peng.

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.

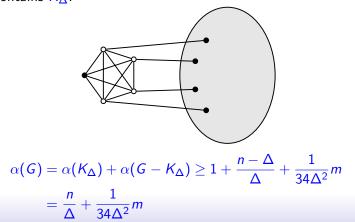
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains K_{Δ} .



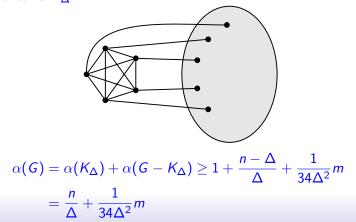
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.



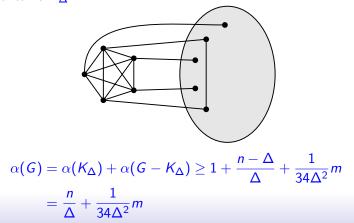
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains K_{Δ} .



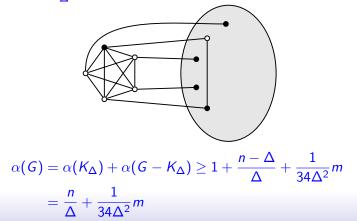
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains K_{Δ} .



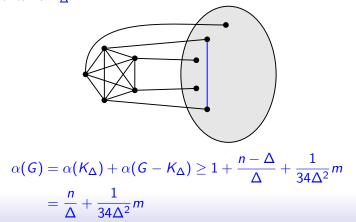
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.



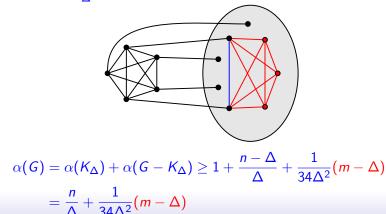
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.



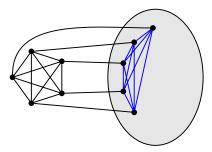
LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains K_{Δ} .



LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

• G contains K_{Δ} .



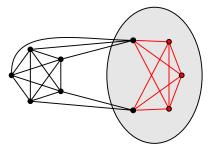
No blue triangles.

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.

LEMMA If $\max(\Delta(G), \omega(G)) \leq \Delta$ and G has at least m vertices that are Δ -free then $\alpha(G) \geq \frac{n}{\Delta} + \frac{1}{34\Delta^2}m$. By induction (now only for $\Delta \geq 5$).

G contains K_Δ.



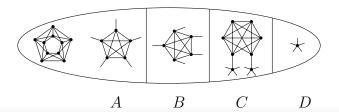
Contradiction with $\Delta(G) \leq \Delta$.

PARTITION LEMMA

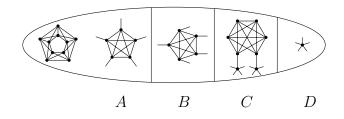
LEMMA

An *n*-vertex graph G with $\max(\Delta(G), \omega(G)) \leq \Delta$ can be partitioned into to sets A, B, C, and D in time $O(\Delta^2 n)$, such that

- G[A] is Δ -tightly partitioned,
- G[B] is K_{Δ} -partitioned and $|B| \leq 3\Delta(|C| + |D|)$,
- *C* is △-profitably nibbled,
- D is Δ -free in G C, and
- $\alpha(G) = \alpha(G[B \cup C \cup D]) + |A|/\Delta$.

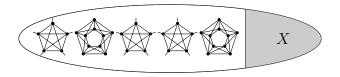


COUNTING LEMMA

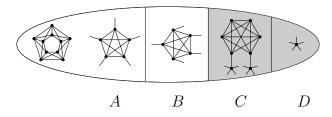


LEMMA If $\alpha(G) < \Delta/n + k$, then $|C| + |D| < 34\Delta^2 k$. THEOREM (DVOŘÁK, L.)

If $\alpha(G) < n/\Delta + k$, then exsits $X \subseteq V(G)$ of size $< 34\Delta^2 k$ such that G - X is Δ -tightly partitioned.



Previous Lemma: If $\alpha(G) < n/\Delta + k$, then $|C| + |D| < 34\Delta^2 k$.



Put $X = C \cup D$.

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

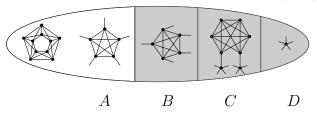
YES!

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

• Find partition with $|B \cup C \cup D| < 114\Delta^3 k$ in time $O(\Delta^2 n)$.

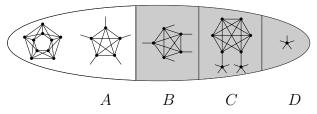


Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

• Find partition with $|B \cup C \cup D| < 114\Delta^3 k$ in time $O(\Delta^2 n)$.



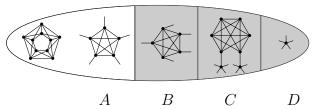
• Compute $\alpha(B \cup C \cup D)$ in time $2^{O(\Delta^3 k)}$.

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

• Find partition with $|B \cup C \cup D| < 114\Delta^3 k$ in time $O(\Delta^2 n)$.



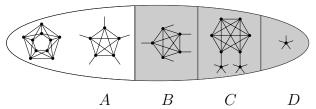
- Compute $\alpha(B \cup C \cup D)$ in time $2^{O(\Delta^3 k)}$.
- Result is $\alpha(B \cup C \cup D) + \frac{|A|}{\Delta}$.

Computing $\alpha(G)$ is NP-complete.

If $\alpha(G) < n/\Delta + k$, can you compute $\alpha(G)$ efficiently?

YES!

• Find partition with $|B \cup C \cup D| < 114\Delta^3 k$ in time $O(\Delta^2 n)$.



- Compute $\alpha(B \cup C \cup D)$ in time $2^{O(\Delta^3 k)}$.
- Result is $\alpha(B \cup C \cup D) + \frac{|A|}{\Delta}$.
- Total time is $2^{O(\Delta^3 k)} + O(\Delta^2 n)$. Efficient if Δ and k fixed.

Thank you for your attention!