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Independent sets

Definition
An independent set in a graph G is an induced subgraph with no
edges.

α(G ) is the size of a maximum independent set in G .
ω(G ) is the size of a maximum clique in G .
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Trivial lower bound

∆(G ) is the maximum degree of G .
n is the number of vertices of G .

If ∆(G ) ≤ ∆, then α(G ) ≥ n
∆+1 .

(tight)

What is ω(G ) ≤ ∆?
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Forbidding largest cliques

Theorem (Brooks 1941)

If ∆(G ) ≥ 3 and max(∆(G ), ω(G )) ≤ ∆ then G is ∆-colorable.

Implies α(G ) ≥ n
∆ .

Tight.
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Related results

Theorem (Albertson, Bollobás, Tucker 1976)

If G is connected, ∆(G ) ≤ ∆ and ω(G ) ≤ ∆− 1, then α(G ) > n
∆

unless G is one of the following two exceptions:

Theorem (King, Lu, Peng 2012)

If G is connected, ∆(G ) ≤ ∆ and ω(G ) ≤ ∆− 1, then
α(G ) > n

∆− 2
67

unless G is one of the two exceptions above.
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Small surplus k
If G with max(∆(G ), ω(G )) ≤ ∆ is

k

then α(G ) ≤ n−k
∆ + k .

Problem
If α(G ) ≤ n

∆ + k and max(∆(G ), ω(G )) ≤ ∆, does G look like

small(k,∆)

K∆ K∆ K∆ K∆

Are there other candidates for K∆?
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∆-tight graphs

A graph is ∆-tight if it is K∆ or one of

If G is ∆-tight, then α(G ) = n
∆ .

7



Our result

Theorem (Dvořák, L.)

Let ∆ ≥ 3 and k ≥ 0.
Let G be an n-vertex graph with max(∆(G ), ω(G )) ≤ ∆.

If α(G ) < n
∆ + k, then there exists X ⊆ V (G ) of size < 34∆2k

such that G − X is ∆-tightly partitioned.

X
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We will try a sketch for ∆ = 5.
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∆-free vertices

Definition
A vertex v of G is ∆-free if v is not in ∆-tight subgraph.
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Many ∆-free vertices⇒ large α

Lemma
If max(∆(G ), ω(G )) ≤ ∆ and G has at least m vertices that are
∆-free then α(G ) ≥ n

∆ + 1
34∆2m.

By induction (now only for ∆ ≥ 5).
• G contains K∆.

α(G ) = α(K∆) + α(G − K∆) ≥ 1 +
n −∆

∆
+

1

34∆2
m

=
n

∆
+

1

34∆2
m

.
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Partition lemma

Lemma
An n-vertex graph G with max(∆(G ), ω(G )) ≤ ∆ can be
partitioned into to sets A, B, C, and D in time O(∆2n), such that

• G [A] is ∆-tightly partitioned,

• G [B] is K∆-partitioned and |B| ≤ 3∆(|C |+ |D|),

• C is ∆-profitably nibbled,

• D is ∆-free in G − C, and

• α(G ) = α(G [B ∪ C ∪ D]) + |A|/∆.

A B C D
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Counting lemma

A B C D

Lemma
If α(G ) < ∆/n + k, then |C |+ |D| < 34∆2k.
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Theorem (Dvořák, L.)

If α(G ) < n/∆ + k, then exsits X ⊆ V (G ) of size < 34∆2k such
that G − X is ∆-tightly partitioned.

X

Previous Lemma:
If α(G ) < n/∆ + k, then |C |+ |D| < 34∆2k .

A B C D

Put X = C ∪ D.
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Computational Consequences

Computing α(G ) is NP-complete.

If α(G ) < n/∆ + k, can you compute α(G ) efficiently?

YES!

• Find partition with |B ∪ C ∪ D| < 114∆3k in time O(∆2n).

A B C D

• Compute α(B ∪ C ∪ D) in time 2O(∆3k).

• Result is α(B ∪ C ∪ D) + |A|
∆ .

• Total time is 2O(∆3k) + O(∆2n). Efficient if ∆ and k fixed.
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Thank you for your attention!
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