Decomposing Random d-Regular Graphs Into Stars

Michelle Delcourt Bernard Lidický Luke Postle

University of Illinois
Iowa State University
University of Waterloo

EXtremal Combinatorics at ILLinois 3
Aug 10, 2016

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition asymptotically almost surely (a.a.s.).

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition asymptotically almost surely (a.a.s.).

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition asymptotically almost surely (a.a.s.).

Question (Barát and Thomassen)

Does every 4-edge-connected 4-regular graph have a claw decomposition?

Question (Barát and Thomassen)

Does every 4-edge-connected 4-regular graph have a claw decomposition?

No!

8 center vertices, 4 leaf vertices \rightarrow adjacent leaves

Barát and Thomassen's Conjecture

Conjecture (Barát and Thomassen 2006)
If G is a planar 4-edge-connected, 4-regular graph such that $3 \mid e(G)$, then G has a claw decomposition.

Barát and Thomassen's Conjecture

Conjecture (Barát and Thomassen 2006)

If G is a planar 4-edge-connected, 4-regular graph such that $3 \mid e(G)$, then G has a claw decomposition.
Counterexample Lai 2007

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition a.a.s.

Theorem (Bollobás 1981, Wormald 1981)
Random d-regular graph is d-edge-connected a.a.s..

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition a.a.s..

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition a.a.s..

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition a.a.s..

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition a.a.s..

Theorem (Delcourt and Postle 2015+; Proved) If $3 \mid n$ then a random 4-regular graph on n vertices has an orientation in which every outdegree is either 3 or 0 a.a.s.

Conjecture (Tutte 1966; EQUivalent Form)

Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1 .

Theorem (Pralat and Wormald 2015+)

A random 5-regular graph on n vertices has an edge orientation in which every outdegree is either 4 or 1 a.a.s..

Conjecture (Tutte 1966; EQuivalent Form)

Every 4-edge connected 5-regular graph has an edge orientation in which every outdegree is either 4 or 1 .

Theorem (Pralat and Wormald 2015+)

A random 5-regular graph on n vertices has an edge orientation in which every outdegree is either 4 or 1 a.a.s..

Conjecture (JaEger 1988; Equivalent form)

Every $4 p$-edge connected $(4 p+1)$-regular graph has an edge orientation in which every outdegree is either $3 p+1$ or p.

Theorem (Alon and Pralat 2011)

For $p>p_{0}$, a random $(4 p+1)$-regular graph has an orientation in which every outdegree is either $3 p+1$ or p.

Theorem (Delcourt and Postle 2015+)

If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition (orientation with outdegrees 3 or 0) a.a.s.. Question: What about d-regular graphs and S_{k} (star with k leaves)?

Theorem (Delcourt and Postle 2015 +)
If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition (orientation with outdegrees 3 or 0) a.a.s.. Question: What about d-regular graphs and S_{k} (star with k leaves)?

Theorem (L. M. Lovász, Thomassen, Wang, and Zhu 2013)
Every d-edge-connected graph on e edges decomposes into copies of S_{k} if e is divisible by k and $k \leq\lceil d / 2\rceil$.

Theorem (Delcourt and Postle 2015 +)
If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition (orientation with outdegrees 3 or 0) a.a.s.. Question: What about d-regular graphs and S_{k} (star with k leaves)?

Theorem (L. M. Lovász, Thomassen, Wang, and Zhu 2013)
Every d-edge-connected graph on e edges decomposes into copies of S_{k} if e is divisible by k and $k \leq\lceil d / 2\rceil$.

Open for $k>\lceil d / 2\rceil$.
Same as: outdegrees either k or 0

Theorem (Delcourt and Postle 2015 +)
If $3 \mid n$ then a random 4-regular graph on n vertices has a claw decomposition (orientation with outdegrees 3 or 0) a.a.s..
Question: What about d-regular graphs and S_{k} (star with k leaves)?

Theorem (L. M. Lovász, Thomassen, Wang, and Zhu 2013)
Every d-edge-connected graph on e edges decomposes into copies of S_{k} if e is divisible by k and $k \leq\lceil d / 2\rceil$.

Open for $k>\lceil d / 2\rceil$.
Same as: outdegrees either k or 0
Try: random 4-regular gives orientation with outdegrees 3 or $0 \ldots$.

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

 Pairing Model (Bollobás 1980)

1. Begin with n vertices.

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

 Pairing Model (BollobÁs 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
(Bollobás 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
(Bollobás 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.
4. Collapse the cells.

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
(Bollobás 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.
4. Collapse the cells.
5. If this (multi)graph is not simple, then restart.

Random d-REgular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
(BollobÁs 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.
4. Collapse the cells.
5. If this (multi)graph is not simple, then restart.

Random d-REgular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
 (Bollobás 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.
4. Collapse the cells.
5. If this (multi)graph is not simple, then restart.
$P($ simple $) \sim \exp \left(\frac{1-d^{2}}{4}\right)$ for d fixed and $n \rightarrow \infty$
Event true a.a.s in $\mathcal{P}_{n, d}, \Rightarrow$ true a.a.s. in random d-regular graphs.

Random d-Regular Graphs and Pairings $\mathcal{P}_{n, d}$

Pairing Model
 (Bollobás 1980)

1. Begin with n vertices.
2. Create n "cells," each with d "points." (dn even)
3. Form a random perfect matching.
4. Collapse the cells.
5. If this (multi)graph is not simple, then restart.
$P($ simple $) \sim \exp \left(\frac{1-d^{2}}{4}\right)$ for d fixed and $n \rightarrow \infty$
Event true a.a.s in $\mathcal{P}_{n, d}, \Rightarrow$ true a.a.s. in random d-regular graphs. Janson: Event true a.a.s. in $\mathcal{P}_{n, d}, \Rightarrow$ true a.a.s. in random d-regular multigraphs.

Really happening:
Theorem (Delcourt and Postle 2015 +)
If $3 \mid n$ then a random multigraph from pairing in $\mathcal{P}_{n, 4}$ has an orientation with outdegrees 3 or 0 a.a.s..
$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.
First try: compute $\mathbb{E}[Y], \mathbb{E}\left[Y^{2}\right]$, show

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \rightarrow 0
$$

Luke and Michelle

Counting Orientations Using Signatures

 $Y=Y(n):=\#\{3,0\}$-orientations of a random pairing of $\mathcal{P}_{n, 4}$.When counting $\mathbb{E}[Y]$:

- for every pairing count \# of orientations
- for every "orientation" count \# of pairings

Counting Orientations Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random pairing of $\mathcal{P}_{n, 4}$.
When counting $\mathbb{E}[Y]$:

- for every pairing count \# of orientations
- for every "orientation" count \# of pairings

$\binom{n}{2 n / 3}$ Centers

Leaves \longrightarrow (independent set)

Counting Orientations Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random pairing of $\mathcal{P}_{n, 4}$.
When counting $\mathbb{E}[Y]$:

- for every pairing count \# of orientations
- for every "orientation" count \# of pairings

$\binom{n}{2 n / 3}$ Centers

Leaves \longrightarrow (independent set)

Counting Orientations Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random pairing of $\mathcal{P}_{n, 4}$.
When counting $\mathbb{E}[Y]$:

- for every pairing count \# of orientations
- for every "orientation" count \# of pairings

$\binom{n}{2 n / 3}$ Centers

Leaves \longrightarrow (independent set)
Special points

Counting Orientations Using Signatures

 $Y=Y(n):=\#\{3,0\}$-orientations of a random pairing of $\mathcal{P}_{n, 4}$.When counting $\mathbb{E}[Y]$:

- for every pairing count \# of orientations
- for every "orientation" count \# of pairings

$\binom{n}{2 n / 3}$ Centers

Leaves \longrightarrow (independent set)
Special points
Now we have a signature.

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{(2 n / 3) \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points
 for centers.
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)$! ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{(2 n / 3) \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points
 for centers.
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)$! ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{\binom{n}{2 n / 3} \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points
 for centers.
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)!$ ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{\binom{n}{2 n / 3} \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points
 for centers. 0000
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)$! ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{(2 n / 3) \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points
 for centers.
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)!$ ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{\left(2^{n} / 3\right) \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points for centers. $00 \bullet 0$
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)$! ways to match "out" points to "in" points.

- $M(4 n)$ is \# pairings

Computing $\mathbb{E}[Y]$ Using Signatures

$Y=Y(n):=\#\{3,0\}$-orientations of a random element of $\mathcal{P}_{n, 4}$.

$$
\mathbb{E}[Y]=\frac{(2 n / 3) \cdot 4^{2 n / 3} \cdot(2 n)!}{M(4 n)} \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3} .
$$

- $\binom{n}{2 n / 3}$ ways to select "centers."

- $4^{2 n / 3}$ choices of special points for centers. $00 \bullet 0$
- $\binom{n}{2 n / 3} \cdot 4^{2 n / 3}$ signatures.
- $\left(\frac{4 n}{2}\right)!=(2 n)$! ways to match "out" points to "in" points.
- $M(4 n)$ is \# pairings

Computing $\mathbb{E}\left[Y^{2}\right] ; \mathbb{E}[Y] \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3}$

To calculate $\mathbb{E}\left[Y^{2}\right]$, we fix two signatures and see how many configurations they jointly extend to.

$$
\mathbb{E}\left[Y^{2}\right] \sim \sqrt{\frac{3}{2}} \cdot \frac{9}{2}\left(\frac{27}{16}\right)^{2 n / 3}
$$

Computing $\mathbb{E}\left[Y^{2}\right] ; \mathbb{E}[Y] \sim \frac{3}{\sqrt{2}}\left(\frac{27}{16}\right)^{n / 3}$

To calculate $\mathbb{E}\left[Y^{2}\right]$, we fix two signatures and see how many configurations they jointly extend to.

$$
\mathbb{E}\left[Y^{2}\right] \sim \sqrt{\frac{3}{2}} \cdot \frac{9}{2}\left(\frac{27}{16}\right)^{2 n / 3}
$$

Hence

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \sim \sqrt{\frac{3}{2}}>0 \Rightarrow \text { second moment fails }
$$

Main Tool [Robinson and Wormald 1992]

Let $\lambda_{j}>0$ and $\delta_{j}>-1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_{j}=X_{j}(n), j \geq 1$, and $Y=Y(n)$ defined on the same probability space such that X_{j} is integer valued and $\mathbb{E}[Y]>0$ (for n sufficiently large).
Furthermore, suppose

1. For each $j \geq 1, X_{1}, X_{2}, \ldots, X_{j}$ are asymptotically independent Poisson random variables with
2.

$$
\begin{gathered}
\mathbb{E}\left[X_{i}\right] \rightarrow \lambda_{i}, \text { for all } i \in[j] ; \\
\frac{\mathbb{E}\left[Y\left[X_{1}\right]_{\ell_{1}} \ldots\left[X_{j}\right]_{\ell_{j}}\right]}{\mathbb{E}[Y]} \rightarrow \prod_{i=1}^{j}\left(\lambda_{i}\left(1+\delta_{i}\right)\right)^{\ell_{i}}
\end{gathered}
$$

for any fixed $\ell_{1}, \ldots, \ell_{j}$ where $[X]_{\ell}$ is the falling factorial;
3. $\sum_{i} \lambda_{i} \delta_{i}^{2}<\infty$;
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty .
$$

Then, a.a.s. $Y>0$.

Main Tool [Robinson and Wormald 1992]

Let $\lambda_{j}>0$ and $\delta_{j}>-1$ be real, $j \geq 1$. Suppose for each n there are non-negative random variables $X_{j}=X_{j}(n), j \geq 1$, and $Y=Y(n)$ defined on the same probability space such that X_{j} is integer valued and $\mathbb{E}[Y]>0$ (for n sufficiently large).
Furthermore, suppose

1. For each $j \geq 1, X_{1}, X_{2}, \ldots, X_{j}$ are asymptotically independent Poisson random variables with
2.

$$
\begin{gathered}
\mathbb{E}\left[X_{i}\right] \rightarrow \lambda_{i}, \text { for all } i \in[j] ; \\
\frac{\mathbb{E}\left[Y\left[X_{1}\right]_{\ell_{1}} \ldots\left[X_{j}\right]_{\ell_{j}}\right]}{\mathbb{E}[Y]} \rightarrow \prod_{i=1}^{j}\left(\lambda_{i}\left(1+\delta_{i}\right)\right)^{\ell_{i}}
\end{gathered}
$$

for any fixed $\ell_{1}, \ldots, \ell_{j}$ where $[X]_{\ell}$ is the falling factorial;
3. $\sum_{i} \lambda_{i} \delta_{i}^{2}<\infty$;
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty .
$$

Then, a.a.s. $Y>0$.
This works for 4-regular and orientations with outdegree $\in\{0,3\}$.
Now we trying $\{0, k\}$ in d-regular.

1. For each $j \geq 1, X_{1}, X_{2}, \ldots, X_{j}$ are asymptotically independent Poisson random variables with

$$
\mathbb{E}\left[X_{i}\right] \rightarrow \lambda_{i}, \text { for all } i \in[j] ;
$$

1. For each $j \geq 1, X_{1}, X_{2}, \ldots, X_{j}$ are asymptotically independent Poisson random variables with

$$
\mathbb{E}\left[X_{i}\right] \rightarrow \lambda_{i}, \text { for all } i \in[j] ;
$$

Let X_{i} denote the number of cycles of length i in the random multigraph resulting from a pairing in $\mathcal{P}_{n, d}$.
Theorem (BollobÁs 1980)
For $j \geq 1, X_{1}, \ldots, X_{j}$ are asymptotically independent Poisson random variables with

$$
\mathbb{E}\left[X_{i}\right] \rightarrow \lambda_{i}:=\frac{(d-1)^{i}}{2 \cdot i}
$$

for all $i \in[j]$.
2.

$$
\frac{\mathbb{E}\left[Y\left[X_{1}\right]_{\ell_{1}} \ldots\left[X_{j}\right]_{\ell_{j}}\right]}{\mathbb{E}[Y]} \rightarrow \prod_{i=1}^{j}\left(\lambda_{i}\left(1+\delta_{i}\right)\right)^{\ell_{i}}
$$

for any fixed $\ell_{1}, \ldots, \ell_{j}$ where $[X]_{\ell}$ is the falling factorial;
2.

$$
\frac{\mathbb{E}\left[Y\left[X_{1}\right]_{\ell_{1}} \ldots\left[X_{j}\right]_{\ell_{j}}\right]}{\mathbb{E}[Y]} \rightarrow \prod_{i=1}^{j}\left(\lambda_{i}\left(1+\delta_{i}\right)\right)^{\ell_{i}}
$$

for any fixed $\ell_{1}, \ldots, \ell_{j}$ where $[X]_{\ell}$ is the falling factorial;

We show that for each $j \geq 1$,

$$
\begin{gathered}
\frac{\mathbb{E}\left[Y X_{j}\right]}{\mathbb{E}[Y]} \rightarrow \lambda_{j}\left(1+\delta_{j}\right) \\
\mathbb{E}\left[Y X_{j}\right]=\mathbb{E}[Y] \cdot \lambda_{j}\left(1+\left(\frac{d-2 k+1}{d-1}\right)^{j}\right) ; \delta_{j}=\left(\frac{d-2 k+1}{d-1}\right)^{j}
\end{gathered}
$$

3. $\sum_{i} \lambda_{i} \delta_{i}^{2}<\infty$;

$$
\begin{gathered}
\lambda_{i}=\frac{(d-1)^{i}}{2 i} \quad \delta_{i}=\left(\frac{d-2 k+1}{d-1}\right)^{i} \\
\sum_{i} \lambda_{i} \delta_{i}^{2}=-\frac{1}{2} \ln \left(\frac{4 k-2-d-(2 k-d)^{2}}{d-1}\right)<\infty
\end{gathered}
$$

Hence $k<\frac{d}{2}+\frac{0.5+\sqrt{d+1}}{2}$.
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$
Guess
A random d-regular multigraph from $\mathcal{P}_{n, d}$ has an orientation with outdegrees k or 0 a.a.s. if $\frac{d}{2}<k \leq \frac{d}{2}+\frac{\sqrt{d}}{2}$ (and $k \mid d n / 2$).
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$
Guess
A random d-regular multigraph from $\mathcal{P}_{n, d}$ has an orientation with outdegrees k or 0 a.a.s. if $\frac{d}{2}<k \leq \frac{d}{2}+\frac{\sqrt{d}}{2}$ (and $k \mid d n / 2$). \# leaf vertices is $\frac{\sqrt{d}}{d+\sqrt{d}} n$. form independent set.
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$
Guess
A random d-regular multigraph from $\mathcal{P}_{n, d}$ has an orientation with outdegrees k or 0 a.a.s. if $\frac{d}{2}<k \leq \frac{d}{2}+\frac{\sqrt{d}}{2}$ (and $k \mid d n / 2$). \# leaf vertices is $\frac{\sqrt{d}}{d+\sqrt{d}} n$. form independent set.

Theorem (Bollobas 1981)
For random d-regular graph $\alpha(G)<\frac{2 \log d}{d} n$ a.a.s..
4.

$$
\frac{\mathbb{E}\left[Y^{2}\right]}{\mathbb{E}[Y]^{2}} \leq \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)+o(1) \text { as } n \rightarrow \infty
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$
Guess
A random d-regular multigraph from $\mathcal{P}_{n, d}$ has an orientation with outdegrees k or 0 a.a.s. if $\frac{d}{2}<k \leq \frac{d}{2}+\frac{\sqrt{d}}{2}$ (and $k \mid d n / 2$).
\# leaf vertices is $\frac{\sqrt{d}}{d+\sqrt{d}} n$.

Theorem (Bollobas 1981)
For random d-regular graph $\alpha(G)<\frac{2 \log d}{d} n$ a.a.s..
Guess cannot be true!
It MUST hold $k \leq \frac{d}{2}+2 \log d$.

Dealing with $\mathbb{E}\left[Y^{2}\right]$

$$
\begin{aligned}
& \left.f(\max)=-\frac{d}{2} \ln d+2\left(\frac{d}{2 k}-\left(\frac{d}{2 k}\right)^{2}\right) \ln \binom{(d)}{k}\right)+2\left(\frac{d}{2 k}\right)^{2} \cdot\left(\ln \left(\left(\frac{d}{k}\right)\right)-\ln \frac{d}{2 k}\right)+\frac{d}{2} \ln \left(\frac{d}{4}\right) \\
& \left.\left.-2\left(\frac{\alpha}{2 k}-\left(\frac{d}{2 k}\right)^{2}\right) \ln \left(\frac{d}{2 k}\left(\frac{2 k-d}{2 k}\right)\right)\right)-\left(\frac{2 k-\lambda}{2 k}\right)^{2} \cdot 2\left(\ln \frac{2 k-\lambda}{2 k}\right)\right) \\
& \left.f(\max)=-d \ln \quad \ln \left(\left(\frac{d}{k}\right)\right) \cdot \frac{d}{k}-2\left(\frac{d}{2 k}\right)^{2} \ln \left(\frac{d}{2 k}\right)^{2 k}-2\left(\frac{d}{2 k}-\left(\frac{d}{2 k}\right)^{2}\right) \ln \left(\frac{d}{2 k}\right)\right) \quad \frac{2 k-\alpha}{k} . \\
& -\ln \left(\frac{2 k-d}{2 k}\right)\left(2\left(\frac{d}{2 k}-\left(\frac{d}{2 k}\right)^{2}+\left(\frac{2 k-d}{2 k}\right)^{2}\right)\right) \\
& f(m a x)=-d l^{2}+\ln ((k)) \cdot \frac{d}{k}-\ln \left(\frac{d}{2 k}\right) \cdot \frac{d}{k}-\ln \left(\frac{2 k-1}{2 k}\right)\left(2 \frac{2 k d-x^{2}+x^{2} k^{2}-2 k k d+k^{2}}{x k^{2}}\right) \\
& =-d h 2+\ln \left(\frac{d}{k}\right) \cdot \frac{d}{k}-\ln (d) \cdot \frac{d}{k}-\ln (2 k-d) \cdot\left(\frac{2 k-d}{k}\right)+\ln (2 k) \cdot 2 \text { (eg FiSk }
\end{aligned}
$$

$$
\begin{aligned}
& \left.f(z)=h\left(\frac{d}{2}\right)+\frac{d}{2} \cdot \ln (2)-h(\alpha)+2\left(\frac{d}{2 k}-\sum \bar{B}_{i}\right) \ln \left(\beta_{k}\right)\right)+\sum_{i} \overline{\bar{B}_{i}} \cdot \ln \left(X_{i}\right)+ \\
& +h\left(\sum(k-i) \bar{B}_{i}\right)+h\left(\frac{\alpha}{2}-\sum(k-1) \bar{\pi}_{i}\right) \\
& \begin{aligned}
& +h\left(\sum_{i}(k-i) \bar{B}_{i}\right)+h\left(\frac{d}{2}-\sum(k-i) \overline{R_{i}}\right) \\
+ & \sum i h\left(\bar{B}_{i}\right)-2 \cdot h\left(\frac{d}{2 k}-\sum \bar{B}_{i}\right)-h\left(1-\frac{d}{k}+\sum \overline{B_{i}}\right) \quad S=\frac{(d))^{2}}{\left(\frac{d}{2 k}\right)^{2}}
\end{aligned} \\
& f(\text { max })=h\left(\frac{d}{2}\right)+\frac{d}{2} \ln (2)-\ln (d)+2\left(\frac{d}{2 k}-\left(\frac{\lambda}{2 k}\right)^{2}\right) \ln \left(\binom{d}{k}\right)+\sum_{i} \bar{B}_{i} \ln \left(B_{i} S\right)+ \\
& \left.+\frac{d}{2} \ln \left(\frac{d}{2}\right)+\sum-B_{i} \ln \left(B_{i}\right)^{-2}\left(\frac{d}{2 k}-\frac{d}{2 k}\right)^{2}\right) \ln \left(\frac{d}{2 k}-\left(\frac{d}{2 k} k^{2}\right)-\left(\frac{2 k-k}{2 k}\right)^{2} 2 \ln \left(\frac{2 k-d}{2 k}\right)\right.
\end{aligned}
$$

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$ works for some d, k. Computing $\mathbb{E}\left[Y^{2}\right]$ is more tricky.

Guess $\mathbb{E}\left[Y^{2}\right] \sim \mathbb{E}[Y]^{2} \cdot \exp \left(\sum_{i} \lambda_{i} \delta_{i}^{2}\right)$ works for some d, k. Computing $\mathbb{E}\left[Y^{2}\right]$ is more tricky.

Theorem (Delcourt, L., Postle)

A random d-regular graph on n vertices has orientation with outdegrees in $\{0, k\}$ a.a.s. (if $k \mid d n / 2, k>d / 2$) for

- small d and $k<\frac{d}{2}+2 \log d-c$ (with machine d up to 50)
- larger d and k up to $\frac{d}{2}+\Omega(\log d)$?

Theorem (Delcourt, L., Postle)

A graph in $\mathcal{G}_{n, d}$ has orientation with outdegrees in $\{0, k\}$ a.a.s. for

- small d and $k<\frac{d}{2}+2 \log d-c$ (with machine d up to 50)
- larger d and k up to $\frac{d}{2}+\Omega(\log d)$?

What about orientations with outdegrees in $\left\{k_{1}, k_{2}\right\}$?

Theorem (Delcourt, L., Postle)

A graph in $\mathcal{G}_{n, d}$ has orientation with outdegrees in $\{0, k\}$ a.a.s. for

- small d and $k<\frac{d}{2}+2 \log d-c$ (with machine d up to 50)
- larger d and k up to $\frac{d}{2}+\Omega(\log d)$?

What about orientations with outdegrees in $\left\{k_{1}, k_{2}\right\}$?

Theorem (Delcourt, L., Postle)

A graph in $\mathcal{G}_{n, d}$ has orientation with outdegrees in $\{0, k\}$ a.a.s. for

- small d and $k<\frac{d}{2}+2 \log d-c$ (with machine d up to 50)
- larger d and k up to $\frac{d}{2}+\Omega(\log d)$?

What about orientations with outdegrees in $\left\{k_{1}, k_{2}\right\}$?

$$
\mathcal{G}_{n, d} \oplus \mathcal{H}_{n} \approx \mathcal{G}_{n, d+2} \text { if } d \geq 1 \quad \text { (a.a.s. holds in both) }
$$

$\{0, k\}$ in $\mathcal{G}_{n, d}$ gives $\{1, k+1\}$ in $\mathcal{G}_{n, d+2}$

Theorem (Delcourt, L., Postle)

A graph in $\mathcal{G}_{n, d}$ has orientation with outdegrees in $\{0, k\}$ a.a.s. for

- small d and $k<\frac{d}{2}+2 \log d-c$ (with machine d up to 50)
- larger d and k up to $\frac{d}{2}+\Omega(\log d)$?

What about orientations with outdegrees in $\left\{k_{1}, k_{2}\right\}$?

$$
\mathcal{G}_{n, d} \oplus \mathcal{H}_{n} \approx \mathcal{G}_{n, d+2} \text { if } d \geq 1 \quad \text { (a.a.s. holds in both) }
$$

$\{0, k\}$ in $\mathcal{G}_{n, d}$ gives $\{j, k+j\}$ in $\mathcal{G}_{n, d+2 j}$

Conjecture (JaEger 1988; Equivalent form)

Every $4 p$-edge connected $(4 p+1)$-regular graph has an edge orientation in which every outdegree is either $3 p+1$ or p.

Conjecture (JaEger 1988; Dual Planar version)
Every planar graph of girth $\geq 4 p$ has a homomorphism to $C_{2 p+1}$

Conjecture (JaEger 1988; EQUivalent form)

Every $4 p$-edge connected ($4 p+1$)-regular graph has an edge orientation in which every outdegree is either $3 p+1$ or p.

Conjecture (JaEger 1988; Dual planar version)
Every planar graph of girth $\geq 4 p$ has a homomorphism to $C_{2 p+1}$
For $p=1$:
Theorem (Grötzsch 1959)
Every triangle-free planar graph is 3-colorable.

Conjecture (Jaeger 1988; Equivalent form)
Every $4 p$-edge connected $(4 p+1)$-regular graph has an edge orientation in which every outdegree is either $3 p+1$ or p.

Conjecture (JaEger 1988; Dual planar version)
Every planar graph of girth $\geq 4 p$ has a homomorphism to $C_{2 p+1}$
For $p=1$:
Theorem (Grötzsch 1959)
Every triangle-free planar graph is 3-colorable.
Theorem (Borodin, Kim, 能Kostochka, West '04)
Every planar graph of girth $\geq \frac{20 p-2}{3}$ has a homomorphism to $C_{2 p+1}$.

