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Ramsey Numbers Flag Algebra Application Results Results Example

Definition
R(G1,G2, . . . ,Gk) is the smallest integer n such that any k-edge
coloring of Kn contains a copy of Gi in color i for some 1 ≤ i ≤ k .

R(K3,K3) > 5 R(K3,K3) ≤ 6

2
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Ramsey Numbers Flag Algebra Application Results Results Example

Theorem (Ramsey 1930)

R(Km,Kn) is finite.

R(G1, . . . ,Gk) is finite

Questions:

• study how R(G1, . . . ,Gk) grows if G1, . . . ,Gk grow (large)

• study R(G1, . . . ,Gk) for fixed G1, . . . ,Gk (small)

Radziszowski - Small Ramsey Numbers
Electronic Journal of Combinatorics - Survey

3
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Ramsey Numbers Flag Algebra Application Results Results Example

Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic
Logic 72 (2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in
2013

Example (Goodman, Razborov)

If the density of edges is at least ρ > 0, what is the minimum
density of triangles?

• designed to attack extremal problems.

• works well if constraints as well as desired value can be computed
by checking small subgraphs (or average over small subgraphs)

• the results are in limit (very large graphs)

4
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Applications (incomplete list)

Authors Year Application/Result
Razborov 2008 edge density vs. triangle density
Hladký, Krá

,
l, Norin 2009 Bounds for the Caccetta-Haggvist conjecture

Razborov 2010 3-hypergraphs with forbidden 4-vertex configurations
Hatami, Hladký,Krá

,
l,Norine,Razborov / Grzesik 2011 Erdős Pentagon problem

Hatami, Hladký, Krá
,
l, Norin, Razborov 2012 Non-Three-Colourable Common Graphs Exist

Balogh, Hu, Lidický, Liu / Baber 2012 4-cycles in hypercubes
Reiher 2012 edge density vs. clique density
Das, Huang, Ma, Naves, Sudakov 2013 minimum number of k-cliques
Baber, Talbot 2013 A Solution to the 2/3 Conjecture
Falgas-Ravry, Vaughan 2013 Turán density of many 3-graphs
Cummings, Krá

,
l, Pfender, Sperfeld, Treglown, Young 2013 Monochromatic triangles in 3-edge colored graphs

Kramer, Martin, Young 2013 Boolean lattice
Balogh, Hu, Lidický, Pikhurko, Udvari, Volec 2013 Monotone permutations
Norin, Zwols 2013 New bound on Zarankiewicz’s conjecture
Huang, Linial, Naves, Peled, Sudakov 2014 3-local profiles of graphs
Balogh, Hu, Lidický, Pfender, Volec, Young 2014 Rainbow triangles in 3-edge colored graphs
Balogh, Hu, Lidický, Pfender 2014 Induced density of C5
Goaoc, Hubard, de Verclos, Séréni, Volec 2014 Order type and density of convex subsets
Coregliano, Razborov 2015 Tournaments

Applications to graphs, oriented graphs, hypergraphs, hypercubes,
permutations, crossing number of graphs, order types, geometry,
. . . Razborov: Flag Algebra: an Interim Report
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Inspiration

Theorem (Cummings, Krá ,l, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at
least 1

25

(n
3

)
+ o(n3) monochromatic triangles.

+ + ≥ 1

25
+ o(1)

n
5

n
5

n
5

n
5

n
5

≥ 1

25
subject to = = 0

≥ 1
5

6



Ramsey Numbers Flag Algebra Application Results Results Example

Inspiration
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Example

I1

I2

I3

I4

I5

What is number of non-edges in a blow-up?

5∑
i=1

(
|Ii |
2

)
≥

5∑
i=1

(
n/5

2

)
≥ 5

(
n/5

2

)
≈ 1

5

(
n

2

)

Observation (Key observation)

If a Ramsey graph G has k vertices, then the density of non-edges
in any blow-up of G is at least 1

k +o(1).
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Outline of idea

Observation (Key observation)

If a Ramsey graph G has k vertices, then the density of non-edges
in any blow-up of G is at least 1

k +o(1).

• Let G be 2-edge-colored complete graphs with no monochromatic
triangle.

• Consider all blow-ups B of graphs in G
• ∀B ∈ B, density of non-edges in B is at least 1

k = 1
5 .

Observation
If the density of non-edges ρ is > 1

k+1 over all B ∈ B, then a
Ramsey graph has as most k vertices.

If one can prove ρ > 1
6 , then there is no Ramsey graph on 6

vertices.
Notice that any lower bound on ρ in ( 1

k+1 ,
1
k ] gives that any

Ramsey graph has at most k vertices.

R(G1, . . . ,Gn) ≤ 1 + 1/ρ

8
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Blow-ups in Flag Algebra

How can we characterize blow-ups B

of graphs with no , ?

I1

I2

I3

I4

I5

Forbidden subgraphs :

, , , ,

minimize

subject to = = = = = 0

Flag Algebra question! Easy to modify.
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New upper bounds (so far)

Problem Lower New upper Old upper

R(K−
4 ,K

−
8 ) 29 32 38

R(K−
4 ,K

−
9 ) 31 46 53

R(K4,K
−
7 ) 37 49 52

R(K−
5 ,K

−
6 ) 31 38 39

R(K−
5 ,K

−
7 ) 40 65 66

R(K5,K
−
6 ) 43 62 66

R(K5,K
−
7 ) 58 102 110

R(K−
6 ,K

−
7 ) 59 124 135

R(K7,K
−
4 ) 28 29 30

R(K8,K
−
4 ) 29 39 42

R(K8,C5) 29 29 33
R(K9,C5) 33 36 ??
R(K9,C6) 41 41 ??
R(K9,C7) 49 58 ??

R(K2,2,2,K2,2,2) 30 32 60?

10
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Problem Lower New upper Old upper

R(K3,4,K2,5) 20 21
R(K3,4,K3,3) 20 25
R(K3,4,K3,4) 25 30

R(K3,5,K1,6) 17 17
R(K3,5,K2,4) 16 20
R(K3,5,K2,5) 21 23
R(K3,5,K3,3) 24 28
R(K3,5,K3,4) 29 33
R(K3,5,K3,5) 30 33 38
R(K4,4,K4,4) 30 49 62

R(W7,W4) 21
R(W7,W5) 16
R(W7,W6) 19

R(B4,B5) 17 19 20
R(B3,B6) 17 19 22
R(B5,B6) 22 24 26

11
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Problem Lower New upper Old upper

R(W5,K6) 33 36
R(W5,K7) 43 50

R(Q3,Q3) 13 13 14

R(K3,C5,C5) 17 17 21?
R(K3,C4,C4,C4) 24 29 ??
R(K4,C4,C4) 52 71 72

R(K−
4 ,K

−
4 ,K

−
4 ) 28 28 30

R(K3,K
−
4 ,K

−
4 ) 21 23 27

R(K4,K
−
4 ,K

−
4 ) 33 47 59

R(K4,K4,K
−
4 ) 55 104 113

R(K3,K4,K
−
4 ) 30 40 41

R(K−
4 ,K

−
5 ; 3) 12 12 ??

R(K−
4 ,K5; 3) 14 16 ??

R(K−
4 ,K

−
4 ,K

−
4 ; 3) 13 14 16

12
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R(K−4 ,K−5 ; 3) = 12

• No lower bound better than 10 was known.

• Flag Algebra computations on 8 vertices give
R3(K−

4 ,K
−
5 ) ≤ 12.000004

...and suggest that a Ramsey graph on 11 vertices can only have
subgraphs on 8 vertices from a very short list.

• Generating all graphs from this short list is not difficult, and the
(unique?) Ramsey graph can be found.

13
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Example of Computation

Lemma
R(K3,K3) ≤ 6

Our goal is to show:

>
1

6
subject to = = = = = 0

We show perhaps the most complicated proof of the lemma!

14
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Our goal is to show:

>
1

6
subject to = = = = = 0

Observe that and can be swapped. Change to a color-blind

setting. is a monochromatic triangle (red or blue).

Our new goal is to show:

>
1

6
subject to = = = 0

Color-blind setting will allow us to fit the computation on these
slides.
Also important for bigger applications.

15
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Our goal is to show:

>
1

6
subject to = = = 0

Basic equations:

+ + + + + + = 1

=
1

6

(
1 + 0 + 0 + 1 + 3 + 2 + 6

)
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We use flags with type σ1 of size two

F =
(

, ,
)T

.

For a positive semidefinite matrix M

0 ≤
r
FTMF

z

σ1

=

u

vFT

 0.0744 −0.0223 −0.0520
−0.0223 0.0238 −0.0014
−0.0520 −0.0014 0.0536

F

}

~

σ1

=− 0.0116 − 0.3568 − 0.1784 − 0.0112

+ 0.3216 + 0 + 0 .

r
×

z

σ1

=

s
1

2
+

1

2

{

σ1

=
1

2

(
8

12
+

4

12

)
.
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=
1

6

(
1 + 0 + 0 + 1 + 3 + 2 + 6

)

0 ≥ 0.0116 + 0.3568 + 0.1784 + 0.0112

−0.3216 + 0 + 0 .

We sum the equations and obtain

≥ 0.1782 + 0.3568 + 0.1784 + 0.1778

+ 0.1784 + 0.33 +

≥ 0.17

(
+ + + + + +

)
> 0.17 >

1

6
.
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Ramsey Numbers Flag Algebra Application Results Results Example

We proved

>
1

6
subject to = = = = = 0

Hence Ramsey graph for and has less than 6 vertices.

And therefore R(K3,K3) ≤ 6.

Note that the matrix M was not unique or tight (easy rounding).

(bound ≥ 1
5 is also obtainable)

Thank you for your attention!
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