Results

Results

Example

SMALL RAMSEY NUMBERS

Bernard Lidický Florian Pfender

Iowa State University University of Colorado Denver

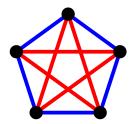
2017 MMMM Combinatorics Graduate Students Workshop

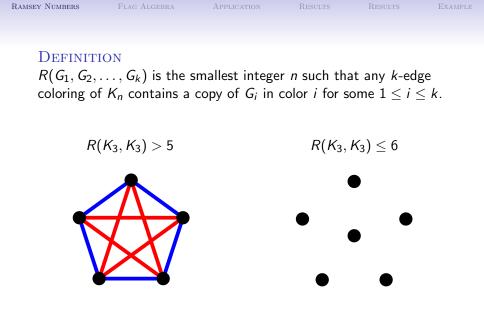
April 28–30, 2017 University of Minnesota Duluth

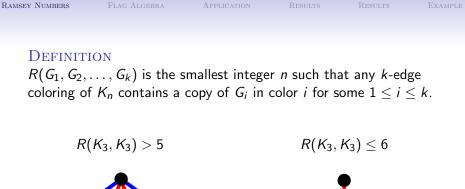
http://www.d.umn.edu/~dfroncek/MMMM_2017/MMMM_2017.pdf

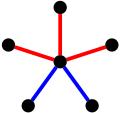
coloring of K_n contains a copy of G_i in color *i* for some $1 \le i \le k$.

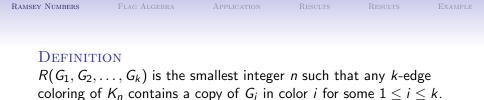
$$R(K_3, K_3) > 5$$
 $R(K_3, K_3) \le 6$

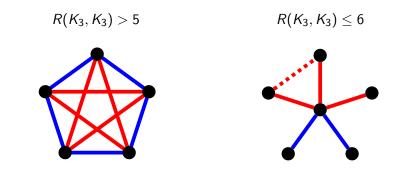


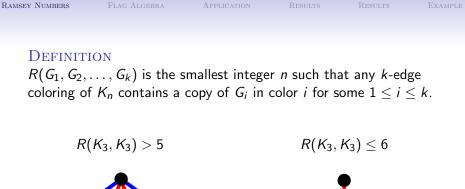


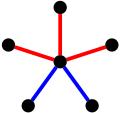


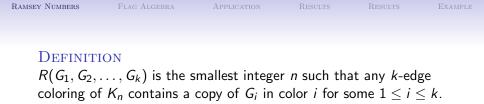


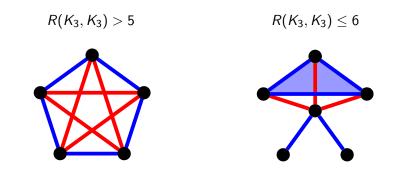












RAMSEY NUMBERS

FLAG ALGEBRA

Applicat

Results

Results

EXAMPLE

THEOREM (RAMSEY 1930) $R(K_m, K_n)$ is finite.

RAMSEY	Numbers
--------	---------

FLAG ALGEBRA

Applicati

Result

Res

Examp

THEOREM (RAMSEY 1930) $R(K_m, K_n)$ is finite.

 $R(G_1, \ldots, G_k)$ is finite

Questions:

- study how $R(G_1, \ldots, G_k)$ grows if G_1, \ldots, G_k grow (large)
- study $R(G_1, \ldots, G_k)$ for fixed G_1, \ldots, G_k (small)

Ramsey 1	Numbers
----------	---------

THEOREM (RAMSEY 1930) $R(K_m, K_n)$ is finite.

 $R(G_1, \ldots, G_k)$ is finite

Questions:

- study how $R(G_1, \ldots, G_k)$ grows if G_1, \ldots, G_k grow (large)
- study $R(G_1, \ldots, G_k)$ for fixed G_1, \ldots, G_k (small)

Radziszowski - Small Ramsey Numbers Electronic Journal of Combinatorics - Survey

Results

Resul

Example

FLAG ALGEBRAS

Seminal paper: Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize by AMS for Razborov in 2013

Resu

SULTS

SULTS

EXAMPLE

FLAG ALGEBRAS

Seminal paper: Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize by AMS for Razborov in 2013

EXAMPLE (GOODMAN, RAZBOROV)

If the density of edges is at least $\rho > 0$, what is the minimum density of triangles?

- designed to attack extremal problems.
- works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs)
- the results are in limit (very large graphs)

SULTS

EXAMPLE

APPLICATIONS (INCOMPLETE LIST)

Authors	Year	Application/Result
Razborov	2008	edge density vs. triangle density
Hladký, Kráľ, Norin	2009	Bounds for the Caccetta-Haggvist conjecture
Razborov	2010	3-hypergraphs with forbidden 4-vertex configurations
Hatami, Hladký,Kráľ,Norine,Razborov / Grzesik	2011	Erdős Pentagon problem
Hatami, Hladký, Kráľ, Norin, Razborov	2012	Non-Three-Colourable Common Graphs Exist
Balogh, Hu, Lidický, Liu / Baber	2012	4-cycles in hypercubes
Reiher	2012	edge density vs. clique density
Das, Huang, Ma, Naves, Sudakov	2013	minimum number of k-cliques
Baber, Talbot	2013	A Solution to the 2/3 Conjecture
Falgas-Ravry, Vaughan	2013	Turán density of many 3-graphs
Cummings, Kráľ, Pfender, Sperfeld, Treglown, Young	2013	Monochromatic triangles in 3-edge colored graphs
Kramer, Martin, Young	2013	Boolean lattice
Balogh, Hu, Lidický, Pikhurko, Udvari, Volec	2013	Monotone permutations
Norin, Zwols	2013	New bound on Zarankiewicz's conjecture
Huang, Linial, Naves, Peled, Sudakov	2014	3-local profiles of graphs
Balogh, Hu, Lidický, Pfender, Volec, Young	2014	Rainbow triangles in 3-edge colored graphs
Balogh, Hu, Lidický, Pfender	2014	Induced density of C_5
Goaoc, Hubard, de Verclos, Séréni, Volec	2014	Order type and density of convex subsets
Coregliano, Razborov	2015	Tournaments

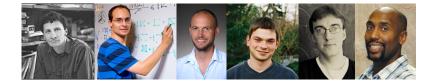
Applications to graphs, oriented graphs, hypergraphs, hypercubes, permutations, crossing number of graphs, order types, geometry,

... Razborov: Flag Algebra: an Interim Report

THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} {n \choose 3} + o(n^3)$ monochromatic triangles.

$$\mathbf{V} + \mathbf{V} + \mathbf{V} \ge \frac{1}{25} + o(1)$$

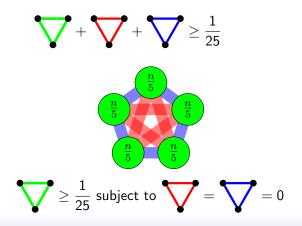


THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25}\binom{n}{3} + o(n^3)$ monochromatic triangles.

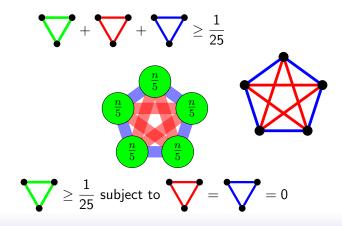
THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} {n \choose 3} + o(n^3)$ monochromatic triangles.



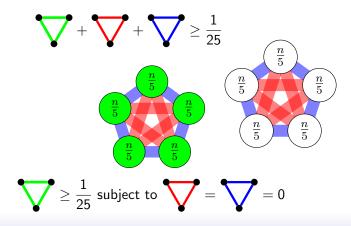
THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.



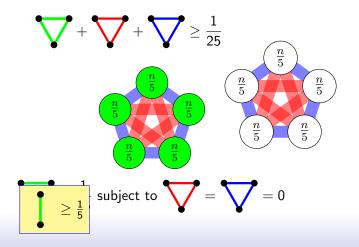
THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

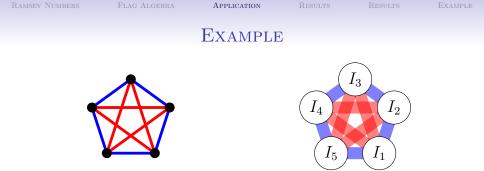
In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.



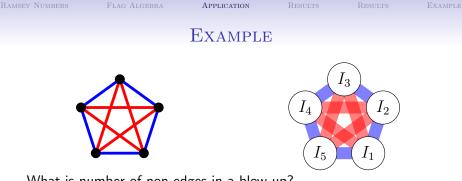
THEOREM (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

In every 3-edge-colored complete graph on n vertices, there are at least $\frac{1}{25} \binom{n}{3} + o(n^3)$ monochromatic triangles.



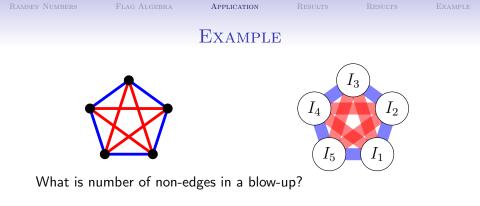


What is number of non-edges in a blow-up?



What is number of non-edges in a blow-up?

$$\sum_{i=1}^{5} \binom{|I_i|}{2} \ge \sum_{i=1}^{5} \binom{n/5}{2} \ge 5\binom{n/5}{2} \approx \frac{1}{5}\binom{n}{2}$$



$$\sum_{i=1}^{5} \binom{|I_i|}{2} \ge \sum_{i=1}^{5} \binom{n/5}{2} \ge 5\binom{n/5}{2} \approx \frac{1}{5}\binom{n}{2}$$

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k}+o(1)$.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let ${\mathcal G}$ be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups ${\mathcal B}$ of graphs in ${\mathcal G}$
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k}+o(1)$.

- Let ${\mathcal G}$ be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups ${\mathcal B}$ of graphs in ${\mathcal G}$
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

OBSERVATION

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then a Ramsey graph has as most k vertices.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let ${\mathcal G}$ be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups ${\mathcal B}$ of graphs in ${\mathcal G}$
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

OBSERVATION

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then a Ramsey graph has as most k vertices.

If one can prove $\rho>\frac{1}{6},$ then there is no Ramsey graph on 6 vertices.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let ${\mathcal G}$ be 2-edge-colored complete graphs with no monochromatic triangle.
- Consider all blow-ups ${\mathcal B}$ of graphs in ${\mathcal G}$
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

OBSERVATION

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then a Ramsey graph has as most k vertices.

If one can prove $\rho>\frac{1}{6},$ then there is no Ramsey graph on 6 vertices.

Notice that any lower bound on ρ in $(\frac{1}{k+1}, \frac{1}{k}]$ gives that any Ramsey graph has at most k vertices.

OBSERVATION (KEY OBSERVATION)

If a Ramsey graph G has k vertices, then the density of non-edges in any blow-up of G is at least $\frac{1}{k} + o(1)$.

- Let G be 2-edge-colored comp triangle.
- Consider all blow-ups ${\mathcal B}$ of graphs in ${\mathcal G}$
- $\forall B \in \mathcal{B}$, density of non-edges in B is at least $\frac{1}{k} = \frac{1}{5}$.

OBSERVATION

If the density of non-edges ρ is $> \frac{1}{k+1}$ over all $B \in \mathcal{B}$, then a Ramsey graph has as most k vertices.

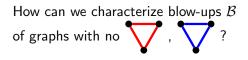
If one can prove $\rho>\frac{1}{6},$ then there is no Ramsey graph on 6 vertices.

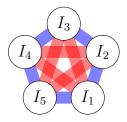
Notice that any lower bound on ρ in $(\frac{1}{k+1}, \frac{1}{k}]$ gives that any Ramsey graph has at most k vertices.

LAG ALGEBRA

EXAMPLE

BLOW-UPS IN FLAG ALGEBRA

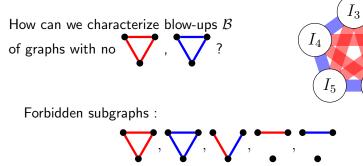


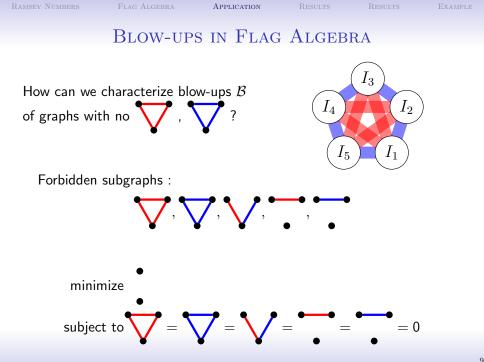


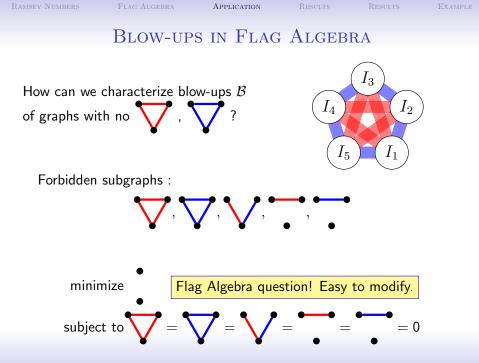
 I_2

 I_1

BLOW-UPS IN FLAG ALGEBRA







EXAMPLE

NEW UPPER BOUNDS (SO FAR)

Problem	Lower	New upper	Old upper
$R(K_4^-, K_8^-)$	29	32	38
$R(K_{4}^{-}, K_{9}^{-})$	31	46	53
$R(K_4, K_7^{-})$	37	49	52
$R(K_{5}^{-}, K_{6}^{-})$	31	38	39
$R(K_{5}^{-}, K_{7}^{-})$	40	65	66
$R(K_{5}, K_{6}^{-})$	43	62	66
$R(K_5, K_7^-)$	58	102	110
$R(K_{6}^{-}, K_{7}^{-})$	59	124	135
$R(K_7, K_4^-)$	28	29	30
$R(K_8, K_4^-)$	29	39	42
$R(K_8, C_5)$	29	29	33
$R(K_9, C_5)$	33	36	??
$R(K_9, C_6)$	41	41	??
$R(K_9, C_7)$	49	58	??
$R(K_{2,2,2}, K_{2,2,2})$	30	32	60?

Results

EXAMPLE

Problem	Lower	New upper	Old upper
$R(K_{3,4}, K_{2,5})$		20	21
$R(K_{3,4}, K_{3,3})$		20	25
$R(K_{3,4}, K_{3,4})$		25	30
$R(K_{3,5}, K_{1,6})$	17	17	
$R(K_{3,5}, K_{2,4})$	16	20	
$R(K_{3,5}, K_{2,5})$	21	23	
$R(K_{3,5}, K_{3,3})$		24	28
$R(K_{3,5}, K_{3,4})$		29	33
$R(K_{3,5}, K_{3,5})$	30	33	38
$R(K_{4,4}, K_{4,4})$	30	49	62
$R(W_7, W_4)$		21	
$R(W_7, W_5)$		16	
$R(W_7, W_6)$		19	
$R(B_4, B_5)$	17	19	20
$R(B_3, B_6)$	17	19	22
$R(B_5, B_6)$	22	24	26

Results

Example

Problem	Lower	New upper	Old upper
$R(W_5, K_6)$	33	36	
$R(W_5, K_7)$	43	50	
$R(Q_3, Q_3)$	13	13	14
$R(K_3, C_5, C_5)$	17	17	21?
$R(K_3, C_4, C_4, C_4)$	24	29	??
$R(K_4, C_4, C_4)$	52	71	72
$R(K_4^-, K_4^-, K_4^-)$	28	28	30
$R(K_3, K_4^-, K_4^-)$	21	23	27
$R(K_4, K_4^-, K_4^-)$	33	47	59
$R(K_4, K_4, K_4^-)$	55	104	113
$R(K_3, K_4, K_4^-)$	30	40	41
$R(K_4^-, K_5^-; 3)$	12	12	??
$R(K_4^-, K_5; 3)$	14	16	??
$R(K_4^-, K_4^-, K_4^-; 3)$	13	14	16

Example

$R(K_4^-, K_5^-; 3) = 12$

• No lower bound better than 10 was known.

$R(K_4^-, K_5^-; 3) = 12$

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give $R_3(K_4^-,K_5^-) \leq 12.000004$

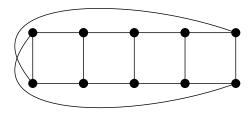
$R(K_4^-, K_5^-; 3) = 12$

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give $R_3(K_4^-,K_5^-) \le 12.000004$

...and suggest that a Ramsey graph on 11 vertices can only have subgraphs on 8 vertices from a very short list.

$R(K_4^-, K_5^-; 3) = 12$

- No lower bound better than 10 was known.
- Flag Algebra computations on 8 vertices give $R_3(K_4^-, K_5^-) \leq 12.000004$...and suggest that a Ramsey graph on 11 vertices can only have subgraphs on 8 vertices from a very short list.
- Generating all graphs from this short list is not difficult, and the (unique?) Ramsey graph can be found.



RESULTS

Example

EXAMPLE OF COMPUTATION

 $\frac{\text{LEMMA}}{R(K_3, K_3)} \le 6$

RESULTS

EXAMPLE

EXAMPLE OF COMPUTATION

 $\frac{\text{LEMMA}}{R(K_3, K_3)} \le 6$

Our goal is to show:

$$> \frac{1}{6}$$
 subject to $\checkmark = \checkmark = \checkmark = \checkmark = = 0$

EXAMPLE OF COMPUTATION

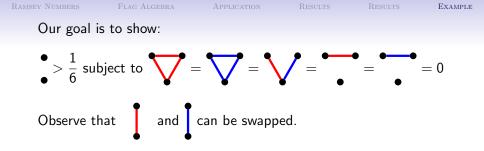
 $\frac{\text{LEMMA}}{R(K_3, K_3)} \le 6$

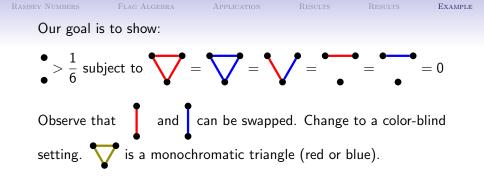
Our goal is to show:

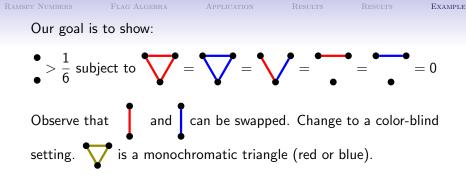
We show perhaps the most complicated proof of the lemma!

Our goal is to show:

• >
$$\frac{1}{6}$$
 subject to • = • = • = 0

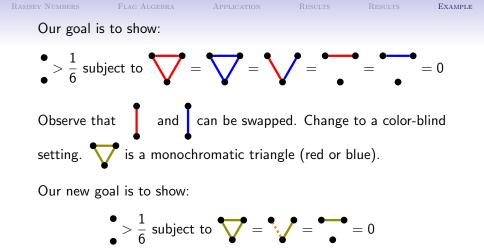






Our new goal is to show:

• >
$$\frac{1}{6}$$
 subject to • = • = 0



Color-blind setting will allow us to fit the computation on these slides.

Also important for bigger applications.

Our goal is to show:

• >
$$\frac{1}{6}$$
 subject to • = • = 0

Our goal is to show:

• >
$$\frac{1}{6}$$
 subject to • = • = 0

Basic equations:

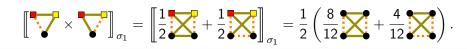


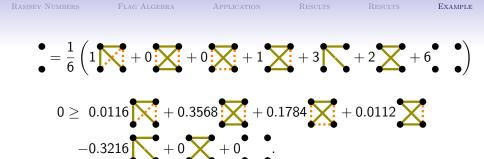
We use flags with type σ_1 of size two

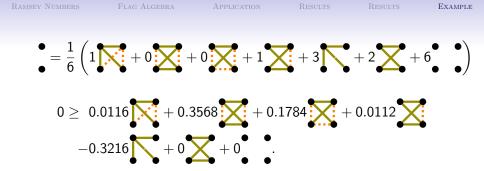
$$\mathsf{F} = \left(\checkmark, \checkmark, \checkmark\right)^T.$$

For a positive semidefinite matrix M

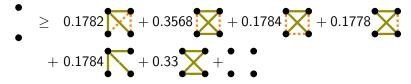
$$0 \leq \left[\!\left[F^{T} M F\right]\!\right]_{\sigma_{1}} = \left[\!\left[F^{T} \left(\begin{array}{ccc} 0.0744 & -0.0223 & -0.0520 \\ -0.0223 & 0.0238 & -0.0014 \\ -0.0520 & -0.0014 & 0.0536 \end{array}\right) F\right]\!\right]_{\sigma_{1}} \\ = -0.0116 \left[1 - 0.3568 \left[1 - 0.1784 \left[1 - 0.0112\right]\right]_{\sigma_{1}} \\ + 0.3216 \left[1 + 0\right]_{\sigma_{1}} + 0 \left[1 - 0.1784\right]_{\sigma_{1}} - 0.0112 \left[1 - 0.0112\right]_{\sigma_{1}} \right]_{\sigma_{1}} \\ = -0.0116 \left[1 - 0.0112\right]_{\sigma_{1}} + 0 \left[1 - 0.011$$

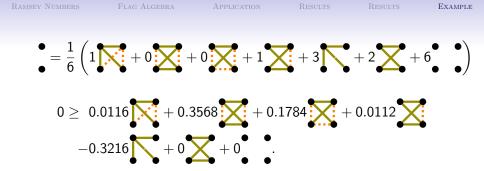




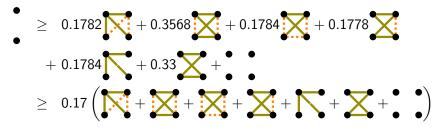


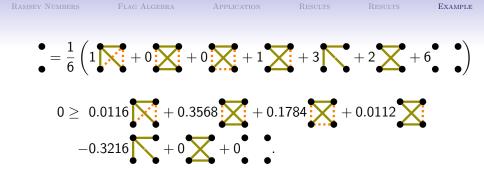
We sum the equations and obtain



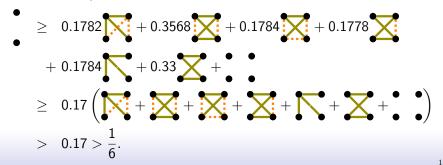


We sum the equations and obtain

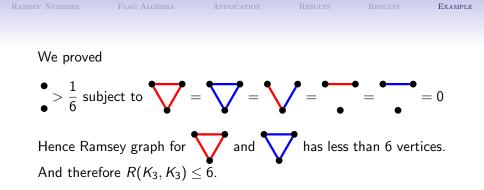


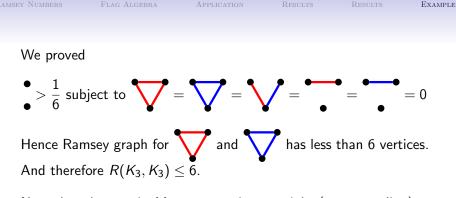


We sum the equations and obtain



Ramsey Numbers	Flag Algebra	Application	Results	Results	Example
We proved					
$igstarrow > rac{1}{6}$ subj	ect to 💙 =	= 💙 = 🔪		• = • •	= 0





Note that the matrix M was not unique or tight (easy rounding). (bound $\ge \frac{1}{5}$ is also obtainable)



Note that the matrix M was not unique or tight (easy rounding). (bound $\stackrel{\bullet}{=} \geq \frac{1}{5}$ is also obtainable)

Thank you for your attention!