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Polychromatic Coloring

Let G and H be graphs and C a set of colors.
Let ϕ : E (G )→ C (not necessarily proper edge-coloring)

ϕ is an H-polychromatic coloring of G if every subgraph of G
isomorphic to H contains all colors in C .

Example H = K3, G = K4, C = {red , blue}.
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H-polychromatic Number
ϕ is a H-polychromatic coloring of G with respect to H if every
subgraph of G isomorphic to H contains all colors in C .

Easier to find ϕ with fewer colors.

H-polychromatic number of G is the maximum number of colors k
such that there exists a polychromatic coloring of G with respect
to H using k colors. Notation polyH(G ) = k

Example
polyK3

(K4) = 3
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Motivation for H-polychromatic Number
Let Qd be a d-dimensional hypercube.

Problem
What is the lergest X ⊆ E (Qn) such that Qn[X ] is Qd -free?
ex(Qn,Qd)?

Example for Q2 in Q3.

Any color class of any Qd -polychromatic coloring of Qn gives a
lower bound on |X |.

e(Qn)(1− 1/polyQd
(Qn)) ≤ ex(Qn,Qd)
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Known Results

Theorem (Alon, Krech, Szabó 2007)

(
d + 1

2

)
≥ polyQd

(Qn) ≥

{
(d+1)2

4 if d is odd
d(d+2)

4 if d is even

Theorem (Offner 2008)

polyQd
(Qn) =

{
(d+1)2

4 if d is odd
d(d+2)

4 if d is even
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Anti-Ramsey

Edge coloring of H is rainbow if no two edges of H receive the
same color.
Edge coloring of G is H-anti-ramsey if NO copy of H in G is
rainbow.
ar(G ,H) is the largest number of colors used in an H-anti-Ramsey
coloring of G .

ar(G ,H) ≤ ex(G ,H)

ar(G ,H) ≥
(

1− 2

polyH(G )

)
e(G )
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Polychromatic Coloring of Integers

Let S ⊂ Z be finite.
Coloring of Z is S-polychromatic if every translation of S contains
all colors.

Example: S = {0, 1, 4, 5}

1 1 1 1 2 3 2 3 1 1 1

All about this during the next talk in this session by
John Goldwasser.
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Let S ⊂ Z be finite.
Coloring of Z is S-polychromatic if every translation of S contains
all colors.

Example: S = {0, 1, 4, 5}

1 1 1 1 2 3 2 3 1 1 12 3 1 1

All about this during the next talk in this session by
John Goldwasser.

7



Polychromatic Coloring of Integers

Let S ⊂ Z be finite.
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Our Results for This Talk

Let Fk be a k-factor and HC be a Hamiltonian Cycle.

Theorem (AGHLMOTY ’18)

If n is an even positive integer, then polyF1
(Kn) = blog2 nc.

Theorem (AGHLMOTY ’18)

There exists a constant c such that

blog2 2(n + 1)c ≤ polyF2
(Kn) ≤ polyHC (Kn) ≤ log2 n + c .

Exact solution for polyF2
(Kn) and polyHC (Kn) by G&H.
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Constructions For Lower Bounds

blog2 nc ≤ polyF1
(Kn)

blog2 2(n + 1)c ≤ polyF2
(Kn)
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Upper bound for polyF1
(Kn)

• show there is an optimal coloring that has ordering of vertices
such that for each fixed vertex v “all edges going to the right
have the same color”.

• for ever vertex define inherited color, counting argument using
majority.
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Counting first for polyF1
(Kn)

for vertex define inherited color

Let Mc be vertices colored color c ∈ {1, 2, . . .}.
Feature: ∀c exists ic ∈ [n] such that |Mc ∩ {v1, . . . , vi}| > i/2.

Assume that i1 < i2 < . . .. By induction |Mc | ≥ 2c − 1.∑
c

|Mc | ≤ n =⇒ c ≤ blog2 nc
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Ordering the vertices

Take largest ordered initial segment,

v has maximum
monochromatic degree (red) in the rest, exists not red uv , yiwi

cannot be blue, all uwi are blue and wi is not in the ordered
segment,
u has higher mono degree than v .
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Thank you
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