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Motivation

Theorem (4CT - Appel, Haken (1976))

Every planar graph is 4-colorable.

Also Robertson, Sanders, Seymour, Thomas (1997)

4CT implies α(G ) ≥ n/4
Show without 4CT α(G ) ≥ n/4 (Erdős-Vizing conj.)

Assign weights to V (G ). 4CT implies independent set with ≥ 1/4 of the weight.
Is it true without 4CT?

Without 4CT α(G ) ≥ 3n
13 ≈ 0.23076 (Cranston and Rabern (2016))

Weighted independent set leads to fractional coloring.
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Fractional coloring using linear programming

I(G ) are all independent sets

fractional

coloring

L

P


minimize

∑
I∈I(G) x(I )

subject to
∑

I3v x(I ) = 1 ∀v
x ∈ {0, 1}I(G)

x ∈ [0, 1]I(G)

v1

v2 v3

v4

v5

|I(C5)| = 11

• x(1, 3) = x(2, 4) = x(5) = 1 χ(G ) = 3

• x(1, 3) = x(2, 4) = x(3, 5) = x(1, 4) = x(2, 5) = 1/2 χf (G ) = 2.5

• χ(G ) ≥ χf (G ) ≥ |V (G )|/α(G )
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Equivalent definitions for fractional coloring

G is fractionally k-colorable if exists ϕ

• ϕ(v) ⊂ [0, k) with |ϕ(v)| = 1

• ∃ ab = k , ϕ(v) ⊂ {1, . . . , a}, |ϕ(v)| = b

• ϕ(v) ⊂ [0, a) with |ϕ(v)| = b, a
b = k

and ϕ(u) ∩ ϕ(v) = ∅ for uv ∈ E (G )

v1

v2 v3

v4

v5

χf (G ) = 5
2

Theorem (Hilton, Rado, Scott (1973))

χf (G ) < 5 for any planar G.
(But no c < 5 with χf (G ) < c for all planar graphs G.)

Theorem (Cranston and Rabern (2017))

Planar graphs are 9
2 -colorable. (Without using 4CT.)

0 5
2

1

0 5
2

4
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Planar triangle-free graphs

α = 9 = 3
8 · 24

Theorem (Grötzsch (1959))

Every triangle-free planar graph G is 3-colorable.

α(G ) ≥ n/3

α(G ) ≥ n/3 + 1 Steinberg and Tovey (1993)
∃G : α(G ) ≤ n/3 + 1 (and ∆(G ) = 4) Jones (1990)

Question (Albertson, Bollobás, Tucker (1976))

Find s ∈
(
1
3 ,

3
8

]
s.t. every subcubic triangle-free planar graph G has α(G ) ≥ sn?

• s = 5
14 ≈ 0.35714 Staton (1979) No planarity condition!

• s = 3
8 = 0.375 Heckman and Thomas (2006)
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Subcubic triangle-free graphs

If G is a subcubic triangle-free graph

• α(G ) ≥ 5n
14 ≈ 0.35714n Staton (1979)

• α(G ) ≥ 11n−4
30 ≈ 0.3666n Fraughaugh and Locke (1995)

• α(G ) ≥ 3n
8 = 0.375n Cames van Batenburg, Goedgebeur, Joret (2020)

if G is avoids 6 exceptional graphs. All non-planar, containing 5-cycles.
(Infinitely many 3-connected tight examples.)

α = 5n
14

6



From α to χf

α(C5) = 2
5n χf (C5) = 5

2

If G is fractionally 1
s -colorable, it has α(G ) ≥ sn.

If α(G ) = sn, is G fractionally 1
s -colorable?

Conjecture (Heckman and Thomas (2001))

Every subcubic triangle-free graph is fractionally 14/5-colorable.

Conjecture (Heckman and Thomas (2006))

Every subcubic triangle-free planar graph is fractionally 8/3-colorable.

7



Conjecture (Heckman and Thomas (2001))

Every subcubic triangle-free graph is fractionally 14/5-colorable.

χf (F
(1)
14 ) = χf (F

(1)
14 ) = 14/5

• 3− 3
64 ≈ 2.953 Hatami, Zhu (2009)

• 3− 3
43 ≈ 2.930 Lu, Peng (2012)

• 32
11 ≈ 2.909 Furgeson, Kaiser, Král’ (2014)

• 43
15 ≈ 2.867 Chun-Hung Liu (2014)

• 14
5 = 2.8 Dvǒrák, Sereni, Volec (2014)

• 11
4 = 2.75 Dvǒrák, L., Postle, if not →

F
(1)
14 F

(2)
14

Theorem (Dvořák, L., Postle (2020+))

Every subcubic triangle-free graph avoiding F
(1)
14 and F

(1)
14 is fractionally 11/4-colorable.
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Theorem (Dvořák, L., Postle (2020+))

Every subcubic triangle-free graph avoiding F
(1)
14 and F

(1)
14 is fractionally 11/4-colorable.

F
(1)
14 F

(2)
14 F11

1

2

3

3

2

1

F22

χf (F
(1)
14 ) = χf (F

(2)
14 ) = 14/5 χf (F22) = χf (F11) = 11/4

Corollary (Dvořák, L., Postle (2020+))

Every subcubic triangle-free planar graph is fractionally 11/4-colorable.

Conjecture (Dvořák, L., Postle (2020+))

Every subcubic triangle-free graph avoiding F
(1)
14 , F

(1)
14 , F11, and F22 is fractionally

19/7-colorable.

11/4 = 2.75 19/7 ≈ 2.7143 8/3 ≈ 2.6666
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Knowledge overview

For subcubic triangle-free graph G that avoids F , following is know or conjectured

F α coloring
∅ 5n/14 14/5

{F (1)
14 ,F

(2)
14 } 4n/11 11/4

{F11,F22,F (1)
14 ,F

(2)
14 } 7n/19 ?19/7?

{F (1)
19 ,F

(2)
19 ,F11,F22,F

(1)
14 ,F

(2)
14 } 3n/8 ?8/3?

all non-planar 3n/8 ?8/3?
α = 3n

8

Conjecture (Cames van Batenburg, Goedgebeur, Joret (2020))

Every subcubic triangle-free graph avoiding F
(1)
14 ,F

(2)
14 ,F11,F22,F

(1)
19 ,F

(2)
19 is fractionally

8/3-colorable.
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Combining fractional colorings

Let ϕ1, ϕ2 be fractional r -colorings of G .

0 ≤ λ1, λ2 such that λ1 + λ2 = 1
then

“ϕ(v) = λ1ϕ1(v) ∪ (λ2ϕ1(v) + λ1)”

is a fractional r -coloring of G .

v

0 11
4

0.5ϕ1
v

0 11
4

0.5ϕ2 + 5.5

v

0
2 2

11

ϕ = 0.5ϕ1 ∪ (0.5ϕ2 + 5.5)

fractional r -colorings of G can be convexly combined

12
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Final part of our proof

Allowed 11 colors, each vertex needs 4. (ϕ to [0, 11), |ϕ(v)| = 4)
Let G be a nice minimum counterexample. Remove N[v ], color rest.

For all v ∈ V , get a coloring ϕv as →
Let n = |V (G )|
Combination of colorings

ϕ =
∑

v∈V (G)

1

n
ϕv

v

v1 v2 v3

u1,2u1,1 u2,1 u2,2 u3,1 u3,2

4 4 4 4 4 4

4 4 4

4 4 4 4 4 4

3 3 3

2

5 5 5 5 5 5

4

1 1 1

8

Gv

G is nice after 40 pages, 176 exceptions, and some computer calculations.
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Actual Result to Prove

Let G = (V ,E ) be a subcubic graph.
Let dG : V → {2, 3}, where deg ≤ dG

An 11/4-coloring is a fractional coloring
ϕ using [0, 11), such that

|ϕ(v)| =

{
4 if dG (v) = 3

5 if dG (v) = 2

2

2

23

3

dG

5

5

54

4

|ϕ(v)|

Theorem (Dvořák, L., Postle)

If (G , dG ) has no 11/4-coloring, then it is isomorphic to one of 176 examples in C.

Out of these 176, only 2 correspond to sub-cubic graphs with dG = 3 and these are

F
(1)
14 ,F

(2)
14 .
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For subcubic triangle-free graphs avoiding F

F α ≥ χf ≤
∅ 5n/14 14/5

{F (1)
14 ,F

(2)
14 } 4n/11 11/4

{F11,F22,F (1)
14 ,F

(2)
14 } 7n/19 ?19/7?

{F (1)
19 ,F

(2)
19 ,F11,F22,F

(1)
14 ,F

(2)
14 } 3n/8 ?8/3?

all non-planar 3n/8 ?8/3?
α = 3n

8

Thank You!
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Making nice counterexamples

For contradiction let (G , dG ) 6∈ C be the smallest critical graph for 11/4-coloring.

Exclude small subgraphs such as small cuts,
4-cycles, 2-vertices,. . . as follows

• Find a pesky structure G1

• Replace it with some smaller H

• One of these
• Find F ∈ C, which gives G ∈ C
• Find an 11/4-coloring and color G

How to extend 11/4-coloring?
In usual coloring, brute forcing may work.

G1

H
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How to extend the coloring?

What extends to H extends to G1?

• Consider polytope from LP:

P(G )



∑
I∈I(G) x(I ) = 11∑
I3v x(I ) = 4 if dG (v) = 3∑
I3v x(I ) = 5 if dG (v) = 2

x ∈ [0, 1]I(G)

• P restricted to S is PS

• Test PS(H) ⊆ PS(G1)

• Can be tested on computer by
considering vertices of PS(H). PS(H)

PS(G1)

G1 S

H S
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