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MOTIVATION

THEOREM (4CT - ApPEL, HAKEN (1976))
Every planar graph is 4-colorable.
Also Robertson, Sanders, Seymour, Thomas (1997)

4CT implies a(G) > n/4
Show without 4CT «(G) > n/4 (Erd8s-Vizing conj.)

Assign weights to V/(G). 4CT implies independent set with > 1/4 of the weight.
Is it true without 4CT?

Without 4CT a(G) > 32 ~ 0.23076 (Cranston and Rabern (2016))

Weighted independent set leads to fractional coloring.
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FRACTIONAL COLORING USING LINEAR PROGRAMMING

Z(G) are all independent sets

fractional coloring
minimize 3,76y x(/)
LP { subject to >7,5, x(/) =1 Vv

x € [0,1]%(¢)
% 3

Z(Gs)| = 11

e x(1,3) =x(2,4)=x(5)=1 x(G)=3
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Z(G) are all independent sets

fractional coloring

minimize > c7g) x(/)
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EQUIVALENT DEFINITIONS FOR FRACTIONAL COLORING

G is fractionally k-colorable if exists
* ¢(v) C [0, k) with [p(v)| =1
e 33 =k, o(v) C{1,...,a}, |o(v)|
e ¢(v) C[0,a) with [p(v)| =b, 5 =k
and p(u) N(v) =0 for uv € E(G)

b

THEOREM (HILTON, RADO, ScoTT (1973))
xf(G) < 5 for any planar G.

(But no ¢ < 5 with x¢(G) < c for all planar graphs G.) @:@@u
THEOREM (CRANSTON AND RABERN (2017)) 0 >

Planar graphs are 3-colorable. (Without using 4CT.)
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a(G) > n/3 + 1 Steinberg and Tovey (1993) a
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PLANAR TRIANGLE-FREE GRAPHS

THEOREM (GROTZSCH (1959))
Every triangle-free planar graph G is 3-colorable.

a(G)>n/3

a(G) > n/3 + 1 Steinberg and Tovey (1993) a
3G : a(G) < n/3+1 (and A(G) = 4) Jones (1990)

QUESTION (ALBERTSON, BOLLOBAS, TUCKER (1976))
Find s € (3, 8} s.t. every subcubic triangle-free planar graph G has o(G) > sn?
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~ 0.35714 Staton (1979) No planarity condition!

s
s = 3 = 0.375 Heckman and Thomas (2006)



SUBCUBIC TRIANGLE-FREE GRAPHS

If G is a subcubic triangle-free graph

e a(G) > 51 ~ 0.35714n Staton (1979) a= 3

e oG) > 12=% ~ 0.3666n Fraughaugh and Locke (1995)

e o(G) > %" = 0.375n Cames van Batenburg, Goedgebeur, Joret (2020)
if G is avoids 6 exceptional graphs. All non-planar, containing 5-cycles.
(Infinitely many 3-connected tight examples.)



FROM a TO xr

If G is fractionally 1-colorable, it has a(G) > sn.

Oé(C5) = %n Xf(C5) = %
If «(G) = sn, is G fractionally -colorable?

CONJECTURE (HECKMAN AND THOMAS (2001))
Every subcubic triangle-free graph is fractionally 14 /5-colorable.

CONJECTURE (HECKMAN AND THOMAS (2006))

Every subcubic triangle-free planar graph is fractionally 8/3-colorable.
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CONJECTURE (HECKMAN AND THOMAS (2001))
Every subcubic triangle-free graph is fractionally 14 /5-colorable.
1 1
vr(FR)) = xr(FL)) = 14/5
e 3— 2, ~2.953 Hatami, Zhu (2009)
e 3— 2 ~2.930 Lu, Peng (2012)
o 32 ~2.909 Furgeson, Kaiser, Kral' (2014)
e 43~ 2867 Chun-Hung Liu (2014)
° % = 2.8 Dvo¥ak, Sereni, Volec (2014) F(l) F(2)
e L — 275 Dvorék, L., Postle, if not — H H
THEOREM (DVORAK, L., POSTLE (20204 ))
Every subcubic triangle-free graph avoiding Fl(i) and Fl(i) is fractionally 11/4-colorable.
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THEOREM (DVORAK, L., POSTLE (2020+))
Every subcubic triangle-free graph avoiding F14) and F1(4) is fractionally 11/4-colorable.

FOED S iy

Xf(Ffﬁ) xr(F) = 14/5 Xf(F22) = Xf(Fn) = 11/4
COROLLARY (DVORAK, L., POSTLE (2020+))
Every subcubic triangle-free planar graph is fractionally 11 /4-colorable.

CONJECTURE (DVORAK, L., POSTLE (2020+))

Every subcubic triangle-free graph avoiding Fl(i), Fl(i), Fi1, and Fy; is fractionally
19/7-colorable.

11/4 =275 19/7~2.7143 8/3 ~ 2.6666
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KNOWLEDGE OVERVIEW

For subcubic triangle-free graph G that avoids F, following is know or conjectured

F o} coloring
0 5n/14  14/5
(1) £
{F./, Fi,’} 4n/11 11/4
{F11, F22, Fl(i), Fl(i)} 7n/19 ?19/77
(FO FQ Fy, o, FD FEY  3n/8  28/3?
all non-planar  3n/8  78/37
__3n
¥=%
CONJECTURE (CAMES VAN BATENBURG, GOEDGEBEUR, JORET (2020))
Every subcubic triangle-free graph avoiding F1(41,)7 Fl(i), Fi1, Foo, Fl(;), Fl(g) is fractionally
8/3-colorable.
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Let ©1, o be fractional r-colorings of G.
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COMBINING FRACTIONAL COLORINGS

4 4
Let ©1, o be fractional r-colorings of G. ol 111 o[ 11
0 < A1, Ao such that A\p + Mo = 1 > v
then Y1 Y2
“o(v) = Ap1(v) U (a1 (v) + A1) o 1
[ ]
v

is a fractional r-coloring of G.
2
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COMBINING FRACTIONAL COLORINGS

2 2
Let ©1, o be fractional r-colorings of G. 0 [U 55 55 m 11
0 < A, A\p such that A\; + X\ =1 iy e
then v 0.5¢1 v 0.5¢, +5.5
2 2
“o(v) = A1p1(v) U (A2 (v) + A1) oI 11

is a fractional r-coloring of G.

fractional r-colorings of G can be convexly combined

[ J
v



FINAL PART OF OUR PROOF

Allowed 11 colors, each vertex needs 4. (¢ to [0,11), |p(v)| =4)
Let G be a nice minimum counterexample. Remove N[v], color rest.
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—4-><4
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FINAL PART OF OUR PROOF

Allowed 11 colors, each vertex needs 4. (¢ to [0,11), |p(v)| =4)
Let G be a nice minimum counterexample. Remove N[v], color rest.

For all v € V, get a coloring ¢, as —
Let n=|V(G)|
Combination of colorings

Y= Z %@v

 8+3x14+6x5+(n—10) x4
n

[p(v)]

1
=44+ =>4
n

G is nice after 40 pages, 176 exceptions, and some computer calculations.



AcTUuAL RESULT TO PROVE
Let G = (V, E) be a subcubic graph.
Let dg : V — {2,3}, where deg < dg

An 11/4-coloring is a fractional coloring
¢ using [0,11), such that

B 4 ifdG(V):?)
(V) _{5 if dg(v) = 2

THEOREM (DVORAK, L., POSTLE)
If (G, dg) has no 11/4-coloring, then it is isomorphic to one of 176 examples in C.

Out of these 176, only 2 correspond to sub-cubic graphs with dg = 3 and these are

1) (2
F1(4),F1(4).
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Let dg : V — {2,3}, where deg < dg

An 11/4-coloring is a fractional coloring
¢ using [0,11), such that

B 4 ifdG(V):?)
(V) _{5 if dg(v) = 2

THEOREM (DVORAK, L., POSTLE)
If (G, dg) has no 11/4-coloring, then it is isomorphic to one of 176 examples in C.

Out of these 176, only 2 correspond to sub-cubic graphs with dg = 3 and these are

1) (2
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For subcubic triangle-free graphs avoiding F

Fooaz xr<
0 5n/14 14/5

(FD FDV anj11 11/4

{Fi1, Fao, FD FDY 7n/19 219/77
{Fl(é),F1(§)7F11,F22,FS),F1(§)} 3n/8  78/37
all non-planar  3n/8  78/37

Thank You!



MAKING NICE COUNTEREXAMPLES

For contradiction let (G, dg) ¢ C be the smallest critical graph for 11/4-coloring.

Exclude small subgraphs such as small cuts,
4-cycles, 2-vertices,. . . as follows

e Find a pesky structure Gy
e Replace it with some smaller H

e One of these

e Find F € C, which gives G € C
e Find an 11/4-coloring and color G
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MAKING NICE COUNTEREXAMPLES

For contradiction let (G, dg) ¢ C be the smallest critical graph for 11/4-coloring.

Exclude small subgraphs such as small cuts,
4-cycles, 2-vertices,. . . as follows

e Find a pesky structure Gy
e Replace it with some smaller H

e One of these

e Find F € C, which gives G € C
e Find an 11/4-coloring and color G

How to extend 11/4-coloring?
In usual coloring, brute forcing may work.

16



HoOw TO EXTEND THE COLORING?

What extends to H extends to G;?

e Consider polytope from LP:

ez x(1) =11

sy X(1) =4 if dg(v) =
Dosex(1) =5 if dg(v) =
x € [0, 1]%(¢)

P(G)

e P restricted to S is Ps
e Test Ps(H) C Ps(Gy)

e Can be tested on computer by
considering vertices of Ps(H).

3
2

Ps(G1)
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