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or snowtubing
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Point set in the plane

n points in the plane R2
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Overview

Definition

Let T ,T ′ be triangles with angles α ≤ β ≤ γ and α′ ≤ β′ ≤ γ′ respectively. The
triangle T ′ is ε-similar to T if |α− α′| < ε, |β − β′| < ε, and |γ − γ′| < ε.

Definition

h(n,T , ε) = The maximum number of triangles in a planar set of n points that are
ε-similar to a triangle T .

Question (Bárány and Füredi (2019))

Given a triangle T , n ∈ N and ε > 0 sufficiently small, determine h(n,T , ε).
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Lower bound construction
Let T be a triangle.

g(n) := max{abc + g(a) + g(b) + g(c) : a + b + c = n, a, b, c ∈ N}.
g(0) = g(1) = g(2) = 0.

g(n) =
1

4

(
n

3

)
(1 + o(1))

and if n is a power of 3, then g(n) =
1

24
(n3 − n)
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History

Observation (Bárány and Füredi (2019))

For every triangle T and for every ε > 0, we have

h(n,T , ε) ≥ g(n) =
1

4

(
n

3

)
(1 + o(1)).

Theorem (Bárány and Füredi (2019))

Let T be an equilateral triangle. There exists ε0 ≥ 1◦ such that for all ε ∈ (0, ε0) and
all n we have h(n,T , ε) = g(n).
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Lower bound construction for isosceles right triangle
There are triangles T with h(n,T , ε) > g(n).

T

Observation (Bárány and Füredi (2019))

For T being the isosceles right triangle and for every ε > 0, we have

h(n,T , ε) ≥ n3

6
√

2 + 6
(1 + o(1)) ≈ 0.414

(
n

3

)
(1 + o(1)).

They found more triangle shapes T with h(n,T , ε) > g(n).
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Main result

Theorem (Bárány and Füredi (2019))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) ≤ 0.25072

(
n

3

)
(1 + o(1)).

Theorem (Balogh, Clemen, Lidický (2021))

For almost every triangle T there is an ε0 > 0 such that for all 0 < ε ≤ ε0,

h(n,T , ε) =
1

4

(
n

3

)
(1 + o(1)).
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Almost every triangle

• A triangle shape can be identified by points in C
• Given a triangle shape T , there are up to 12 points in C which form T together

with the points 0 and 1.

• We say a statement about triangle shapes holds for almost every triangle if it
holds for all triangle shapes except a set of Lebesgue measure 0.
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Connection to Hypergraph Turán Problems

Let P ⊆ R2 be finite point set, T be a triangle.

• For ε > 0, let G (P,T , ε) be the 3-graph with vertex set V (G (P,T , ε)) = P and
triples abc being an edge in G (P,T , ε) iff abc forms a triangle ε-similar to T .

• A 3-graph H is called forbidden if |V (H)| ≤ 12 and for almost every triangle T
there exists an ε = ε(T ) > 0 such that for every point set P ⊆ R2, G (P,T , ε) is
H-free.

• Denote F the family of all forbidden 3-graphs
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Forbidden Subhypergraphs

Lemma (Bárány and Füredi, 2019)

The following hypergraphs are members of F .

• K−4 = {123, 124, 134}
• C−5 = {123, 124, 135, 245}
• C+

5 = {123, 234, 345, 356, 136}
• L2 = {123, 124, 125, 136, 456}
• L3 = {123, 124, 135, 256, 346}
• L4 = {123, 124, 156, 256, 345}
• L5 = {123, 124, 135, 146, 356}
• L6 = {123, 124, 145, 346, 356}
• P−7 = {123, 145, 167, 246, 257, 347}.
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Bárány and Füredi’s proof

For almost all T , there exists ε(T ) such that

h(n,T , ε) = max
P⊂R2,|P|=n

e(G (P,T , ε))

≤ ex(n, {K−4 ,C
−
5 ,C

+
5 , L2, L3, L4, L5, L6,P

−
7 })

≤ 0.25072

(
n

3

)
(1 + o(1)).
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More forbidden subhypergraphs

Lemma

The following hypergraphs are members of F .

• L7 = {123, 124, 125, 136, 137, 458, 678}
• L8 = {123, 124, 125, 136, 137, 468, 579, 289}
• L9 = {123, 124, 125, 136, 237, 578, 469, 189}
• L10 = {123, 124, 125, 126, 137, 138, 239, 58a, 47b, 69c , abc}.

Definition

We call a 3-graph H on r vertices dense if there exists a vertex ordering v1, v2, . . . , vr
such that for every 3 ≤ i ≤ r − 1 there exists exactly one edge ei ∈ E (H[{v1, . . . , vi}])
containing vi , and there exists exactly two edges er , e

′
r containing vr .

18



Finding forbidden subhypergraphs - a sketch of a sketch

• A triangle shape T is represented by at most 12 points in C :
{z , 1− z , 1

z , 1−
1
z ,

1
1−z ,

z
z−1 and their conjugates}.

• We will try to embed some H ∈ {L7, L8, L9, L10} on points p1, p2, p3, . . . , pr ∈ C.

• Assume p1 = 0, p2 = 1

• There are at most 12 ε′-balls to place p3.

• There are at most 122 ε′-balls to place p4.
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Finding forbidden subhypergraphs - a sketch of a sketch

Fix one of the 12r−3 possibilities to place the centers for the positions of p1, . . . , pr−1.
Positions for pr given er is an edge

Positions for pr given e ′r is an edge

Intersection of red and black circles decides possibility of embedding. 2

20



Finding forbidden subhypergraphs - a sketch of a sketch

Fix one of the 12r−3 possibilities to place the centers for the positions of p1, . . . , pr−1.
Positions for pr given er is an edge
Positions for pr given e ′r is an edge

Intersection of red and black circles decides possibility of embedding. 2

20



Finding forbidden subhypergraphs - a sketch of a sketch

Fix one of the 12r−3 possibilities to place the centers for the positions of p1, . . . , pr−1.
Positions for pr given er is an edge
Positions for pr given e ′r is an edge

Intersection of red and black circles decides possibility of embedding. 2
20



Flag algebras

Seminal paper:
Razborov, Flag Algebras, Journal of Symbolic Logic 72
(2007), 1239–1282.
David P. Robbins Prize by AMS for Razborov in 2013

• Designed to attack extremal problems.

• The results are for the limit as graphs get very large.

• Calculating with densities of small induced graphs.

21



Flag algebras examples and our formulation

• Maximize K2 subject to K3-free

• Maximize C5 subject to K3-free

• Mimimize K3 subject to K2 ≥ p

• Maximize |E | subject to K 3
4 -free

• Maximize |E | subject to F-free (our case)

• Maximize |E | subject to F ′7-free (really our case)
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Weak stability

Lemma

Let n ∈ N be sufficiently large and let G be an F-free 3-graph on n vertices and
|E (G )| ≥ 1/24n3(1 + o(1)) edges. Then there exists an edge x1x2x3 ∈ E (G ) such that
for n large enough

(i) the neighborhoods N(x1, x2),N(x2, x3), and N(x1, x3) are pairwise disjoint,

(ii) min{|N(x1, x2)|, |N(x2, x3)|, |N(x1, x3)|} ≥ 0.26n,

(iii) |N(x1, x2)|+ |N(x2, x3)|+ |N(x1, x3)| ≥ 0.988n.
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Proof sketch of weak stability via Flag Algebras
We want to find an edge x1x2x3 such that

f (|A1|, |A2|, |A3|) :=

|A1||A2|+ |A1||A2|+ |A2||A3| −
1

4
(|A1|2 + |A2|2 + |A3|2)

is large, where

A1 := N(x2, x3), A2 := N(x1, x3), A3 := N(x1, x2),

Pick an edge x1x2x3 uniformly at random.

0.25n2 ≥

E[f (|A1|, |A2|, |A3|)] ≥ . . . ≥ ((48t221 − 9t331)/40t111 + o(1))n2 ≥ 0.2213n2

Thus, there exists an edge x1x2x3 such that

min{|A1|, |A2|, |A3|} ≥ 0.17n and |A1|+ |A2|+ |A3| ≥ 0.94n

2

E[f ] ≥ 0.244n2 min{|Ai |} ≥ 0.26n
∑
|Ai | ≥ 0.988n
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The idea of our proof

• Assume G is F-free 3-graph on n vertices with |E (G )| ≥ 1
4

(n
3

)
(1 + o(1)) edges.

• Find an edge x1x2x3 with large. |N(x1, x2)|+ |N(x1, x3)|+ |N(x2, x3)|
• Use a cleaning technique to clean the “top layer”.
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Optimization

Claim

We can partition V (G ) = X1 ∪X2 ∪X3 with |Xi | ≥ 0.26n for i ∈ [3] such that no triple
abc with a, b ∈ Xi and c ∈ Xj for some i , j ∈ [3] with i 6= j forms an edge.

Proof sketch: Main result.

We will prove by induction ex(n,F) ≤ 1
24n

3 + Cn.

e(G ) ≤ |X1||X2||X3|+
3∑

i=1

e(G [Xi ]) ≤ |X1||X2||X3|+ Cn +
1

24

3∑
i=1

|Xi |3

≤ 1

24
n3 + Cn,

where the maximum is obtained at |Xi | = n
3 (1 + o(1)).
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Completing the proof

Theorem (Balogh, C., Lidický (2021))

For almost every triangle T there is an ε > 0 such that

h(n,T , ε) =
1

4

(
n

3

)
(1 + o(1)).

Proof.

h(n,T , ε) = max
P⊆R2,|P|=n

e(G (P,T , ε)) ≤ ex(n,F) ≤ 1

4

(
n

3

)
(1 + o(1)).
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Almost all triangles - our results

Theorem (Balogh, Clemen, Lidický (2021))

There exists n0 such that for all n ≥ n0 and for almost every triangle T there is an
ε > 0 such that

h(n,T , ε) = a · b · c + h(a,T , ε) + h(b,T , ε) + h(c ,T , ε),

where n = a + b + c and a, b, c are as equal as possible.

Corollary (Balogh, Clemen, Lidický (2021))

Let n be a power of 3. Then, for almost every triangle T there is an ε > 0 such that

h(n,T , ε) = g(n) =
1

24
(n3 − n).
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Open Problems

• Consider point sets in R3 or even Rd .

• Determine h(n,T , ε) for all T (and all
ε small enough).

• Determine ex(n,F) for a smaller
family than F
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Open problem: R3 instead of R2

#

#

Figure: A cutout of a tetrahedron using an acute triangle on the left.

A cutout not giving a
tetrahedron coming from an obtuse triangle on the right.

Observation

Let ε > 0 and T be and acute triangle. Then, there exists a point set P ⊆ R3 with at
least 2

5

(n
3

)
(1 + o(1)) triangles being ε-similar to T .
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tetrahedron coming from an obtuse triangle on the right.

Observation

Let ε > 0 and T be and acute triangle. Then, there exists a point set P ⊆ R3 with at
least 2

5

(n
3

)
(1 + o(1)) triangles being ε-similar to T .
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Open Problem: Smaller family than F

Conjecture (Falgas-Ravry and Vaughan(2013))

ex(n, {K−4 ,C5}) = 1
4

(n
3

)
(1 + o(1)).

Conjecture (Balogh, Clemen, Lidický (2021))

ex(n, {K−4 , L2}) = 1
4

(n
3

)
(1 + o(1)).

L2 = {123, 124, 125, 136, 456}
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Thank you!

Thank you for your attention!
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More detailed proof

• Denote Ti ,j ,k the family of 3-graphs that are obtained from a complete 3-partite
3-graph with part sizes i , j and k by adding F-free 3-graphs in each of the three
parts.

• The normalized number is ti ,j ,k is the number of subgraphs of G isomorphic to
some T ∈ Ti ,j ,k divided by

( n
i+j+k

)
.

E[|A1||A2|+ |A1||A2|+ |A2||A3| −
1

4
(|A1|2 + |A2|2 + |A3|2)]

≥ . . . ≥ 1

7 t2,2,1
(3 t3,3,1 + 3.5 t3,2,2 − t4,2,1)

(
n − 5

2

)
+ o(n2)

≥ 1.2814228

14 · 0.37502377
n2 > 0.24406n2.
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Proof of weak stability via Flag Algebras
Let X be the subhypergraph on 5 vertices x1, x

′
1, x2, x

′
2, x3 with edges

x1x2x3, x1x
′
2x3, x

′
1x2x3, x

′
1x
′
2x3.

Denote

A1 := N(x2, x3) ∩ N(x ′2, x3), A2 := N(x1, x3) ∩ N(x ′1, x3),

A3 := N(x1, x2) ∩ N(x ′1, x2) ∩ N(x1, x
′
2) ∩ N(x ′1, x

′
2)

and

f (|A1|, |A2|, |A3|) :=

|A1||A2|+ |A1||A2|+ |A2||A3| −
1

4
(|A1|2 + |A2|2 + |A3|2)

Pick X uniformly at random. We will lower bound

0.25n2 ≥

E[f (|A1|, |A2|, |A3|)] ≥ . . . ≥ 0.24406n2.

Thus, there exists a subhypergraph X such that

min{|A1|, |A2|, |A3|} ≥ 0.26n and |A1|+ |A2|+ |A3| ≥ 0.988n

2
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More forbidden subhypergraphs

Lemma

The following hypergraphs are members of F .

• L7 = {123, 124, 125, 136, 137, 458, 678}
• L8 = {123, 124, 125, 136, 137, 468, 579, 289}
• L9 = {123, 124, 125, 136, 237, 578, 469, 189}
• L10 = {123, 124, 125, 126, 137, 138, 239, 58a, 47b, 69c , abc}.

Definition

We call a 3-graph H on r vertices dense if there exists a vertex ordering v1, v2, . . . , vr
such that for every 3 ≤ i ≤ r − 1 there exists exactly one edge ei ∈ E (H[{v1, . . . , vi}])
containing vi , and there exists exactly two edges er , e

′
r containing vr .
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How to find forbidden subhypergraphs - a sketch
• A triangle shape T is represented by at most 12 points in C :
{z , 1− z , 1

z , 1−
1
z ,

1
1−z ,

z
z−1 and their conjugates}.

• We will try to embed some H ∈ {L7, L8, L9, L10} on points p1, p2, p3, . . . , pr ∈ C.
• Assume p1 = 0, p2 = 1
• There are at most 12 ε′-balls to place p3.
• There are at most 122 ε′-balls to place p4.
• There are at most 12r−3 ε′-balls to place pr−1.
• Each of the centers of the balls are rational functions in z .
• Fix one of the 12r−3 possibilities to place the centers for the positions of
p1, . . . , pr−1.
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How to find forbidden subhypergraphs - a sketch

Positions for pr given er is an edge

Positions for pr given e ′r is an edge

Situation 1: No intersection of red and black circles
→ H cannot be embedded
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How to find forbidden subhypergraphs - a sketch

Positions for pr given er is an edge
Positions for pr given e ′r is an edge

Situation 2: red and black circle intersect but do not have the same center
Reduce ε′ and they do not intersect any longer → H cannot be embedded.
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How to find forbidden subhypergraphs - a sketch

Positions for pr given er is an edge
Positions for pr given e ′r is an edge

Situation 3: A red and black circle has the same center
Claim: This only happens for a set of z ∈ C of Lebesgue measure 0.

39



How to find forbidden subhypergraphs - a sketch

• Two cycles have a matching center if a certain polynomial equation is satisfied.

• Strategy: Show that there is a z ∈ C (We pick z = 1
2 + i ·

√
3

2 ) not satisfying any

of these 12|V (H)|−1 equations. (This is lots of casework)

• The solution space of these equations must be of Lebesgue measure 0.
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A picture of Flag Algebras

41



Applications (early incomplete list)

Author Year Application/Result
Razborov 2008 edge density vs. triangle density
Hladký, Král, Norin 2009 Bounds for the Caccetta-Haggvist conjecture
Razborov 2010 On 3-hypergraphs with forbidden 4-vertex configurations
Hatami, Hladký,Král,Norine,Razborov / Grzesik 2011 Erdős Pentagon problem
Hatami, Hladký, Král, Norin, Razborov 2012 Non-Three-Colourable Common Graphs Exist
Balogh, Hu, Lidický, Liu / Baber 2012 4-cycles in hypercubes
Das, Huang, Ma, Naves, Sudakov 2013 minimum number of k-cliques
Baber, Talbot 2013 A Solution to the 2/3 Conjecture
Falgas-Ravry, Vaughan 2013 Turán density of many 3-graphs
Cummings, Král, Pfender, Sperfeld, Treglown, Young 2013 Monochromatic triangles in 3-edge colored graphs
Kramer, Martin, Young 2013 Boolean lattice
Balogh, Hu, Lidický, Pikhurko, Udvari, Volec 2013 Monotone permutations
Norin, Zwols 2013 New bound on Zarankiewicz’s conjecture
Huang, Linial, Naves, Peled, Sudakov 2014 3-local profiles of graphs
Balogh, Hu, Lidický, Pfender, Volec, Young 2014 Rainbow triangles in 3-edge colored graphs
Balogh, Hu, Lidický, Pfender 2014 Induced density of C5
Goaoc, Hubard, de Verclos, Séréni, Volec 2014 Order type and density of convex subsets
Coregliano, Razborov 2015 Tournaments
Alon, Naves, Sudakov 2015 Phylogenetic trees
... ... ...
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